CHAPTER |

PRELIMINARIES

Atriple ( ,+5%) is called a semiring if
(i) ( 5t) and ( 5*) are semigroups and
(1) x*(ytz) = x*y+x*z and (y+z)*x = y*x+z*x for all
x,y5 £ , and the operations + and - are usually called the addition
and the multiplication of the semiring, respectively.
A semiring ( ,+5*) is said to be additively commutative
[multiplicatively commutative] if ( 5t)[( ,*)] is a commutative
semigroup. A commutative semiring is a semiring which is both

additively commutative and multiplicatively commutative.

Let = ( ,+5* be a semiring. An element 0 of is called
a zero of if x+0 = 0+x = x and x*0  0*x = 0 for every X £ . An
element 1 of is called a multiplicative identity of if x*1 = 1*X = X
for every x £ . If has a zero 0 [a multiplicative identity I] and
X £ is such that x+ty =y+x =0 [x*y=y*x=1] for some y £ , then
X Is said to be additively invertible [multiplicatively invertible]
in . It is easily seen that if has a zero and x,y £ are additively
invertible in , then x+y, sx and xs are additively invertible in
for all £ , and if has a multiplicative identity and x,y £ are
multiplicatively invertible in , then so is xy.

A semiring is called an additively idempotent semiring if
xtx = x for all x £ and it is called a Boolean semiring or

a multiplicatively idempotent semiring if cx for ail x £ . An



idempotent semiring is a semiring which is both additively idempotent
and multiplicatively idempotent.

An element x of a semigroup is called an inverse of an
element y of if x = xyx and y = yxy. A semigroup is called an
inverse semigroup if every element of has a unique inverse. It is
known that a commutative inverse semigroup is a disjoint union of
subgroups of

A semiring ( ,+3") is called an additively inverse semiring
if ( 3) is an inverse semigroup 3 and for x ¢ 3 the notation x will
denote the inverse of x in the inverse semigroup ( 3t). Then an
additively inverse semiring which is additively commutative is a
semiring with its additive structure a 'union of groups. Note that
an additively idempotent semiring  which is additively commutative

is an additively inverse semiring with x = x for every x ¢

From now on, semirings always mean "commutative semirings with
zero 0 and multiplicative identity 1 and 0 ¢ 1"
Asemiring ( ,+3') is called a semifield if (S\{0)3") is

a group.

An nxn matrix A over a semiring is said to be invertible
over if there exists an nxn matrix B over such that AB = BA = |
where | is the nxn identity matrix over . The transpose of
a matrix A over a semiring is denoted by A Then for nxn matrices A
and B over a semiring , (AT)T = A, (AB)L = BTAT3 and A is invertible

over if and only if AT is invertible over

If Ais an nxn matrix over a semiring3 then for i,j £ {1,2,...3

let A . denote the element of Ain the i— row and j— column.



A square matrix A over a semiring is called a permutation
matrix over if every element of Ais either 0 or 1 and every row and
every column of A has exactly one element 1. Then every permutation
matrix over a semiring is invertible over . To prove this, let A

be an nxn permutation matrix over a semiring . Claim that AA* = |

Let i,j £{1,2,..., }. Then (AA"), AN, I | 1 ] 5 then for

each t £ {i,2,...,n}, A =0 or A = 0 since every column of A has
exactly one nonzero element, hence (AAT), =0. If i =], then there
exists at £ {l,2,..., } such that A =1and A =0 for all

t £ {1,2,...,n}\(t0} since every eIemtlen(t) of Als éither 0 or 1 and

every row of Ahas exactly one element 1, thus (AAMA) = (AAMM =

£EA* = Af =1 Hence AA*=1 . It can be shown similarly that
t=1 1 To n
4TA = In.

Let A be an nxn matrix over a semiring . The positive

determinant of A, det+A, the negative determinant of A, det~A, and

the permanent of A, per(A), are defined respectively by

det+A = )
atvh k=l '
| f > 1,
det A= o
0 if =1
and
perU) = A

where 'f is the permutation group (the symmetric group) of degree
Is the alternating group of degree  (that is5A = {orf lais 3
even permutation}) and 3 =y 'A (that is53 ={a £y IdFis an odd
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permutation}). Note that the following statements hold

(1) per(A) = det+A + det~A 5

(2) det(A) = det+tA - det A if IS a commutative ring with
identity 5

(3) det+ln =1 and det_In = 0 where 1™ is the nxn identity
matrix over 5

(4) per(A)

(5) det+A

det(A) if is a Boolean ring with identity,

det+(AT) and det A = det (A"),
() per(A) =per(A®).
The statements (1), (2) and (3) are clearly seen. The statement (4)

follows from the fact that X = -X for every X in any Boolean ring.
The statement(6) follows from the statement(5), A proof of (5) is given

as follows  Since det+(AT) = Z Aa(1)lAa(2)2++-Aa( ) 3ut % =

(a-11a z «4 }, we have that det+(Ad) = Z A a ...a
n aed™ a 1(1)1 a_1(2)2 a_l(n)n

Because for each a e 5 (a 1(1)5 1(2)5...5 1(n)} ={1,2,...5 1},
and k = ai° d(k)) for all k £ {1,2,..., }, it follows that for each
*eA”’

(2)2¢ ¢ Jn=A 1)YRa(2)-"MAa( )-

Hence det+(Ad) = £ Ajq(1)Aa(2)1 wa(n) = det A* And’ det (A ) = det A
can be proved similarly.

The following known results will be used in this thesis.

Theorem 1.1. If A and B are nxn matrices over a semiring 3 then

there exists an element r of such that



det+(AB) = (det+A)(det+B)+(det A)(det B)+r
and

det“(AB)

(det+A)(det~B)+(det~A)(det+B)+r [5].

Theorem 1.2. Let A and B be njen matrices over a semiring  and |

the nxn identity matrix over . If AB =1 then BA =1 [5].

Theorem 1.3. If is an additively inverse semiring, then for all

X,y £
(1) (xty) =X+y
(2) (xy) =xy=xy and
(3) Xy = xy [6].
Theorem |.h. |If is a semifield, then is a field or 0 is the

only additively invertible element of S [7]

Theorem 1.5. Let Dbe a semiring such that has no zero divisors

(that is 3 xy =0 in implies that x=00ry =20) and 0 is the

only additively invertible element of . Then a square matrix A over
is invertible over if and only if every row and every column of

A has exactly one nonzero element and every nonzero element of A is

a multiplicatively invertible element of [*] .

Theorem 1.6. Let Nbe the set of all positive integers. Then there
exists a binary operation * on Nu{0} such that (Nu{0},*,°) is a ring

where « is the usual multiplication [3].

In this thesis, we let N, Q+ and R+ denote the set of all
positive integers 3 the set of all positive rational numbers and the

set of all positive real numbers, respectively.
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