CHAPTER VI RESULTS AND DISCUSSION

The main feature of this research is to enhance the performance of aluminasupported platinum catalyst (Pt/Al₂O₃) and titanium oxide-supported platinum catalyst (Pt/TiO₂) for controlling exhaust emission from conventional petrol engines, which operate close to stoichiometric condition. It is emphasized to the catalyst preparation by varying a calcination temperature in either oxidizing or reducing atmosphere. The catalysts prepared from different technique are tested with a model exhaust gas to study the catalytic activity in the oxidation of CO and C₃H₈ including the reduction of NO. This gas mixture is composed of 0.05 vol%NO, 0.30 vol%CO, 0.215 vol%C₃H₈, 1.2 vol%O2 and balanced with He under stoichiometric condition. Besides, the effect of oxygen on the catalytic activity was studied by changing the amount of oxygen from 1.2 vol%O₂ (stoichiometric condition) to 5 vol% (lean-burn condition). As reported by Asavapitchyont [21], platinum was chosen to be a main component catalyst because it could abate CO, C_3H_8 and NO simultaneously at stoichiometric condition. The catalytic activity in this study is compared by using "light-off temperature" which is defined as the temperature at which a 50% conversion is reached with respect to the gas being converted [46]. That is to say the lower the light-off temperature, the higher the catalytic activity. The results and discussion are categorized into 6 parts as follows:

6.1 Effect of the calcination temperature on the activity of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ catalysts for NO, CO and C₃H₈ removal under stoichiometric condition

6.2 Catalyst characterization

6.3 Comparison between oxide form and metal form catalysts

6.4 Comparison between metal form and SMSI form catalysts

6.5 Effect of O_2 on the activity of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ catalysts for NO. CO and C₃H₈ removal

6.6 Discussion

6.1 Effect of the calcination temperature on the activity of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ catalysts for NO, CO and C₃H₈ removal under stiochiometric condition

The first experiment of this research is set to study the effect of a calcination temperature on the activity of alumina-supported platinum catalyst (Pt/Al_2O_3) and titanium oxide-supported platinum catalyst (Pt/TiO_2) for CO and C_3H_8 oxidation and NO reduction. These catalysts were tested in a temperature range 25-500°C under stoichiometric condition.

In this experiment, the catalysts were prepared by varying the calcination temperature at 380°C, 450°C, 500°C, 550°C and 650°C. The two calcination methods were set as follows:

1. calcination in air

2. calcination in a reducing atmosphere $(10\% H_2/N_2)$

The effective periods of time for the calcination in air and in a reducing atmosphere are 3 h [13, 23] and 7 h [13, 22, 23], respectively. The preparation details of the different catalysts are summarized in Table 6.1. To accommodate in discussion, these catalysts are also labelled as shown in this table.

From Table 6.1, these catalysts are divided into 4 groups as follows:

1. CAT.1-CAT.5, 0.3%Pt/Al₂O₃ catalysts prepared from calcination in air

2. CAT.6-CAT.10, 0.3%Pt/Al₂O₃ catalysts prepared from calcination in a reducing atmosphere

3. CAT.11-CAT.15 and CAT.21, 0.3% Pt/TiO_2 catalysts prepared from calcination in air

4. CAT.16-CAT.20 and CAT.22, 0.3%Pt/TiO₂ catalysts prepared from calcination in a reducing atmosphere

After testing the reaction, the light-off temperatures for NO reduction, CO and C_3H_8 oxidation are plotted as functions of the calcination temperature to evaluate their catalytic performance.

	_	Preparation condition					
Name	Catalyst composition	Calcination atmosphere	Calcination temperature (°C)	Calcination time (h)			
CAT.1	0.3%Pt/Al ₂ O ₃	air	380	3			
CAT.2	0.3%Pt/Al ₂ O ₃	air	450	3			
CAT.3	0.3%Pt/Al ₂ O ₃	air	500	3			
CAT.4	0.3%Pt/Al ₂ O ₃	air	550	3			
CAT.5	0.3%Pt/Al ₂ O ₃	air	650	3			
CAT.6	0.3%Pt/Al ₂ O ₃	10% H ₂ in N ₂	380	7			
CAT.7	0.3%Pt/Al ₂ O ₃	10% H ₂ in N ₂	450	7			
CAT.8	0.3%Pt/Al ₂ O ₃	10% H ₂ in N ₂	500	7			
CAT.9	0.3%Pt/Al ₂ O ₃	10% H ₂ in N ₂	550	7			
CAT.10	0.3%Pt/Al ₂ O ₃	10% H ₂ in N ₂	650	7			
CAT.11	0.3%Pt/TiO ₂	air	380	3			
CAT.12	0.3%Pt/TiO ₂	air	450	3			
CAT.13	0.3%Pt/TiO ₂	air	500	3			
CAT.14	0.3%Pt/TiO ₂	air	550	3			
CAT.15	0.3%Pt/TiO ₂	air	650	3			
CAT.16	0.3%Pt/TiO ₂	10% H ₂ in N ₂	380	7			
CAT.17	0.3%Pt/TiO ₂	10% H ₂ in N ₂	450	7			
CAT.18	0.3%Pt/TiO ₂	10% H ₂ in N ₂	500	7			
CAT.19	0.3%Pt/TiO ₂	10% H ₂ in N ₂	550	7			
CAT.20	0.3%Pt/TiO ₂	10% H ₂ in N ₂	650	7			
CAT.21	0.3%Pt/TiO ₂	air	600	3			
CAT.22	0.3%Pt/TiO ₂	10% H ₂ in N ₂	600	7			

 Table 6.1 Name of catalyst and preparation condition

Figure 6.1 The effect of calcination temperature of 0.3%Pt/Al₂O₃ catalyst calcined in air on the light-off temperatures of CO, C₃H₈ and NO under stoichiometric condition

Figure 6.2 The effect of calcination temperature of 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere on the light-off temperatures of CO. C₃H₈ and NO under stoichiometric condition

Figure 6.3 The effect of calcination temperature of 0.3%Pt/TiO₂ catalyst calcined in air on the light-off temperatures of CO, C₃H₈ and NO under stoichiometric condition

Figure 6.4 The effect of calcination temperature of 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere on the light-off temperatures of CO, C₃H₈ and NO under stoichiometric condition

Figure 6.1 shows the effect of calcination temperature of the 0.3%Pt/Al₂O₃ catalyst calcined in air (CAT.1-CAT.5) on NO reduction and CO and C₃H₈ oxidation. It is found that the light-off temperatures of all the catalysts are almost the same for each reaction. Therefore, for the 0.3%Pt/Al₂O₃ catalyst calcined in air, it is concluded that the calcination temperature in range 380°C to 650°C hardly affects the catalytic activity.

The effect of calcination temperature of the 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere (CAT.6-CAT.10) on NO reduction and CO and C₃H₈ oxidation is illustrated in Figure 6.2. It is clearly observed that the light-off temperatures of all the catalysts are different case of CO oxidation. On the other hand, the light-off temperatures for NO reduction and C₃H₈ oxidation decrease with the increase of calcination temperature when the temperature is below 550°C. When the calcination temperature is above 550°C, these light-off temperatures are almost constant with increasing calcination temperature. For the 0.3 Pt/Al₂O₃ catalyst calcined in a reducing atmosphere, the suitable calcination temperature at which the light-off temperature for all reactions is minimized is 550°C.

Figure 6.3 represents the relationship between the light-off temperature for NO reduction and CO and C_3H_8 oxidation and the calcination temperature of the 0.3%Pt/TiO₂ catalyst calcined in air (CAT.11-CAT.15 and CAT.21). The same tendency as of those observed in Figure 6.2 was found. It is, however, noted that these light-off temperatures for CO oxidation are almost constant when the calcination temperatures are in range between 380°C and 500°C. Therefore, the optimum calcination temperature in this case is 550°C.

The effect of calcination temperature of the 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere (CAT.16-CAT.20 and CAT.22) on NO reduction and CO and C₃H₈ oxidation is investigated as shown in Figure 6.4. The optimum calcination temperature is 550°C in case of NO reduction and C₃H₈ oxidation. On the other hand, the light-off temperatures for CO oxidation are rather constant for all catalysts.

From the above results, it is noted that most catalysts prepared from the calcination temperature of 550°C, except Pt/Al_2O_3 which was calcined in air, give the lowest light-off temperature for the three reactions, i.e., NO reduction, CO and C_3H_8 oxidation. Therefore, the catalyst prepared at 550°C will be considered in the next section.

6.2 Catalyst characterization

6.2.1 X-ray Diffraction

X-ray Diffraction is a technique, which identifies the crystal structure by using X-ray radiation. In case of Al_2O_3 , the XRD spectrum of pure Al_2O_3 is shown in Figure 6.5. It is shown that 2 theta of Al_2O_3 is similar to gamma- Al_2O_3 reported by Inoue *et al* [47]. Figures 6.6 and 6.7 show the XRD spectrum of fresh $0.3\%Pt/Al_2O_3$ catalysts calcined in air and calcined in reducing atmosphere, respectively. It is observed that the 2 theta range from 10° to 80° of all fresh $0.3\%Pt/Al_2O_3$ catalysts is similar to that of pure Al_2O_3 . It is concluded that Al_2O_3 of both fresh $0.3\%Pt/Al_2O_3$ catalysts is gamma phase.

The XRD spectrum of pure TiO₂ is illustrated in Figure 6.8. In the 2 theta range from 20° to 60° five peaks are observed: 25.2° , 38.5° , 48.0° , 53.9° and 55.2° in consistence with reported by Sopyan *et al* [48]. No other peaks except those attributed to anatase were observed. These observations show that, within the detection limits of measurement, the XRD pattern consisted of only anatase. Figures 6.9 and 6.10 show the XRD spectrum of fresh 0.3%Pt/TiO₂ catalysts calcined in air and calcined in a reducing atmosphere, respectively. It can be seen that XRD spectrum of both fresh 0.3%Pt/TiO₂ catalysts is the same as that of pure TiO₂. It is concluded that TiO₂ of both fresh 0.3%Pt/TiO₂ catalysts is anatase phase.

Moreover, it can be seen that Pt peak cannot be detected on 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ catalysts as shown in Figure 6.6, 6.7, 6.9 and 6.10, respectively. It means that the amount of Pt on 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ surface may be too small to be determined by XRD.

Figure 6.5 X-ray diffraction pattern of pure Al_2O_3

Figure 6.6 X-ray diffraction pattern of fresh 0.3%Pt/Al₂O₃ catalyst calcined in air at 550°C

Figure 6.7 X-ray diffraction pattern of fresh 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere at 550°C

Figure 6.8 X-ray diffraction pattern of pure TiO₂

Figure 6.9 X-ray diffraction pattern of fresh 0.3%Pt/TiO₂ catalyst calcined in air at 550° C

Figure 6.10 X-ray diffraction pattern of fresh 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere at 550°C

6.2.2 The metal active site and BET surface area measurement

Table 6.2 The metal active site and BET surface area of 0.3%Pt/Al2O3 and 0.3%Pt/TiO2prepared from a different calcination method

Name	Metal active site (×10 ¹⁸ molecule/g cat)	BET surface area (m ² /g cat)
CAT.1	5.88	270.69
CAT.2	7.89	259.27
CAT.3	10.19	217.76
CAT.4	5.49	209.44
CAT.5	5.54	198.91
CAT.6	4.63	241.28
CAT.7	6.71	234.15
CAT.8	8.43	196.32
CAT.9	4.77	190.74
CAT.10	4.72	166.81
CAT.11	3.37	4.78
CAT.12	3.49	4.74
CAT.13	3.69	4.59
CAT.14	4.44	3.94
CAT.15	3.75	3.74
CAT.16	3.25	4.14
CAT.17	3.42	4.08
CAT.18	3.54	4.11
CAT.19	3.89	3.83
CAT.20	3.57	3.61
CAT.21	4.15	3.85
CAT.22	3.72	6.74
Al ₂ O ₃	-	342.45
TiO ₂	-	11.88

Table 6.2 shows BET surface area and the amount of metal active sites measured by CO chemisorption technique. It can be observed that the BET surface area of all alumina supported platinum catalysts (CAT.1-CAT.10) shown in this table is in the range from 166.81 m^2/g cat to 270.69 m^2/g cat, while that of pure alumina shown in Table 6.2 is about 342.45 m²/g cat. These results could be explained that the pore of alumina is plugged by the loaded Pt [49]. It is also seen that the BET surface area will be decreased when the catalyst is calcined at higher temperature which this result correspond with the result reported by Ozawa [50]. Chang [51] found that treatment at high temperature in hydrogen atmosphere can cause both sintering and changing in particle size and morphology called SMSI for dispersed metal. Moreover, the catalyst prepared in air give higher BET surface area than that prepared in a reducing atmosphere at the same calcination temperature. For an alumina support, it can be therefore concluded that the catalyst calcined at high temperature gives the lower BET surface area than that calcined at low temperature in both calcination methods (in air and in a reducing atmosphere). In case of a titanium oxide support, all catalysts (CAT.11-CAT.20) show a very low BET surface area, because the BET surface area of a pure titanium oxide is generally low. Hence, the BET surface area of these catalysts appears rather a little change to be approximately $3-5 \text{ m}^2/\text{g}$ cat.

The metal active site measured by CO chemisorption technique is also considered. It is found that the catalyst prepared in a reducing atmosphere shows the lower metal active site than that prepared in air at the same calcination temperature for both Pt/Al_2O_3 and Pt/TiO_2 catalysts. It is speculated that the calcination in a reducing atmosphere at high temperature may possibly lead to SMSI phenomenon, suppression of H_2 and CO chemisorption, for catalysts. The consequence of this interaction is a suppression of H_2 and CO chemisorption of the supported metals but they usually do not lost their catalytic activity [52]. The evidence of SMSI was suggested to be able to occur on the reduction of VIII group metals supported on reducible oxides (TiO₂, Al₂O₃, etc.) at high temperature [53]. Tauster [54] reported that SMSI phenomenon for supported metallic catalysts comes from a reduction at elevated temperature which reduces the cations of the support to an oxidation state lower than its original state.

6.2.3 Temperature programmed reduction of carbon monoxide (CO-TPR)

In heterogeneous reaction system, it has catalysts as active phase. Hence, the reactions could be on their active sites only. The important steps in heterogeneous reaction, especially on surface catalyst, are adsorption and desorption of reactant and product, respectively. There are two main reactions for a redox reaction, i.e., oxidation Thereby, the competitive of reactant could be induced. and reduction reactions. Currently, there are several techniques used to study the catalytic surface. The temperature programmed technique is one of those methods. The temperature programmed reduction technique could be also used to interpret the phenomenon on the catalyst surface. The provided technique could explain the behavior of absorbed oxygen strength over catalytic surface [22]. This procedure is described in chapter IV; Figures 6.11 and 6.12 show TPR profiles of CO consumption of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂, respectively. It is observed that the CO uptake profiles of both catalysts are of the same pattern in each support type, however, their desorption temperature commence at the different temperature. These results can be indicated that the strength of absorbed O_2 on the catalytic surface influence on the initial temperature of CO uptake. On the other hand, if the strength of absorbed O_2 is stronger, the CO uptake is commenced at high temperature. From Figures 6.11 and 6.12, the order of the initial temperature of CO uptake is shown as:

It means that the catalyst calcined in air can more strongly adsorb oxygen than that calcined in a reducing atmosphere for both the support types.

Figure 6.11 The temperature programmed reduction profiles of CO consumption on 0.3%Pt/Al₂O₃ calcined in air and in a reducing atmosphere

Figure 6.12 The temperature programmed reduction profiles of CO consumption on 0.3%Pt/TiO₂ calcined in air and in a reducing atmosphere

6.2.4 Temperature programmed desorption of carbon dioxide (CO₂-TPD)

The TPD technique applied to the catalysts used in this work can give information regarding the strength of carbon dioxide adsorption, which is defined as the temperature at maximum carbon dioxide desorption.

Based on the mechanism of contact catalysis, desorption of the reaction product from the catalyst surface is an important step. When the reaction products are strongly adsorbed on the catalyst surface, the prevention of the reactions from reaching the catalyst surface will be generated [55]. Therefore, the activity of a catalyst depends on its ability to desorb the reaction products from its surface.

Figures 6.13 and 6.14 show CO_2 -TPD profiles of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂, respectively. It is found that for both the support types, the catalyst calcined in air gives higher temperature at maximum carbon dioxide desorption than that calcined in a reducing atmosphere. Hence, it may be envisaged that the catalyst calcined in a reducing atmosphere has the lower carbon dioxide adsorption strength of the two catalysts. The basicity is proportional to the concentration of CO_2 desorption [56].

Figure 6.13 The temperature programmed desorption profiles of CO_2 on 0.3%Pt/Al₂O₃ calcined in air and in a reducing atmosphere

Figure 6.14 The temperature programed desorption profiles of CO_2 on 0.3%Pt/Ti O_2 calcined in air and in a reducing atmosphere

From the characterization results which compose of CO_2 -TPD, CO-TPR, BET surface area and CO-adsurption, it is clearly seen that the catalyst calcined in air differ from those calcined in a reducing atmosphere. Therefore, the effect of catalyst preparation condition on activity for removing exhaust gas is considered in the next section.

Generally, the calcination in air could make platinum become platinum oxide, especially PtO_2 which is the most stable form [57]. On the other hand, the calcination in a reducing atmosphere differs from this above calcination. It could make platinum become clean surface because hydrogen is a potential reductant for reducing the catalyst surface. Besides, if the calcination temperature is high enough, the SMSI phenomenon may be occurred.

Basically, common to all proposed SMSI mechanism is the high-temperature reduction of the support by hydrogen [31] and suppression of H_2 and CO chemisorption of the supported metals [53]. It is therefore concluded that the catalyst calcined in the reducing a atmosphere at 550°C is in SMSI form as already discussed in section 6.2.

Investigation of the surface of both catalysts before testing the catalytic activity. There are two different forms; i.e., metal form and oxide form.

Many researchers found that NO reduction depends on several parameters, e.g., reaction condition [4,15], type of support [12,14,25,27] and reductant [3,15,28,30]. The catalyst surface is another effective parameter. Burch and Watling [58] found that nitrogen monoxide decomposition occurs rapidly over platinum sites. Hence, the effect of SMSI phenomenon on the catalytic activity may be not clear, if the two catalysts are directly compared. The catalyst is then prepared by a new method to eliminate the influence upon the catalytic surface.

The oxidized catalyst will be reduced in H_2 at 500°C for 1 h before testing the catalytic activity to change into metal form catalyst. It is expected that this reduced catalyst is not in SMSI form, since metal active site and BET surface area are similar to those of oxidized catalyst, these results are shown in Table 6.3.

Catalyst composition	Catalyst form	Metal active site (×10 ¹⁸ molecule/g cat)	BET surface area (m ² /g cat)		
	oxide	5.49	209.44		
0.3%Pt/Al ₂ O ₃	metal	5.47	290.26		
	SMSI	4.77	190.74		
	oxide	4.44	3.94		
0.3%Pt/TiO ₂	metal	4.41	3.91		
	SMSI	3.89	3.83		

Table 6.3 The metal active site and BET surface area of 0.3%Pt/Al₂O₃ and 0.3%Pt/TiO₂ in three form

Note: calcination temperature 550°C

The following terms used herein are defined as:

- Oxide form catalyst represents the catalyst, which is calcined in air
- Metal form catalyst represents the catalyst, which is calcined in air and then reduced in H_2
- SMSI form catalyst represents catalyst, which is calcined in a reducing atmosphere

The next section will discuss about tested activity of these catalysts. The oxide form and metal form catalysts are compared to observe the influence of the catalytic surface on the catalytic activity in the section 6.3. The metal form and SMSI form catalyst are compared to investigate the effect of SMSI phenomenon in section 6.4.

6.3 Comparison between oxide form and metal form catalysts

This section is divided into 2 parts; the first part mentions Al₂O₃ supported platinum catalyst while the second one reports TiO₂ supported platinum catalyst.

In case of Al_2O_3 supported platinum catalyst, CO, C_3H_8 and NO conversions of $0.3\%Pt/Al_2O_3$ in different forms (oxide and metal) are demonstrated in Figure 6.15. It is observed that the metal form catalyst makes all conversions start at lower temperature but the conversion profiles have similar tendency. It can be therefore concluded that the metal form catalyst gives higher activity for removing the exhaust gas than the oxide form catalyst under stoichimetric condition.

In case of TiO₂ supported platinum catalyst, CO, C_3H_8 and NO conversions of 0.3%Pt/TiO₂ in different forms (oxide and metal) are illustrated in Figure 6.16. It is found that the metal form and the oxide form catalyst give similar CO conversion. For C_3H_8 and NO conversion, it is observed that the oxide form catalyst gives higher conversion than the metal form catalyst. Therefore, it can be concluded that the oxide form catalyst gives higher activity for removing the exhaust gas than the metal form catalyst under stoichimetric condition.

Figure 6.15 Comparison of CO, C₃H₈ and NO conversion of 0.3%Pt/Al₂O₃ catalyst between oxide form and metal form catalysts under stoichiometric condition

Figure 6.16 Comparison of CO, C₃H₈ and NO conversion of 0.3%Pt/TiO₂ catalyst between oxide form and metal form catalysts under stoichiometric condition

6.4 Comparison between metal form and SMSI form catalysts

This section is divided into 2 parts; Al₂O₃ supported platinum catalyst and TiO₂ supported platinum catalyst.

In case that the catalyst was prepared by using Al_2O_3 support, it is observed that the SMSI form catalyst gives a little higher CO, C_3H_8 and NO conversions than the metal form catalyst does as illustrated in Figure 6.17.

In case of TiO_2 supported platinum catalysts, CO. C_3H_8 and NO conversions examined on the SMSI form catalyst are obviously greater than those observed on the metal form catalyst as shown in Figure 6.18.

Figure 6.17 Comparison of CO, C₃H₈ and NO conversions of 0.3%Pt/Al₂O₃ catalyst between metal form and SMSI form catalyst under stoichiometric conditon

Figure 6.18 Comparison of CO, C_3H_8 and NO conversions of 0.3%Pt/TiO₂ catalyst between metal form and SMSI form catalyst, under stoichiometric condition

6.5 Effect of O₂ on the activity of 0.3% Pt/Al₂O₃ and 0.3% Pt/TiO₂ catalysts for NO, CO and C₃H₈ removal

The catalytic activity for the oxidation of CO and C_3H_8 including the reduction of NO was investigated under oxidizing condition. The gas mixture is composed of 0.05 vol%NO. 0.30 vol%CO, 0.215 vol%C₃H₈, 5 vol%O₂ and balanced with He. Under this oxidizing condition in the lean-burn exhaust gas, the 3-way catalyst will act as an oxidation catalyst controlling CO and HC emissions, but the conversion of the NO_x emissions falls to very low levels [4].

This section is divided into 2 parts as follows:

6.5.1 Comparison of the catalytic activities under different operating conditions, i.e., the stoichiometric and lean-burn conditions

6.5.2 Comparison of the catalytic activities measured on the oxide form, metal form and SMSI form catalysts

6.5.1 Comparison of the catalytic activities under different operating conditions, i.e., the stoichiometric and lean-burn conditions

The catalytic performances for simultaneously removing CO, C_3H_8 and NO under stoichiometric and lean-burn conditions are compared as shown in Figures 6.19-6.24. It is observed that all catalysts tested under lean-burn condition give the lower light-off temperature of CO oxidation than those tested under stoichiometric condition. On the other hand, in case of C_3H_8 oxidation and NO reduction, the catalysts operated under stoichiometric condition show the better performance than those observed under the lean-burn condition. C_3H_8 conversions slowly increase with temperature under lean-burn condition. Additionally, the catalysts tested under lean-burn condition show a very little NO conversion. particularly, for all 0.3%Pt/TiO₂ catalysts, no NO conversion is shown.

Figure 6.19 Comparison of 0.3%Pt/Al₂O₃ in oxide form under lean-burn and stoichiometric conditions (STO = stoichiometric condition,

Figure 6.20 Comparison of 0.3%Pt/Al₂O₃ in metal form under lean-burn and stoichiometric conditions (STO = stoichiometric condition. EXC = lean-burn condition)

EXC = lean-burn condition)

Figure 6.21 Comparison of 0.3%Pt/Al₂O₃ in SMSI form under lean-burn and stoichiometric conditions (STO = stoichiometric condition.

EXC = lean-burn condition)

Figure 6.22 Comparison of 0.3%Pt/TiO₂ in oxide form under lean-burn and stoichiometric conditions (STO = stoichiometric condition.

EXC = lean-burn condition)

Figure 6.23 Comparison of 0.3%Pt/TiO₂ in metal form under lean-burn and stoichiometric conditions (STO = stoichiometric condition,

Figure 6.24 Comparison of 0.3%Pt/TiO₂ in SMSI form under lean-burn and stoichiometric conditions (STO = stoichiometric condition, EXC = lean-burn condition)

EXC = lean-burn condition)

6.5.2 Comparison of catalytic activities measured from the oxide form, metal form and SMSI form catalysts

Figure 6.25 demonstrates CO, C_3H_8 and NO conversions of $0.3\%Pt/Al_2O_3$ on oxide form, metal form and SMSI form catalysts. It is found that the metal form catalyst gives the same CO, C_3H_8 and NO conversion as the SMSI form catalyst whereas the oxide form catalyst gives the lower values. Additionally, it is observed that the catalytic activity behavior under lean-burn condition is similar to that under stochiometric condition.

Figure 6.26 illustrates CO, C_3H_8 and NO conversions of 0.3%Pt/TiO₂ in oxide form, metal form and SMSI form catalysts. It is observed that CO conversions of the metal form and the SMSI form catalyst are the same but the oxide form catalyst gives the lowest CO conversion. The activity order for C_3H_8 oxidation is found to be the SMSI form catalyst> the oxide form catalyst> the metal form. Moreover, the NO conversion of all catalyst is closed to the zero value.

Figure 6.25 Comparison of CO, C₃H₈ and NO conversions of 0.3%Pt/Al₂O₃ catalyst in oxide form, metal form and SMSI form, under lean burn condition

Figure 6.26 Comparison of CO, C₃H₈ and NO conversions of 0.3%Pt/TiO₂ catalyst in oxide form, metal form and SMSI form, under lean burn condition

6.6 Discussion

Hautman *et al.*[59], reported that the hydrocarbons are rapidly consumed during combustion, forming CO, H_2 and H_2O . The oxidation of CO to CO_2 proceeds somewhat more slowly. The difference in reaction rates can be taken into account using two-step models that are only slightly more complicated than the single-step model but can separate the relatively slow oxidation of CO to CO_2 from the more rapid oxidation of the hydrocarbon to CO and H_2O , that is

$$C_{n}H_{m} + \left(\frac{n}{2} + \frac{m}{4}\right)O_{2} \longrightarrow nCO + \frac{m}{2}H_{2}O \qquad (6.1)$$

$$CO + \frac{1}{2}O_{2} \longrightarrow CO_{2} \qquad (6.2)$$

From these two equations, it is believed that when the combustion is occurred, CO is presented. CO will react with NO and produce N_2 and CO_2 . Therefore, it must be demonstrated whether or not CO is occurred in the reaction. Conversion of C_3H_8 combustion of 0.3%Pt/Al₂O₃ in three forms tested under rich condition, which contains 2150 ppmC₃H₈, 8600 ppmO₂ and without CO and NO (S=0.8), are shown in Figure 6.27. It is observed that conversions of C_3H_8 combustion of three forms are the same. Table 6.4 shows balanced C in this reaction.

Figure 6.27 Comparison of the catalyst activity for C_3H_8 combustion reaction on three form catalysts. Feed composition: S = 0.8

	Oxide from		Metal form			SMSI form			
Temp (°C)	C loss in C ₃ H ₈ (ppm)	C in CO (ppm)	C in CO ₂ (ppm)	C loss in C ₃ H ₈ (ppm)	C in CO (ppm)	C in CO ₂ (ppm)	C loss in C ₃ H ₈ (ppm)	C in CO (ppm)	C in CO ₂ (ppm)
200	0	0	0	0	0	23	0	0	63
225	0	0	0	0	0	93	243	0	229
250	0	0	73	360	0	322	612	0	746
275	1830	0	1518	972	0	1026	1887	0	1273
300	4881	0	4585	5192	0	4680	4905	0	4481
325	5226	0	4656	5295	0	4678	4992	0	4501
350	5436	0	4700	5664	0	4734	5154	0	4498
375	5463	0	4781	5718	0	4807	5232	0	4593
400	5754	0	4858	6000	629	4969	5715	757	4679
425	6282	776	4981	6666	1009	5101	6330	1157	4810
450	6942	1219	5088	7779	1606	5217	7302	1969	4825
475	7683	1554	5063	7779	2457	5232	7302	2634	4747
500	7683	2443	4965	7779	2759	5235	7302	2971	4693

Table 6.4 Balanced C atom in C₃H₈ combustion at S=0.8

Figure 6.28 shows conversions of CO, C_3H_8 and NO of 0.3%Pt/Al₂O₃ in three forms, under stoichiometric condition. It is observed that at the reaction temperature range between 250-300°C, NO conversion of the metal form and the SMSI form catalysts are rapidly increased with increasing temperature and there is no CO observed. NO conversion at the temperature above 400°C over the three form catalysts is nearly similar and there is a substantial amount of CO formed.

Figure 6.28 Comparison of CO, C₃H₈ and NO conversions of 0.3%Pt/Al₂O₃ catalyst in three forms, under stoichiometric condition (S=1)

From the experimental results, it is interestingly observed that NO conversion did not reach 100% at 100% CO and hydrocarbon conversion [3, 60]. This may possibly due to the conversion of NO to N-containing species.

As shown in Figure 6.28, NO conversions of the three-catalysts. i.e., oxide form. metal form and SMSI form catalyst, are affected by these following parameters:

1. Effect of C_3H_8 conversion

At the temperature range between $250-300^{\circ}$ C, it is found that NO conversions of SMSI and metal forms are dramatically increased with C₃H₈ conversion. Hydrocarbon combustion induces NO reduction at the condition that the light-off temperature is high enough to allow the NO activation but not too high to prevent from a too strong activity of O₂ for combustion and adsorption [58]. When C₃H₈ reacts with O₂ on the catalyst surface, gas phase products are produced, consequently, the active sites of the catalyst will be available. As a result, NO in gas phase will adsorb on these sites and subsequently dissociate to N₂.

2. Effect of catalyst form

In order to be assured that the NO reduction is affected only upon the catalyst form, the reaction temperature of 350° C at which the C₃H₈ oxidation reaches 100% (see Figure 6.28), is considered. Figure 6.29 shows the stability of catalyst for NO conversion to N₂ at 350° C. The activity order for NO conversion is found to be;

SMSI form > metal form > oxide form

In this experiment, the catalysts were heated to 500° C under exhaust gas condition before cooling down to 350° C and held for 150 minutes. It is shown that NO conversion to N₂ at 350° C and 500° C is not similar. It can increase and decrease of NO conversion to N₂ with the temperature changing. This can be explained that the O₂ coverage over the catalyst surface is reversible phenomena. Especially, it is observed that SMSI form gives the best all conversions at 350° C.

3. Effect of O_2 surface coverage

From Figure 6.28, NO conversions of three catalysts decrease after 400°C to the same conversion at 500°C. Figure 6.30 shows the stability of catalyst for NO conversion to N₂ at 500°C. It is found that NO conversions of three catalysts are approximately similar because the oxygen surface coverage decreases when increase temperature and the limited amount of oxygen is observed to affect the dissociation of NO. resulting in the NO conversion [61]. From the results, the mechanisms of the reaction between CO, NO and C_3H_8 over Pt/Al_2O_3 are;

$$CO + O_2 \rightarrow CO_2$$
 (6.3)

$$HC + O_2 \quad \rightarrow \quad CO_2 + H_2O \tag{6.4}$$

$$NO \rightarrow N_2 + O_2 \tag{6.5}$$

Since at low temperature, CO would react well and hydrocarbon combustion would result in the availability of active site, therefore NO is adsorped and then converted to N_2 .

Figure 6.29 NO conversion to N_2 of 0.3%Pt/Al₂O₃ in three form catalysts at 350°C under stoichiometric condition

Figure 6.30 NO conversion to N_2 of 0.3%Pt/Al₂O₃ in three form catalysts at 500°C under stoichiometric condition