REFERENCES

- Hecq, J W. Energy and air pollutants in Belgium. In A. Cruq (ed.), <u>Catalysis and</u> <u>Automotive Pollution Control II</u>, Elsevier Science Publishers B.V., 1991.
- 2. Harrison, B.; Diwell, F. B. and Hallett, C. Platinum Metals Rev, 32 (1988): 75-83.
- Gonzales-Velasco, J. R.; Botas, J. A.; Gonzales-marcos, J. A. and Gutierrez-Ortiz, M. A. <u>Appl. Catal. B</u>, 12 (1997): 61-79.
- Shinjoh, H.; Takahashi, N.; Yokota, K. and Sugiura, M. <u>Appl. Catal. B</u>, 15 (1998): 189-201.
- Williamson, W. B.; Summer, C. J. and Scaparo, J. <u>Amer. Chem. Soc.</u>, 26 (1992): 26-41.
- 6. Lepeytre, J. M.; Claude, P. and Louis, G. France, <u>US Patent 3,881,696</u>, 1975.
- 7. Edgar, K. and Eduard, L. Germany, <u>US Patent 4,048,098</u>, 1977.
- 8. Charles, E. and Thompson, J. <u>US Patent 4.440,874</u>, 1984.
- 9. Kolt, J. H. and Kukes, S.G. Naperville, US Patent 4.808.394, 1989.
- 10. Rainer, D.; Bernd, E.; Felix, S.; Schubert, P. and Edgar, K. Germany, <u>US Patent</u> <u>5,179,059</u>, 1993.
- 11. Volter, J.; Liest, G.; Spindler, H. and Lieske, H. J. Catal., 104 (1987): 375-380.
- 12. Sasaki, M. and Hamada, H. Catal. Lett., 15 (1992): 297-304.
- 13. Majitnapanul, T. Master of Engineering thesis Chulalongkorn University, 1992.
- 14. Obuchi, A. Appl. Catal. B, 2 (1993): 71-80.
- 15. Marecot, P.; Fakche, A.; Kellali, B.; Mabilon, G.; Prigent, M. and Barbier, J. <u>Appl.</u> <u>Catal. B</u>, 3 (1994): 283-294.
- Marecot, P.; Fakche, A.; Pirault, L.; Geron, C.; Mabilon, G.; Prigent, M. and Barbier, J. <u>Appl. Catal. B</u>, 5 (1994): 43-55.
- 17. Marecot, P.; Pirault, L.; Prigent, M. and Barbier, J. Appl. Catal. B. 5 (1994): 57-69.
- Ishikawa, A.; Komai, S.; Satsuma, A.; Hattorl, T. and Murakami, Y. <u>Appl. Catal. A</u>, 110 (1994): 61-66.
- Svoronos, D. G.; Grigoropoubu, H. P. and Philpopoulos, C. <u>Appl. Catal. B</u>, 5 (1995): 319-328.

- 20. Tabata, T.; Bata, K. and Kawashima, H. Appl. Catal. B, 7 (1995): 19-38.
- 21. Asavapitchyont, P. Master of Engineering thesis Chulalongkorn University, 1995.
- 22. Wongpaitoonpiya, J. Master of Engineering thesis Chulalongkorn University, 1995.
- 23. Sringangam, C. Master of Engineering thesis Chulalongkorn University, 1996.
- 24. Tillaart, J.; Leyrer, J.; Eckhoff, S. and Lox, E. S. Appl. Catal. B, 10 (1996): 53-68.
- 25. Burch, R. and Watling, T. C. Catal. Lett., 43 (1997): 19-23.
- 26. Burch, R. and Watling, T. C. J. Catal., 169 (1997) 45-54.
- Castillo, S.; Moran-Pineda, M.; Molinn, V.; Gomez, R. and Lopez, T. <u>Appl. Catal. B</u>, 15 (1998): 203-209.
- 28. Burch, R. and Watling, T. C. Appl. Catal. B, 17 (1998): 131-139.
- 29. Bahamonde, A.; Knapp, C.; Avila, P. and Bianco, J. Appl. Catal. B, 19 (1998): 1-7.
- 30. Lee, J. H.; and Kung, H. Catal. Lett., 51 (1998): 1-4.
- 31. AC. Rochester Division, General Motors Corporation, Flint, Michigan. <u>Vehicle</u> <u>Emission Control System and Catalytic Conversion Technology</u>. Singapore, General Motor Distribution Corporation, 1991.
- 32. Kummer, F. Prog. Combust. Sci., 6 (1980): 177-199.
- Automotive pollution control division, Air quality bureau, <u>Environment agency air</u> pollution and motor vehicle emission control in Japan, Tokyo: Automotive pollution control, 1980.
- 34. Taschner, K. Catalysis and Automotive Pollution Control II, 1991.
- 35. Wie, J. Advances in Catalysis, London: Academic Press, 1975.
- 36. Viala, A. Pet. Tech., 351 (1993): 25-27.
- Wolfgan, S. Presentation to NEPO/PTT, <u>Lead Phase Out: Problem and Solution</u>, Bangkok, Thailand, Degussa. Co., Ltd., 1995.
- Heck, R. M. and Farrauto, R. J. <u>Catalytic air pollution control</u>: Commercial technology, Van Nostrand Reinhold, USA, 1995.
- Mooney, L. and Kirk-Othmer, <u>Encyclopedia of Chemical Technology</u>, 9 (1994): 982-1022.
- 40. Division automotive pollution control ed., <u>Air pollution and motor vehicle emission</u> control in Japan, Bureau of the environment Agency Publishing Co., 1980.

- 41. Zechnall, R.; Baumann, G. and Eiscle, SEA Pap. No. 730,566, 1973.
- 42. Charles, N. <u>Heterogeneous Catalysis in Practice</u>, Mc Graw-hill Book. Company, 1980.
- Hegedus, L. <u>Catalyst Design Progress and Perspectives</u>, New York: John Wiley & Sons, 1987.
- 44. Stiles, A. <u>Catalyst Supports and Supported Catalysts</u>, London: Butterworth Publishers, 1987.
- 45. Kung, H. Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 45, 1989.
- 46. Mohinder, S.; William, L. and Toledo, O. Ford Motor company, <u>US Patent</u> 5,139,994, 1992.
- 47. Inoue, M.; Otsu, H. and Kominami, H. Reprinted from I&EC Research, 1996.
- 48. Sopyan, I.; Watanabe, M. and Murasawa, S. J. Photo. A. Chem., 98 (1996): 79-86.
- 49. Toyota Motor Corporation, Emission control for automobiles, Japan, 1991.
- 50. Ozawa, M.; Toda, H. and Kato, O. Appl. Catal. B, 8 (1996) 123-140.
- 51. Chang, T.; Chen, J. and Yen, C. J. Catal., 96 (1985): 51-57.
- 52. Stevenson, A. and Dumesic, J. A. <u>Metal-Support Interactions in Catalysis, Sintering</u> and Redispersion, New York: Van Nostrand Reinhoid Company, 1987.
- 53. Harrison, H. and Diwell, F. <u>US patent 4,127,510</u>, 1979.
- 54. Tauster, S.; Fung, S. and Garten, R. J. Amer. Chem. Soc., 100 (1978): 170-174.
- 55. Praserthdam, P. and Majithapakul, T. Appl. Catal. A, 108 (1994): 21-30.
- Berteau, P.; Kellens, M. A. and Delmon, B. <u>J. Chem. Soc. Faraday trans</u>, 87 (1991): 1425–1431.
- Mackay, K. M.; Mackay, R. A. and Henderson, W. <u>Introduction to modern inorganic</u> <u>chemistry</u>. London: Blackie anademic & professional, 1996.
- 58. Burch, R. and Watling, T. C. Appl. Catal. B, 4 (1994): 65-94.
- 59. Hautman, D. J. and Dryer, F. L. Combust. Sci. Technol., 25 (1981): 219-235.
- Gonzales-Velasco, J. R.; Botas, J. A.; Gonzales-marcos, J. A. and Gutierrez-Ortiz, M. A. <u>Appl. Catal. B</u>, 12 (1997): 61-79.
- 61. Lacombe, S.; Hoebiknk, J. H. B.J. and Marin, G. B. <u>Appl. Catal. B</u>, 12 (1997): 207-224.

APPENDICES

APPENDIX A

SAMPLES OF CALCULATION

Preparation of 0.3%Pt/Al₂O₃ Catalysts with the Dry Impregnation Method

Reagent: Chloroplatinic acid (H₂PtCl₆.6H₂O)

Molecular weight = 517.92 g

(Atomic weight of Platinum = 195.08)

Support : Alumina (γ-Al₂O₃); type KNH-3

Pore volume = 1.0 ml/g

From Sumitomo Aluminium Smelting Co., Ltd., Japan.

Calculation for prepared 0.3%Pt/Al2O3 (%by weight)

Based on:	$0.3\% Pt/Al_2O_3$	(Catalyst Weight = 100 g
Assume :	alumina support use	ed is X g	grams.
	So that, the catalyst	100 gra	ms would composed of
	Platinum	0.3	g

Alu	mina	Х		g
Then	0.3 + X	=	100	g
	Support (X)	=	99.7	g

The alumina support weight used for preparation is 2 grams and H₂PtCl₆.6H₂O used as precursor salt.

Platinum	required	=	2 × 0.3 / 99.7	g
		=	6.018×10^{-3}	g

Platinum (Pt) 6.018×10^{-3} g was prepared from 25 ml of the stock solution of chloroplatinic acid, which prepared by dissolving 1 g of H₂PtCl₆ in de-ionized water.

Pt content in stock solution	=	1 × 195.08 / 518.1	g
	=	0.377	3
Therefore:			
The required-solution	=	$6.018 \times 10^{-3} \times 25 / 0.377$	ml
	=	0.3993	ml

Preparation of 0.3%Pt/TiO2 Catalysts with the Wet Impregnation Method

Reagent: Chloroplatinic acid (H₂PtCl₆ · 6H₂O) Molecular weight = 517.92 g. (Atomic weight of Platinum = 195.08) Support: Titanium dioxide (TiO₂); Anatase phase From Fluka., A Sigma-Aldrich Company, Switzerland.

Calculation for prepared 0.3%Pt/TiO2 (%by weight)

Based on: 0.3%Pt/TiO₂ Catalyst Weight = 100 g Assume : Titanium oxide support used is X grams. So that, the catalyst 100 grams would composed of Platinum 0.3 g Titanium oxide X g Then 0.3 + X = 100 g Support (X) = 99.7 g

The titanium oxide support weight used for preparation is 3 grams and $H_2PtCl_6 \cdot 6H_2O$ used as precursor salt.

Platinum required	=	3 × 0.3 / 99.7	g
	===	9.027×10^{-3}	g

Platinum (Pt) 9.027×10^{-3} g was prepared from 25 ml of the stock solution of chloroplatinic acid which prepared by dissolving 1 g of H₂PtCl₆ in de-ionized water.

Pt content in stock solution	=	$1 \times 195.08 / 518.1$ g	
	=	0.377 g	
Therefore:			
The required-solution	=	$9.027 \times 10^{-3} \times 25 / 0.377$	ml
	=	0.599	ml

APPENDIX B

CALCULATION OF METAL ACTIVE SITE

Calculation of metal active site on catalyst

The weight of catalyst used	=	W	g
Area of CO peak after adsorption	-	А	unit
Average area of 50 µl standard CO peak	=	В	unit
Amounts of CO adsorbed on catalyst	=	B - A	unit
Volume of CO adsorbed on catalyst	=	$[(B - A)/B] \times 50$	μΙ
Volume of gas 1 mole at 30°C	=	24.86×10 ⁶	μl
Mole of CO adsorbed on catalyst (mole)	=	$[(B - A)/B] \times [50/2]$	4.86×10 ⁶]
1 mole is 6.02×10^{23} molecules			

T more is 0.02 × 10 morecures

Then. Molecule of CO adsorbed on catalyst

= $2.01 \times 10^{-6} \times [(B - A)/B] \times 6.02 \times 10^{23}$ molecules

Metal active site = $1.21 \times 10^{18} \times [(B - A)/B]/w$ molecules of CO / g catalyst

Example of calculated active site of 0.3 % Pt/Al₂O₃

0.3 % Pt/Al ₂ O ₃	=	0.1	g
Area of CO peak after adsorption	=	1185	unit
Average area of 50 μ l. standard CO peak		2170	unit
Amounts of CO adsorbed on catalyst	=	2170 - 1185	unit
Volume of CO adsorbed on catalyst	=	[(2170 - 1185)/2170] ×	50 µl
	=	22.70	μl

The adsorption CO condition was carried out at 30°C

Then. Mole of CO adsorbed on catalyst = $(22.70/24.86 \times 10^6)$

Molecule of CO adsorbed on catalyst (0.1 g)

	=	(22.70/24.86×10	6) × 6.02×10 ²³	molecules
	=	5.50×10 ¹⁷		molecules
Metal active site	=	5.50×10 ¹⁷ /0.1		
	=	5.50×10 ¹⁸	molecules of C	CO / g catalyst

.

APPENDIX C

CALCULATION OF NO, CO AND C₃H₈ CONVERSIONS

Calculation of NO, CO and C3H8 conversion

The effluent gas was analyzed by gas chromatograph, the NO reduction activity was evaluated in terms of the conversion of NO to N_2

2NO \longrightarrow N₂ + O₂

NO conversion (%) = $(2[N_2]out/[NO]in) \times 100$ Where $[NO]_{in}$ = 500 ppm $[N_2]$: analyzed by gas chromatograph from calibration curve (Figure C-1)

 Area
 =
 area of N_2 peak on GC 8 ATP

 Area
 =
 $2.1858 \times \text{conc. of } N_2 \text{ (ppm)} - 21.105$

 Thus, $[N_2]$ =
 (Area + 21.105)/2.1858

The CO oxidation activity was evaluated in terms of the conversion of CO into CO₂

$$CO \text{ conversion (\%)} = \underbrace{([CO]_{in} - [CO]_{out}) \times 100}_{[CO]_{in}}$$

The C₃H₈ oxidation activity was evaluated in terms of the conversion of C₃H₈ into CO₂ and H₂O

$$C_{3}H_{8} \text{ conversion (\%)} = ([C_{3}H_{8}]_{in} - [C_{3}H_{8}]_{out}) \times 100$$

 $([C_{3}H_{8}]_{in})$

APPENDIX D

CHEMICAL AND PHYSICAL PROPERTIES OF SUPPORTS

Table D-1 Specification of Alumina Support (Al₂O₃) Type KNH-3

Chemical component	weight percent (%)
Al ₂ O ₃	60-70
SiO ₂	30-35
Fe ₂ O ₃	0.3-0.5
TiO ₂	0.5-0.7
CaO	0.1-0.2
MgO	0.2-0.4
Na ₂ O	0.3-0.4
K ₂ O	0.2-0.3
$ZrO_2 + HfO_2$	0.03-0.04
1	1

Physical properties		
Bulk density (g/ml)	1.3-1.5	
Apparent Specific Gravity	3.1-3.3	
Packing Density (lb/ft ³)	20-25	
Pore Volume (ml/g)	1.0-1.3	
Surface Area (m^2/g)	340-350	

Chemical component	weight percent (%)
TiO ₂	99
PO ₄	0.1
SO_4	0.1
Cl	0.01
Pb	0.001
As	0.002
Fe	0.005
Zn	0.005
Cu	0.0005

•

Table D-2 Chemical component of ${\rm TiO}_2$ support

APPENDIX E OPERATING CONDITIONS AND SAMPLES OF CHROMATOGRAM

.

1. A thermal conductivity detector gas chromatography (model 8ATP) was used to analyze the concentrations of oxygen, nitrogen and carbon monoxide.

Operating conditions are as follows :

GC	:	SHIMADZU-GC-8ATP
Detector	:	TCD
Packed column	:	MS-5A
Carrier gas	:	Ultra high purity helium (99.999%)
Flow rate of carries gas	:	45 ml/min
Column temperature	:	70°C
Detector temperature	:	100°C
Injector temperature	:	100°C
Detector current	:	80 mA

2. Gas chromatography model 8AIT was used to analyze the concentration of H_2O , propane, carbon dioxide.

Operating conditions were similar to model 8ATP except:

Packed column	:	Porapak-Q
Flow rate of carries gas	:	30 ml/min
Column temperature	:	90°C
Detector temperature	:	110°C
Detector current	:	90 mA

The samples of chromatogram from gas analysis are shown in Figures E-1, E-2.

Figure E-1 Sample of Chromatogram from GC-8ATP (column MS-5A)

<u>PKNO</u>	TIME	AREA	<u>CONC</u>	NAME
1.	1.375	22116	77.3124	OXYGEN
2.	2.115	724	2.5320	NITROGEN
3.	5.682	5766	20.1556	CARBON MONOXIDE
	TOTAL	28605	100	

Figure E-2 Sample of Chromatogram from GC-8AIT (column Porapak-Q)

QTAPT	E	• 3 -1 11	A62					A 689	
ркил	[TIME	APFA	ни	האמז	CUN		NOME	
1	A	682	14388			6.9	2245		
2	1	187	286	v		1	3661		
2	2	942	1719			2	2192		
4	5	747	4514			21	5982		
	τn	TÓI	28986			1 A A			

<u>PKNO</u>	TIME	AREA	<u>CONC</u>	NAME
1.	0.682	14388	68.8245	AIR (N_2+O_2)
2.	1.107	286	1.3661	CO_2
3.	3.062	1718	8.2192	H_2O
4.	5.767	4514	21.5902	PROPANE
	TOTAL	28605	100	

APPENDIX E

CO, NO AND C₃H₈ CONVERSIONS OF PREPARED CATALYSTS

Figure F-1 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in air at 380°C under stoichiometric condition

Figure F-2 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in air at 450°C under stoichiometric condition

Figure F-4 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in air at 550°C under stoichiometric condition

Figure F-6 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere at 380°C under stoichiometric condition

Figure F-8 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere at 500°C under stoichiometric condition

Figure F-9 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere at 550°C under stoichiometric condition

Figure F-10 Conversion of CO, NO and C₃H₈ over 0.3%Pt/Al₂O₃ catalyst calcined in a reducing atmosphere at 650°C under stoichiometric condition

Figure F-12 Conversion of CO, NO and C₃H₈ over 0.3%Pt/TiO₂ catalyst calcined in air at 450°C under stoichiometric condition

Figure F-11 Conversion of CO, NO and C₃H₈ over 0.3%Pt/TiO₂ catalyst calcined in air at 380°C under stoichiometric condition

Figure F-14 Conversion of CO, NO and C₃H₈ over 0.3%Pt/TiO₂ catalyst calcined in air at 550°C under stoichiometric condition

,

Figure F-16 Conversion of CO, NO and C_3H_8 over 0.3%Pt/TiO₂ catalyst calcined in air at 650°C under stoichiometric condition

Figure F-18 Conversion of CO, NO and C_3H_8 over 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere at 450°C under stoichiometric condition

Figure F-20 Conversion of CO, NO and C₃H₈ over 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere at 550°C under stoichiometric condition

Figure F-22 Conversion of CO, NO and C₃H₈ over 0.3%Pt/TiO₂ catalyst calcined in a reducing atmosphere at 650°C under stoichiometric condition

VITA

Mr. Suwat limtrakul was born on October 29, 1976 in Suphanburi, Thailand. He received the Bachelor Degree of Chemical Engineering from Faculty of Engineer, Rangsit University in 1998. He continued his Master's Study at Chulalongkron University in June, 1998.