## เงื่อนไขที่เหมาะสมสำหรับการควบคุมกระบวนการที่รีแอคเตอร์ ในกระบวนการผลิตผงเมลามีนโดยวิธีออกแบบการทดลอง



นาย เอก ศิลาวิเศษฤทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาการจัดการทางวิศวกรรม ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

> ปีการศึกษา 2548 ISBN 974-847-146-4

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

120002750 17 N.S. 2546

# SUITABLE CONDITIONS FOR REACTOR PROCESS CONTROL IN MELAMINE COMPOUND PROCESS BY USING DESIGN OF EXPERIMENT TOOL

Mr. Aik Silavisesrith

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Engineering Management

The Regional Centre for Manufacturing Systems Engineering

Faculty of Engineering

**Chulalongkorn University** 

Academic Year 2000

ISBN 974-347-146-4

| Thesis Title         | Suitable Conditions for Reactor Process Control in Melamine     |
|----------------------|-----------------------------------------------------------------|
|                      | Compound Process by Using Design of Experiment Tool             |
| Ву                   | Mr. Aik Silavisesrith                                           |
| Field of Study       | Engineering Management                                          |
| Thesis Advisor       | Associate Professor Damrong Thawesaengskulthai                  |
| Thesis Co-advisor    | Mr. Chaiwat Towichayathamrong                                   |
|                      |                                                                 |
|                      |                                                                 |
| Accepted by          | the Faculty of Engineering, Chulalongkorn University in Partial |
| Fulfillment of the F | Requirements for the Master's Degree                            |
|                      |                                                                 |
|                      | Nucle Dean of Faculty of Engineering                            |
| (                    | Professor Somsak Panyakeow, Dr.Eng.)                            |
|                      |                                                                 |
| THESIS COMMIT        | TEE .                                                           |
|                      |                                                                 |
|                      | Sinice In Chairman                                              |
| (                    | Professor Sirichan Thongprasert, Ph.D.)                         |
|                      | $\sim$ $\mathcal{A}$                                            |
|                      | Thesis Advisor                                                  |
| (                    | Associate Professor Damrong Thawesaengskulthai)                 |
|                      |                                                                 |
|                      | Thesis Co-advisor                                               |
| (                    | Mr. Chaiwat Towichayathamrong)                                  |
|                      | James Elt. Member                                               |
| (                    | Assistant Professor Parames Chutima, Ph.D.)                     |

เอก ศิลาวิเศษฤทธิ์: เงื่อนไขที่เหมาะสมสำหรับการควบคุมกระบวนการที่รีแอคเตอร์ใน กระบวนการผลิตผงเมลามีนโดยวิธีออกแบบการทดลอง (SUITABLE CONDITIONS FOR REACTOR PROCESS CONTROL IN MELAMINE COMPOUND PROCESS BY USING DESIGN OF EXPERIMENT TOOL) อ.ที่ปรึกษา: รศ. คำรงค์ ทวีแสงสกุลไทย, อ.ที่ปรึกษาร่วม: คุณ ชัยวัฒน์ โตวิชยธำรง 112 หน้า, ISBN 974-347-146-4.

งานวิจัยนี้มีวัตถุประสงค์เพื่อกำหนดเงื่อนไขที่เหมาะสมของปัจจัยต่างๆคือ สัดส่วนโดย โมลของฟอร์มาลีนต่อผลึกเมลามีน, ค่าความเป็นกรดเบสของผลึกเมลามีน,ฟอร์มาลีน,และน้ำ และ ปริมาณ โซเคียมไฮดรอกไซค์สำหรับกระบวนการผลิตที่รีแอคเตอร์ในกระบวนการผลิตผงเมลามีน ซึ่งเงื่อนไขนี้เป็นข้อมูลพื้นฐานสำหรับการควบคุมการผลิตที่รีแอคเตอร์ เพื่อลดความผันแปรของ ค่าเวลาการขึ้นรูปของผลิตภัณฑ์ผงเมลามีน

งานวิจัยนี้เริ่มจากการเลือกปัจจัยที่เกี่ยวข้องกับการเปลี่ยนแปลงปริมาณของโซเคียม ไฮครอกไซค์ที่ใช้ที่รีแอกเตอร์ ซึ่งการเปลี่ยนแปลงนี้ส่งผลกระทบต่อการเปลี่ยนแปลงของค่าเวลา การขึ้นรูป ปัจจัยเหล่านี้คือ คือ สัคส่วนโคยโมลของพ่อร์มาลืนต่อผลึกเมลามีน ค่าความเป็นกรค เบสของผลึกเมลามีน ค่าความเป็นกรคเบสของฟอร์มาลีน ค่าความเป็นกรคเบสของน้ำ ปัจจัยทั้ง 4 นี้ได้ถูกนำไปทดลองโดยใช้การออกแบบการทดลองแบบแพ่คทอเรียล และจากการวิเคราะห์ผล การทคลองนี้พบว่า มีเพียง 2 ปัจจัย คือ สัคส่วนโคยโมลของฟอร์มาลีนค่อผลึกเมลามีน และค่า ที่มีอิทธิพลต่อค่าเวลาการขึ้นรูป ความเป็นกรคเบสของผลึกเมลามีน แต่ไม่มีอันตรกิริยา (Interaction) ระหว่างสองปัจจัยนี้ ต่อมาการออกแบบการทคลองแบบแฟคทอเรียลสำหรับสอง ปัจจัยจึงถูกนำมาใช้เพื่อหาเงื่อนไขที่เหมาะสมต่างๆ โดยการเพิ่มระคับของปัจจัยของสัคส่วนโดย โมลของพ่อร์มาลีนต่อผลึกเมลามีนและเพิ่มจำนวนของการทำซ้ำ(Replication) สุดท้ายเป็นการ ทคลองเพื่อยืนยันผลโคยใช้การทคสอบสมมติฐานซึ่งสรุปได้ว่าค่าเฉลี่ยและค่าความแปรปรวนของ ค่าเวลาการขึ้นรูปในเงื่อนไขต่างๆที่ได้จากการทคลองที่ผ่านมามีความน่าเชื่อถือเพียงพอสำหรับนำ ไปใช้ในกระบวนการผลิตผงเมลามีน

ผลจากการวิจัยครั้งนี้สามารถสรุปได้เป็น 6 เงื่อนไขที่เหมาะสม ซึ่งเงื่อนไขที่เหมาะสมที่ ได้จากการวิจัยนี้จะถูกนำไปใช้ในการลดความผันแปรของค่าเวลาการขึ้นรูปดังกล่าวของบริษัทที่ ใช้เป็นกรณีศึกษาจากประมาณ 30 วินาที เหลือ 20 วินาที โดยประมาณ

| ภาควิชา ศูนย์ระคับภูมิภาคทางวิศวกรรมระบบการผลิต | ลายมือชื่อนิสิต 100 เรื่อที่เครากรั |
|-------------------------------------------------|-------------------------------------|
|                                                 | ลายมือชื่ออาจารย์ที่ปรึกษา          |
| ปีการศึกษา 2543                                 | ลายมื่อชื่อที่ปรึกษาร่วม            |

## 4171640521 : MAJOR ENGINEERING MANAGEMENT

KEY WORD: Curing time / Melamine Compound / Reactor / Factorial Designed Experiment /

Hypotheses Testing

AIK SILAVISESRITH: SUITABLE CONDITIONS FOR REACTOR PROCESS CONTROL IN

MELAMINE COMPOUND PROCESS BY USING DESIGN OF EXPERIMENT TOOL.

THESIS ADVISOR: ASSOC PROF. DAMRONG THAWESAENGSKULTHAI,

THESIS CO-ADVISOR: MR.CHAIWAT TOWICHAYATHAMRONG, 112 pp. ISBN 974-347-146-4.

The objective of this research is to determine the suitable conditions of the molar ratio of formalin to melamine crystal, the acid-base indicator of melamine crystal, formalin, and water, and volume of sodium hydroxide for the reactor process in the melamine compound process. These suitable conditions can be used as the fundamental data for controlling operations at the reactor to reduce the variation of melamine compound's curing time.

This research starts from selecting the factors, which involve the change in volume of sodium hydroxide that has an effect on the curing time. Those factors are the molar ratio of formalin to melamine crystal, the acid-base indicator of melamine crystal, formalin, and water. The factorial designed experiments for the four factors are performed and can be concluded that only two factors, which are the molar ratio of formalin to melamine crystal and the acid-base indicator of melamine crystal, influence the curing time and there is no interaction effect between the two factors. Consequently, the two-factor factorial designed experiment is employed to find the suitable conditions by using more levels of the molar ratio and more replicates. Finally, the confirmation experiment with the hypotheses testing brings about the conclusions that the two curing time means and variances in each condition, resulting from the previous experiments, could be reliable to be applied to the melmine compound process.

The results of this research can be concluded as the six suitable conditions at the reactor. And these suitable conditions will be applied to the company's process, leading to the reduction in the curing time variation from about 30 seconds to about 20 seconds.

| Department     | Regional Centre for Manufacturing Systems Engineering | Student's signature    |
|----------------|-------------------------------------------------------|------------------------|
| Field of Study | Engineering Management                                | Advisor's signature    |
| Academic year  | 2000                                                  | Co-advisor's signature |

#### **ACKNOWLEDGEMENT**

This thesis could not be successful without the great supports of many contributors who have been key in advancing this thesis research to its present stage.

Appreciation is given to my thesis advisor, Associate Professor Damrong Thawesaengskulthai. His guidance and suggestion are very helpful for this thesis research.

I would like to thank indeed Mr. Chaiwat Towichayathamrong who is thesis co-advisor and his managers and his colleagues. They supported me in everything to perform experiments smoothly until this research had been completed.

Thank also goes to Professor Dr. Sirichan Thongprasert and Assistant Professor Dr. Parames Chutima for their kind recommendation is very helpful to the thesis.

Finally, I would like to express my thanks to my parents and my sister who assist me throughout my study and my research.

#### **CONTENTS**

|              |                                  | Page |
|--------------|----------------------------------|------|
| ABSTRACT (1  | THAI)                            | iv   |
| ABSTRACT (E  | NGLISH)                          | V    |
| ACKNOWLED    | GEMENT                           | vi   |
| CONTENTS     |                                  | vii  |
| LIST OF FIGU | JRES                             | xi   |
| LIST OF TAB  | LES                              | xiii |
| CHAPTER 1    | INTRODUCTION                     | 1    |
|              | 1.1 Background of problem        | 1    |
|              | 1.2 Statement of problem         | 2    |
|              | 1.3 Objectives                   | 2    |
|              | 1.4 Scope of Research            | 2    |
|              | 1.5 Expected Result              | 3    |
|              | 1.6 Methodology                  | 3    |
| CHAPTER 2    | THEORY AND LITERATURE SURVEYS    | 6    |
|              | 2.1 What is Experimental Design? | 6    |
|              | 2.2 Basic Principles             | 7    |
|              | 2.3 Type of Designed Experiment  | 8    |
|              | 2.4 Analysis of Variance         | 10   |
|              | 2.5 Model Adequacy Checking      | 14   |

|           | 2.6 Duncan's Multiple Range Test         | 15 |
|-----------|------------------------------------------|----|
|           | 2.7 Choice of number of replicates       | 16 |
|           | 2.8 Guildlines for Designing Experiments | 16 |
|           | 2.9 Literature Surveys                   | 19 |
|           |                                          |    |
| CHAPTER 3 | MELAMINE COMPOUND                        |    |
|           | AND MANUFACTURING PROCESS                | 24 |
|           | 3.1 Melamine Compound                    | 24 |
|           | 3.2 Melamine Compound Process            | 26 |
|           | 3.3 Factors affecting Curing Time        | 29 |
|           | 3.4 Reactor                              | 30 |
|           |                                          |    |
| CHAPTER 4 | PROBLEM AND SOLUTION                     | 32 |
| ***       | 4.1 Problem                              | 32 |
|           | 4.2 Solution                             | 35 |
|           |                                          |    |
| CHAPTER 5 | DESIGNED EXPERIMENTS                     | 36 |
|           | 5.1 Factor Selection                     | 36 |
|           | 5.2 Experiments and Statistical Tools    | 37 |
|           | 5.3 Equipment and Measuring Equipment    |    |
|           | for Experiments                          | 39 |
|           | 5.4 Procedure for Experiments            | 42 |
|           | 5.5 Data Analysis                        | 44 |

| CHAPTER 6 | FACTOR SCREENING EXPERIMENTS             | <b>5</b> 2 |
|-----------|------------------------------------------|------------|
|           | 6.1 Experiment and Data Collection       | 52         |
|           | 6.2 Collected Data                       | 56         |
|           | 6.3 Data Analysis of Experiment          | 60         |
| CHAPTER 7 | PRELIMINARY EXPERIMENT                   | 64         |
|           | 7.1 Experiment and Data Collection       | 64         |
|           | 7.2 Collected Data                       | 65         |
|           | 7.3 Data Analysis of Experiment          | 67         |
| CHAPTER 8 | EXPERIMENT FOR FINDING                   |            |
|           | SUITABLE CONDITIONS                      | 71         |
|           | 8.1 Experiment and Data Collection       | 71         |
|           | 8.2 Collected Data                       | 72         |
|           | 8.3 Data Analysis of Experiment          | 74         |
|           | 8.4 Curing Time Standard Deviation and   |            |
|           | Means Estimation                         | 81         |
|           | 8.5 Relationship of Curing Time Mean and |            |
|           | Factors in Experiments                   | 84         |
|           | 8.6 Suitable Conditions                  | 86         |
| CHAPTER 9 | CONFIRMATION EXPERIMENT                  | 87         |
|           | 9.1 Experiment and Data Collection       | 87         |
|           | 9.2 Collected Data                       | 88         |
|           | 9.3 Data Analysis of Experiment          | 89         |

| CHAPTER 10 | CONCLUSIONS AND RECOMMENDATIONS                 | 80  |
|------------|-------------------------------------------------|-----|
|            | 10.1 Conclusions                                | 90  |
|            | 10.2 Limitations                                | 92  |
|            | 10.3 Recommendations for Experiment             | 93  |
|            | 10.4 Recommendations for Further Study          | 93  |
| REFERENCES | •••••••••••••••••••••••••••••••                 | 95  |
| APPENDICES | ***************************************         | 96  |
|            | APPENDIX 1:                                     |     |
|            | Checksheet for Production of the Reactor        | 97  |
|            | APPENDIX 2:                                     |     |
|            | Data of Melamine Crystals                       | 100 |
|            | APPENDIX 3:                                     |     |
|            | The pH of Formalin from August to December 2000 | 101 |
|            | APPENDIX 4:                                     |     |
|            | The pH of Water from August to December 2000    | 103 |
|            | APPENDIX 5:                                     |     |
|            | The Equipments for the Experiments              | 105 |
| BIOGRAPHY  |                                                 | 112 |

#### LIST OF FIGURES

|                                                                     | Page |
|---------------------------------------------------------------------|------|
| Figure 2.1 : General Model of a Process                             | 6    |
| Figure 2.2 : A Factorial Experiment without Interaction             | 9    |
| Figure 2.3 : A Factorial Experiment with Interaction                | 10   |
| Figure 2.4: General Arrangement for a Two- factor Factorial Design  | 11   |
| Figure 3.1: The Fundamental Structure of Melamine Compound          | 24   |
| Figure 3.2: The Graph for the Curing Time Measurement               | 26   |
| Figure 3.3: The Melamine Compound Manufacturing Process             |      |
| of the Company                                                      | 27   |
| Figure 3.4: Elements of the Reactor of Melamine Compound Process    | 30   |
| Figure 4.1: The Control Chart for Melamine Compound 's Curing Time  |      |
| of the Company in June 2000                                         | 32   |
| Figure 4.2: The Control Chart for Melamine Compound 's Curing Time  |      |
| of the Company in July 2000                                         | 33   |
| Figure 5.1 : The Laboratory Reactor                                 | 40   |
| Figure 5.2 : The Laboratory Kneader                                 | 41   |
| Figure 5.3 : The Pot Mill                                           | 42   |
| Figure 7.1: The Normal Probability Plot of Residuals for            |      |
| Preliminary Experiment                                              | 68   |
| Figure 7.2: The Plot of Residuals versus F/M ratio for              |      |
| Preliminary Experiment                                              | 69   |
| Figure 7.3: The Plot of Residuals versus pH of Melamine Crystal for |      |
| Preliminary Experiment                                              | 69   |

| Figure 7.4: | The Plot of Residuals versus Fitted Values for          |    |
|-------------|---------------------------------------------------------|----|
|             | Preliminary Experiment                                  | 70 |
| Figure 8.1: | The Normal Probability Plot of Residuals for            |    |
|             | Experiment for Finding Suitable Conditions              | 75 |
| Figure 8.2: | The Plot of Residuals versus F/M ratio for              |    |
|             | Experiment for Finding Suitable Conditions              | 75 |
| Figure 8.3: | The Plot of Residuals versus pH of Melamine Crystal for |    |
|             | Experiment for Finding Suitable Conditions              | 76 |
| Figure 8.4: | The Plot of Residuals versus Fitted Values for          |    |
|             | Experiment for Finding Suitable Conditions              | 76 |
| Figure 8.5: | The Graph of the Average Curing Times versus the Levels |    |
|             | of F/M ratio for Each Melamine Crystal pH Level         | 77 |
| Figure 8.6: | The Graph of the Estimated Curing Time Means            |    |
| -100        | versus F/M Ratio and Melamine Crystal pH of             |    |
|             | Experiment for Finding Suitable Conditions              | 84 |
| Figure 8.7: | The Relationship of Curing Time Mean and Conditions     |    |
|             | of F/M Ratio and Melamine Crystal pH in Experiments     | 85 |

### LIST OF TABLES

|            |                                                     | Page |
|------------|-----------------------------------------------------|------|
| Table 2.1: | The Analysis of Variance Table for the Two Factors  | 13   |
| Table 3.1: | Inputs and Outputs in Each Step of                  |      |
|            | the Melamine Compound Process                       | 28   |
| Table 4.1: | The Effect of NaOH Volume on the Curing Time        | 34   |
| Table 5.1: | The Analysis of Variance Table for                  |      |
|            | Preliminary Experiment                              | 46   |
| Table 5.2: | The Analysis of Variance Table for                  |      |
|            | Experiment for Finding Suitable Conditions          | 48   |
| Table 6.1: | The Table for Data Collection of                    |      |
|            | Factor Screening Experiment                         | 54   |
| Table 6.2: | The Data of Factor Screening Experiment Part 1      | 57   |
| Table 6.3: | The Data of Factor Screening Experiment Part 2      | 59   |
| Table 6.4: | The Analysis of Variance for                        |      |
|            | Factor Screening Experiment Part 1                  | 60   |
| Table 6.5: | The Analysis of Variance for                        |      |
|            | Factor Screening Experiment Part 2                  | 62   |
| Table 7.1: | The Table for Data Collection of                    |      |
|            | Preliminary Experiment                              | 65   |
| Table 7.2: | The Data of Preliminary Experiment                  | 66   |
| Table 7.3: | The Analysis of Variance for Preliminary Experiment | 67   |
| Table 8.1: | The Table for Data Collection of                    |      |
|            | Experiment for Finding Suitable Conditions          | 71   |

| Table 8.2: The Data of Experiment for Finding Suitable Conditions | 72 |
|-------------------------------------------------------------------|----|
| Table 8.3: The Analysis of Variance for                           |    |
| Experiment for Finding Suitable Conditions                        | 74 |
| Table 8.4 : Table for Choice of Sample Size                       | 78 |
| Table 8.5: The Curing Time Means in Each Condition                | 79 |
| Table 8.6 : The Suitable Conditions for Reactor of the Laboratory | 86 |
| Table 9.1: The Table for Data Collection of                       |    |
| Confirmation Experiment                                           | 87 |
| Table 9.2 : The Data of Confirmation Experiment                   | 88 |