อนุกรมวิชานเชิงตัวเลขของพืชสกุล Cassia sensu lato

นาย สหณัฐ เพชรศรี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาพฤกษศาสตร์ ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2545 ISBN 974-17-1905-1 ลิขสิทธ์ของ จุฬาลงกรณ์มหาวิทยาลัย

NUMERICAL TAXONOMY OF Cassia sensu lato

Mr. Sahanat Pechsri

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Botany

Department of Botany

Faculty of Science

Chulalongkorn University

Academic Year 2002

ISBN 974-17-1905-1

Thesis Title	NUMERICAL TAXONOMY OF CASSIA SENSU LATO		
Ву	Mr. Sahanat Pechsri		
Field of Study	Botany		
Thesis Advisor	Associate Professsor Thaweesakdi Boonkerd, Ph.D.		
I	Accepted by the Faculty of Science, Chulalongkorn University		
Partial Fulfillmo	ent of the Requirement for the Master's Degree		
9.	Dean of Faculty of Science		
(Associate Professor Wanchai Phothipichitr, Ph.D.)		
THESIS COMN	MITTEE		
	Nantana Augkinand Chairman		
(Associate Professor Nantana Angkinand)		
	Thameesakdi Boonkerd Thesis advisor		
(Associate Professor Thaweesakdi Boonkerd, Ph. D.)		
	Obehant Thaithong Member		
(Associate Professor Obchant Thaithong, Ph. D.)		
	La		
	Member		

(Tosak Seelanan, Ph. D.)

สหณัฐ เพชรศรี : อนุกรมวิธานเชิงตัวเลขของพืชสกุล *Cassia* sensu lato (NUMERICAL TAXONOMY OF *Cassia* sensu lato) อ. ที่ปรึกษา : รศ. คร. ทวีศักดิ์ บุญเกิด, 112 หน้า. ISBN 974-17-1905-1.

พืชสกุล Cassia L. s.l. จัดเป็นสกุลที่มีสมาชิกมากมีจำนวนชนิคประมาณ 600 ชนิค พบ กระจายทั่วไปในเขตร้อนของโลก จากลักษณะสัณฐานวิทยาที่ซับซ้อนและยากต่อการตรวจหาชื่อจึงมีผู้ ศึกษาสถานะทางอนุกรมวิธานของพืชกลุ่มนี้และเสนอว่าควรแบ่งพืชกลุ่มนี้ออกเป็น 3 สกุลคือ Cassia L. s. s. Senna Miller และ Chamaecrista Moench อย่างไรก็ตามยังคงมีผู้จัดพืชกลุ่มนี้ไว้ในสกุล Cassia L. s.l. เพียงสกุลเคียว การศึกษาครั้งนี้จึงได้ยืนยันสถานะทางอนุกรมวิธานของพืชกลุ่มนี้ จำนวน 18 หน่วยอนุกรมวิธาน (taxa) จากตัวอย่างจำนวน 508 ตัวอย่าง อนกรมวิธานเชิงตัวเลข 3 วิธีคือ การวิเคราะห์ปัจจัย การวิเคราะห์การจัดกลุ่มและการวิเคราะห์การจัด ศึกษาลักษณะทางสัณฐานวิทยาทั้งลักษณะที่ใช้ในการสืบพันธ์และลักษณะที่ไม่ใช้ในการ สืบพันธุ์จำนวน 32 ลักษณะ ผลจากการวิเคราะห์ปัจจัยพบว่าลักษณะต่างๆ สามารถรวมกลุ่มเข้าเป็น 2 ปัจจัย ได้แก่ ปัจจัยของลักษณะที่เกี่ยวข้องกับการสืบพันธ์และปัจจัยของลักษณะที่ไม่เกี่ยวข้องกับการ สืบพันธุ์ ส่วนการวิเคราะห์การจัดกลุ่มนั้นพบว่าที่ค่า average taxonomic distance เท่ากับ 1.30 สามารถจำแนก Cassia s.l. ได้เป็น 4 กลุ่มคือ 1. Chamaecrista 2. Senna alata 3. Senna และ 4. Cassia s.s. โดยกลุ่มของ Cassia s.s. ใค้รวมเอา Senna spectabilis เข้าไว้ด้วย ใค้อภิปรายผลการ จัดจำแนกเป็น 4 กลุ่ม แต่เมื่อนำผลการจัดกลุ่มที่ได้นี้ไปวิเคราะห์ด้วยการวิเคราะห์การจัดจำแนกพบว่า ควรจัดจำแนกพืชกลุ่มนี้ออกเป็น 3 กลุ่มหรือ 3 สกล โดยลักษณะที่มีความสำคัญในการจัดจำแนก คือ ความยาวของก้านชุอับเรณู ความยาวของผล ความยาวของก้านรั้งไข่ นอกจากนี้การสำรวจรวบรวม ตัวอย่างครั้งนี้ได้พบ Senna obtusifolia ซึ่งยังไม่เคยมีรายงานว่าพบพืชชนิดนี้มาก่อนในประเทศไทย

ภาควิชา พฤกษศาสตร์ สาขาวิชา พฤกษศาสตร์ ปีการศึกษา 2545 ลายมือชื่อนิสิต Saha nat Pech sxi ลายมือชื่ออาจารย์ที่ปรึกษา Thanvesskdi Boonkerd ลายมือชื่ออาจารย์ที่ปรึกษาร่วม ## 4372438523 : MAJOR BOTANY

KEY WORD: NUMERICAL TAXONOMY / Cassia sensu lato

SAHANAT PECHSRI: NUMERICAL TAXONOMY OF Cassia sensu lato THESIS ADVISOR: ASSOC. PROF. THAWEESAKDI BOONKERD, Ph.D.; 112 pp. ISBN 974-17-

1905-1

Cassia s. I. is one of the large genus of flowering plants, occurs naturally in the tropics around the world. It was found that some species are difficult to determine due to their morphological complexes. Accordingly, this genus was separated by some workers into three genera, namely Cassia L. s. s., Senna Miller and Chamaecrista Moench. However, some authors still placed all species in a single genus, i.e. Cassia s. I. In order to confirm their taxonomic status, 508 specimens of 18 taxa were investigated in this thesis by numerical taxonomic techniques. Three multivariate morphometric analyses, namely factor analysis, cluster analysis and canonical discriminant analysis were used. The total 32 vegetative and reproductive morphological characters were focused on these analyses. The results of factor analysis revealed that most vegetative and most reproductive characters were separated on the two factor components. In cluster analysis, the Cassia s.l. can be separated into four groups viz. Chamaecrista, Senna alata, Senna and Cassia s.s. at average taxonomic distance 1.30. Nevertheless, the fourth group also included Senna spectabilis. The four-cluster grouping was discussed. From overall canonical discriminant analyses, it can be concluded that there are three groups within the genus Cassia s.l., as was proposed by Irwin and Barneby earlier. The most important characters for canonical discriminant analysis are filament length, fruit length, ovary stalk length. In addition, Senna obtusifolia L., a new recorded species for Thailand, was found during specimen collections.

Department	Botany	Student's signature	Jahanat Lechsri	
Field of study	.Botany	.Advisor's signature	rancesakli Boonker	d
Academic year	2002	.Co-advisor's signature.		

 C_1 $1 \Omega_1$

ACKNOWLEDGEMENT

I would like to express my deepest thanks to my thesis advisor, Associate Professor Dr. Thaweesakdi Boonkerd for his encouragement and valuable advice which had a great benefit through my thesis work.

I wish to express my sincere thanks to the thesis committee, Associate Professor Nantana Angkinand, Associate Professor Dr. Obchant Thaithong, and Dr. Tosak Seelanan for their valuable suggestions.

I am very grateful to Dr. Chumpol Khunwasi and Mr. Manit Kidyue to allow me to use the picture of *Cassia* spp. in this thesis. I would like to thank Ajarn Rossarin Pollawat for her kind help.

My sincere thanks to Mr. Sahut Chantanaorrapint, Mr. Yuttaya Yuyen, Mr. Wiwatn Kamapirata, Miss Oravan Vannasri, Miss Paweena Jaikrasane, Miss Suthira Sraprathet, Miss Siridhorn Jinratana, Miss Somruetai Chaipoo, Miss Paweena Triperm and Miss Wilawan Ratthanathirakul for their helps during field collections and their friendship.

Thanks are also due to the staff of the Professor Kasin Suvatabhandhu Herbarium, and the Department of Botany, Faculty of Science, Chulalongkorn University for providing laboratory facilities for this thesis.

Gratitude is especially extent to my mother for her support and encouragement.

Finally, this work was supported by the Graduate School, Chulalongkorn University and the TRF/ BIOTECH Special Program for Biodiversity Research and Training program (grant No. T_145008).

CONTENTS

P	AGE
Abstract (Thai)	iv
Abstract (English)	V
Acknowledgement	vi
Contents	vii
List of Scientific Name	viii
List of Table	ix
List of Figures	xi
List of Abbreviation.	xii
Chapter	
I Introduction	1
II Numerical Taxonomy	3
III Literature Review	11
IV Materials and Method	18
V Results	22
VI Discussion and Conclusion	52
References	65
Appendix	70
Biography	112

LIST OF SCIENTIFIC NAME

SPECIES	PAGE
Cassia alata	22
C. bakeriana	23
C. fistula	23
C. garrettiana	. 24
<i>C. grandis</i>	24
C. hirsuta	25
C. javanica subsp. javanica	25
C. leschenualtiana	26
C. obtusifolia	26
C. occidentalis	26
C. pumila	27
<i>C. siamea</i>	28
C. sophera	28
C. spectabilis	29
C. surattensis subsp. gluaca	29
C. surattensis subsp. surattensis	30
C. timoriensis	30
C. tora	31

LIST OF TABLE

TABLE	PAGE
4.1 Thirty-two characters, with their methods of scoring used in the study	
of Cassia s.l.	71
5.1 List of taxa for the study of <i>Cassia</i> s.l	73
5.2 Initial eigenvalues of 18 taxa based on 32 characters	74
5.3 Factor loading of 18 taxa based on 32 characters before rotation	75
5.4 Factor loading of 18 taxa based on 32 characters after rotation	76
5.5 Communality of all character	77
5.6 Classification function coefficients of 18 categories based on 1	9
reproductive characters	78
5.7 Pooled within canonical structure of 18 categories based on 1	9
reproductive characters	80
5.8 Summary of canonical discriminant function of 18 categories based of	on
19 reproductive characters	82
5.9 Classification function coefficients of 18 categories based on 1	13
vegetative characters	83
5.10 Pooled within canonical structure of 18 categories based on 1	13
vegetative characters	85
5.11 Summary of canonical discriminant function of 18 categories base	
on 13 vegetative characters	87
5.12 Classification function coefficients of 18 categories based on 3	32
characters	88
5.13 Pooled within canonical structure of 32 characters	91
5.14 Summary of canonical discriminant function of 18 categories base	ed
on 32 characters	93
5.15 Classification function coefficients of 4 categories according to the	ne
result of cluster analysis	

LIST OF TABLE (CONTINUED)

TABLE	PAGE
5.16 Pooled within canonical structure of 4 categories according to the	
result of cluster analysis	95
5.17 Summary of canonical discriminant function of 4 categories	
according to the result of cluster analysis	96
5.18 Classification function coefficients of 4 categories according to Manit	
Kidyue (2001)	97
5.19 Pooled within canonical structure of 4 categories according to Manit	
Kidyue (2001)	98
5.20 Summary of canonical discriminant function of 4 categories	
according to Manit Kidyue (2001)	99
5.21 Classification function coefficients of 3 categories according to Irwin	
and Barneby (1981)	100
5.22 Pooled within canonical structure of 3 categories according to Irwin	
and Barneby (1981)	101
5.23 Summary of canonical discriminant of 4 categories according to Irwin	
and Barneby (1981)	102
5.24 Means and standard deviation of 32 quantitative characters of the 18	
taxa of Cassia s.l.	103
5.25 Means and standard deviation of 32 quantitative characters of the 3	
taxa of Cassia s.l. according to Irwin and Barneby (1981)	108
5.26 Comparison of 13 gualitative morphological character of the Cassia	
s.l	109
6.1 Summary of canonical discriminant function of 12 species of Cassia	
(Senna)	111

LIST OF FIGURE

FIGURE	GE
4.1 Collecting sites of <i>Cassia</i> s.l	19
4.2 Preparation of dried plant specimens for measurements by digital	20
caliper	
5.1 Habit (a) and flower (b) of <i>Cassia</i> s.s	32
5.2 Habit and flower of Cassia (Senna), 1-C. surattensis Brum. f. subsp.	
glauca (Lamk.) K. & S.S. Larsen, 2-C. surattensis Brum. f. subsp.	
surattensis K. & S.S. Larsen , 3-C. tora(L.) Roxb., 4-C. obtusifolia L	33
5.3 Habit and flower of Cassia (Senna),1-C. alata. L., 2-C. sophera L., 3-	
C. occidentalis L., 4-C. hirsuta L	34
5.4 Habit and flower of Cassia (Senna), 1-C. spectabilis DC., 2-C.	
garettiana Craib, 3-C.timoriensis DC., 4-C. siamea Lamk	35
5.5 Habit and flower of Cassia (Chamaecrista)	36
5.6 UPGMA clustering of 508 OTUs based on 32 characters of Cassia s.l.	
in Thailand	38
5.7 The ordination plot of 18 taxa (reproductive character) using 18	
categories as priori groups	42
5.8 The ordination plot of 18 taxa (vegetative character) using 18	
categories as priori groups	43
5.9 The ordination plot of 18 taxa (reproductive and vegetative character)	
using 18 categories as priori groups	44
5.10 The ordination plot of 18 taxa, using 4 categories as priori groups	
(cluster analysis)	48
5.11 The ordination plot of 18 taxa, using 4 categories as priori groups	
according to Kidyue (2001)	49
5.12 The ordination plot of 18 taxa, using 3 categories as priori groups	
according to Irwin and Barneby (1981)	50
6.1 UPGMA clustering of 508 OTUs based on 32 characters of Cassia s.l.	
in Thailand for discussion	59

LIST OF FIGURE (CONTINUED)

FIGURE	
6.2 The ordination plot of 12 species of <i>Senna</i>	60
6.3 Boxplots of the twenty-two most important character of <i>Cassia</i> s.l	63

LIST OF ABBREVIATION

ATD = anther diameter in mm (largest fertile stamen)

ATL = anther length in mm (largest fertile stamen)

BTL = bracteole length in mm

BTW = bracteole width in mm

BTWP = bistance from base to the widest point of leaflet

DLBP = bistance between first and second leaflet pair

FLD = blower diameter in mm

FMD = filament diameter in mm (largest fertile stamen)

FML = filament length in mm (largest fertile stamen)

FTL = fruit length

LMW = lamina width in mm

LWR = terminal leaflet length to width ratio

LS = terminal leaflet shape (calculated by BTW/TLL)

mm = millimeter

NOL = number of leaflet

OVD = ovary diameter in mm

OVL = ovary length in mm

OSL = ovary stalk length in mm

PCL = pedicel length in mm

PED = petiole diameter in mm

PET = petiole length in mm

POLL = petiolule length in mm

PSL = petals stalk length in mm (largest petal)

PTL = largest petal length in mm

PTW = largest petal width in mm

RCD = rachis diameter in mm (between 2-3 leaflet pair)

RCL = rachis length in mm

SPL = largest sepal length in mm

LIST OF ABBREVIATION

ABBREVIATION

SPW = largest sepal width in mm

STD = style diameter in mm

STL = style length in mm

s.l. = sensu lato

s.s. = sensu stricto

TLL = terminal leaflet length in mm

TLW = terminal leaflet width in mm