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6.1 A b s tra c t

Preferential CO ox ida tion in a H 2-rich  stream was studied over Au /ZnO  and 
A u /Z n 0 -Fe203 catalysts prepared by photodeposition under U V -v is  lig h t. The h igh  
ca ta lytic  ac tiv ities o f  both Au /ZnO  and Au /ZnO -Fe2C>3 catalysts are presented over a 
temperature range o f  3 0 -1 30°C. TE M  results revealed that the average partic le  size 
o f  A u  over the A u /ZnO  and A u /Z n 0 -Fe203 catalysts, is in  the range o f  3 to  5 nm. 
Moreover, D R /U V -v is  spectra showed that the prepared catalysts contained A u 5+ and 
Au° (active sites fo r the PROX reaction) on the catalyst support. Based on the 
experiment observations, i t  can be concluded that the catalysts prepared by  
photodeposition exh ib ited excellent cata lytic a c tiv ity , even when both CO 2 and H 20  
were added to the simulated stream.

Keywords: Preferential CO oxida tion ; Photodeposition; A u  catalyst; ZnO ; Fe203

6.2 In tro d u c t io n

Hydrogen (H 2), a ve ry  clean, h igh ly  e ffic ien t, and env ironm en ta lly  fr ie nd ly  
(em ission-free) fue l [1 ], has attracted much attention from  many scientists, especially  
fo r its use in  proton exchange membrane (PEM ) fue l cells applications. The PEM  
fue l cells convert the chem ical energy (H 2 and O2) d irec tly  in to  e le c tr ic ity  w ith ou t 
combustion. Th is is deemed the most suitable process fo r  pow ering  vehicles and 
portable systems [2 ], However, the m ajor prob lem  in  the u tiliz a tio n  o f  PE M  fue l cells  
is the supplying o f  h igh -pu rity  H 2 that is needed as a fue l. The method used fo r  
producing H2 and the type o f  feedstock available, p lay a v ita l ro le  in  the design o f  the

* International Journal o f  Hydrogen Energy, 34 (2009) 9838-9846.
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fue l processor un it [3 -5 ]. In particular, a low  CO content in  hydrogen stream  
generated by re fo rm ing process deteriorates the e ffic iency  o f  the Pt anode catalyst 
v ia  CO poisoning [6, 7],

M any types o f  fue l processing systems were developed to produce pure  
hydrogen that is fast enough to supply the PEM  fue l ce ll operation by passing 
through aux ilia ry  units [8, 9], These aux ilia ry  un its were integrated in to  the H 2 

production un it (re form er) in  order to e ffec tive ly  remove CO from  the H 2 stream and 
also to m in im ize  H 2 loss in  the H 2-rich  stream. The preferentia l CO ox ida tion  
(PRO X) reaction has been w ide ly  studied fo r automobile applications [10, 11] 
because o f  the ir numerous advantages. These include not on ly  keeping the cost low , 
but also the decreasing o f  the CO content to the acceptance leve l (<10 ppm ) w ith ou t  
excess hydrogen consumption. The ideal catalyst fo r th is reaction needs to  be active  
and selective at the practica l temperature between the outle t temperature o f  the 
watef-gas sh ift reactor and the in le t temperature o f  the PEMFC.

A lthough  a ll o f  the p la tinum  group metals were found to have h igh  a c tiv ity  
in  th is reaction, the u ltra fm e A u  partic les dispersed on the appropriate metal ox ide  
supports were found to be more active fo r CO ox ida tion reaction at low  temperatures  
[1 2 -14 ], In  addition, i t  has been reported that the presence o f  a small A u  partic le  size 
in  its cata lytic CO ox ida tion where the turnover frequency increases rem arkab ly at a 
size smaller than 5 nm  [15]. The cata lytic activ ities o f  A u  m arked ly depend on the 
preparation method, w h ich  brings about a s ign ifican t d ifference in  the size o f  A u  
partic les and the in teraction w ith  support. Furthermore, they also observed that the  
deposition-precip ita tion (DP) technique had an advantage over co -p rec ip ita tion  (CP) 
in  that a ll active A u  remained on the support surface indicated, and none o f  the active  
A u  was buried w ith in  it. However, the process in  the preparation method requires the 
ca lc ina tion step at a h igher temperature in  order to decompose the A u  precursor and 
elim inate the undesired component on the support surface.

In  the last few  years, several studies have reported that the add ition o f  A u  to  
some ox id ic  catalyst supports leads to an increase in  the ir ca ta lytic  a c tiv ity  in  many  
reactions. These include: CO ox ida tion [16, 17], benzene ox ida tion  [18 ], 
hydrocarbon cata lytic combustion [19], and water-gas sh ift [20, 21]. In  the last years 
our group has been invo lved in  investigating gold catalysts fo r the PR O X  [22, 23], I t
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was also revealed that the key ro le o f  catalyst support is to prov ide oxygen  
adsorption and activa tion sites; and probably the oxygen vacancies and/or the 
perimeter sites at the Au-ox ide  interface [24, 25], Wang e t  a l . reported that A u /ZnO  
exh ib its good a c tiv ity  and s tab ility  in  CO ox ida tion [26] and our earlie r w o rk  dealt 
w ith  the preparation o f  Au /ZnO  catalysts by the DP method fo r the PRO X [23 ], In  
the present w o rk , the photodeposition (PD) technique was applied to  prepare the 
Au /ZnO  catalysts in  order to fin d  a new route in  w h ich  to deposit nano-size A u  
partic les onto the catalyst support. The advantages o f  the PD over the DP, fo r 
example, are that a h igher afnount o f  A u  is loaded and the heat treatment is not 
required. Th is is because A u (O H )4_ is reduced by U V -v is  irrad ia tion  [27 ]. M any  
parameters were considered fo r the PD technique such as the power o f  the lig h t  
source, irrad ia tion  tim e , prec ip ita tion agent, and catalyst support.

Therefore, i t  is interesting to investigate the ca ta lytic a c tiv ity  o f  the 
supported A u  catalysts prepared by  PD in  the PROX. A dd itio n a lly , i t  is w o rth  
rem arking that, w h ile  many o f  the published studies have concentrated on processes 
in vo lv in g  CO w ith  แ 2 and O 2, CO2 and H 2O may need to be included as reactants to 
obta in more rea listic  image. The selected catalysts were tested under the rea listic  
reformate conta in ing both CO2 and H 2O at a constant temperature to observe the 
s tab ility  w ith  tim e on stream.

6.3 E xp e r im en ta l M e thods

6.3.1 Catalyst Preparation

ZnO  and Z n 0 -Fe203 supports were synthesized by p rec ip ita tion  using  
aqueous solutions o f  Z n (N 03)2.3H 20 (S igm a-A ld rich ) and Fe(N 03)3.9H 20 (F luka). 
The pH  o f  the solutions was adjusted to 8.0 by the add ition o f  0.1 M  N a2CC>3 

(R iedel-de Haen). A fte r  aging, washing, and d ry ing , the precip ita te was ca lcined at 
400°c fo r 4 h in  order to obtain a ZnO  catalyst support. Nano-size A u  deposition on 
synthesized supports w ith  an A u  load ing o f  l% a tom  was prepared by a PD technique  
under U V -v is  ligh t. ZnO  was then added to an aqueous so lu tion o f  HAUC I4.3H 2O
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(ACROS). Subsequently, the pH  was adjusted to 8.0 by the add ition o f  0.1 M  
Na2C 0 3.

The suspensions were irradiated under a U V -v is  lamp w ith  the power o f  11 
พ  in  the photo-reactor, and v igo rous ly  stirred at ambient temperature in  series o f  1, 
3, and 5 h. The prepared catalysts were denoted as A u /Z n O -11 W - lh , A u /Z n O -11W - 
3h, and Au/ZnO -1 lW -5 h , respectively. M oreover, the power o f  U V -v is  lig h t effect 
(w h ich  ranged from  11 to  176 พ )  was investigated w ith  the shortened irradiated tim e  
o f  0.2 to 3 h in  order to main ta in  the same supply o f.power. The prepared catalysts 
were denoted as Au /ZnO -11W , A u /ZnO -44W , A u /ZnO -88W , and Au /ZnO -176W , 
respectively.

The ca ta lytic ac tiv ities depended not on ly  on the cond itions o f  the 
preparation method, bu t also on the p rec ip ita ting  agent. Therefore, urea 
(N H 2CO N H 2) was used and denoted as Au/ZnO -urea. O therw ise, Z n 0 -Fe203 support 
at the Zn:Fe atom ic ra tio  o f  5:1 was prepared by eo-prec ip ita tion method. The 
support was dried at 110°c overn igh t and then calcined at 400°c fo r 4 h. For A u  
supported on Z n0 -Fe203, the catalysts were prepared by the same method as 
mentioned above, w h ich  was denoted as A u /Z n 0 -Fe203-1 lW -3 h . The precip itate  
was filte red and washed ca re fu lly  w ith  deionized warm  water. F ina lly , the resulting  
so lid  was le ft to dry overn ight. N o  catalyst pretreatment process was applied before  
a ll the reaction tests.

6.3.2 Catalyst Characterization

The X -ra y  powder d iffra c tio n  (X R D ) o f  the prepared catalysts was carried  
out on a JEO L X -R ay d iffrac tom eter system (JDX -3530) w ith  C uK „ (1.5406 Â ) X -  
ray source operating at 40 k v  and 30 m A . The size and d is tr ibu tion  o f  A u  partic le  
deposited on the supports were d irec tly  observed by a Transm ission electron  
microscope (JEOL, JEM  2010) at an accelerating vo ltage o f  200 k v  in  b righ t fie ld  
mode. Before being transferred in to  the T E M  chamber, the samples were dispersed 
in  ethanol and were then dropped onto a copper grid . The average A u  size diameter 
(d-TEM) was calculated from  the fo llow in g  form ula: djEM =  ร(ท,d1)/ท,, where ni is the 
number o f  A u  partic les o f  diameter dj. The D R /U V -v is  spectroscopy experiments
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a llow  fo r checking the presence o f  d iffe ren t states o f  ox ida tion  o f  the contained 
metals (w h ich  were recorded on a Shimadzu uv spectrophotometer 2550). The 
measurements were performed on air-exposed samples at an ambient temperature o f  
between 200 and 800 nm. The absorption in tens ity was expressed using the Kube lka- 
M unk function . F(Roo) = (l-R co)2/2Rco, where Roo is the d iffuse  reflectance from  a 
sem i-in fin ite  layer. A tom ic  Absorp tion spectrometer (Va rian /SpectraAA  300) was 
used to determ ine the actual A u  metal content. The H 2 pulse chem isorption analysis 
determ ines the percent o f  A u  dispersion by app ly ing  measured pulses o f  H 2 gas to  
the prepared catalysts. The amount o f  chem isorbed น 2 is the d ifference between the 
to ta l amount o f  reactant gas injected and the amount that d id  not react w ith  the active  
sites o f  the prepared catalysts. The size o f  each pulse o f  H 2 gas is determ ined by the 
loop on an operated valve.

6.3.3 PROX Reaction Testing

A l l  cata lytic a c tiv ity  measurements fo r PR O X  were performed in  a fixed - 
bed U -tube m icro-reactor by packing w ith  100 mg o f  the catalyst o f  80-120 mesh 
inside. The ac tiv ity  was investigated at various temperatures in  the range o f  30 to  
130°c under atmospheric pressure. The reactant gas m ix tu re  fo r the simulated  
reformate gas was composed o f  CO (1%), O2 (1%), H 2 (40%), CO 2 (0-10%), and 
H 2O (0-10%) balanced in  He w ith  a to ta l f lo w  rate o f  50 m l m in '1. The in fluen t and 
e ffluen t gases were analyzed by auto-sampling in  an on -line gas chromatograph, 
w h ich  was equipped w ith  a packed carbosphere co lum n (80/100 mesh and 10 f t  X 1/8 
inch) and a thermal conduc tiv ity  detector (TC D ). The CO and O2 conversion  
calculations were based on the CO and O2 consumption, respectively. The CO  
se lectiv ity  was calculated by the ra tio  o f  O2 consumption fo r the desired CO  
ox ida tion  reaction to  the to ta l O2 consumption.
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6.4 Results and D iscussion

6.4.1 Catalyst Characterization

Figure 6.1 (a -h ) shows the X R D  diffractogram s o f  ZnO  and the prepared 
catalysts. The patterns disp lay characteristic peaks that matched perfec tly  w ith  ZnO. 
I t  is clear that ZnO  was not reduced under the same preparation conditions. A u  (111), 
A u  (200), and A u  (311) peaks cannot be observed at 20 o f  38.10, 44.37, and 77.55°. 
Th is suggests that A u  particles are h igh ly  dispersed on the surface or tha t the A u  
peaks are overlapped by z incite [28]. There is even the poss ib ility  that the A u  
partic les were too small to be detected by the X -ray  d iffractom eter.

A dd itio n a lly , Tabakova e t  a l . [29] reported that the ca ta ly tic  a c tiv ity  o f  the 
A u  supported on metal oxide catalysts relies not on ly  on the d ispersion o f  the A u  
partic les, but also on the state and the structure o f  the supports. The T E M  analysis 
and the A u  partic le  size d is tribu tions shown in  F igure 6.2 (a -e ) demonstrated that 
nano-size A u  partic les are u ltra  fin e ly  dispersed (1 -6  nm ) on the ZnO  and ZnO - 
Fe2Û 3 supports (The results fo r A u  photodeposition are summarized in  Table 6.1). 
A n  increase in  an irrad ia tion  tim e from  3 to 5 h leads to a increase in  the average 
diameter o f  the A u  partic les from  3.2 to 4.0 nm , suggesting that the d ifference in  the 
contact tim e under irrad ia tion  has an effect on the g row th o f  A u  partic les on the 
cata lyst support.

M oreover, the A u 5+ on the catalyst support was reduced to Au°. Th is is 
con firm ed by the T E M  observations shown in  F igure 6.2a and 6.2f, where the 
difference between exposed catalysts and an unexposed catalyst can c lea rly  be seen. 
The mechanism o f  th is  phenomenon can be explained by  the electrons in  the 
conduction band o f  ZnO  reduce pa rtly  A u 6+ to fo rm  A u° under U V -v is  lig h t  
irrad ia tion . Deeper studies showed that A u  deposited on the ZnO  surface to  fo rm  the 
A u° nano-structure, change in  the Ferm i leve l equ ilib ra tion  and the band structure o f  
ZnO  through shu ttling  photogenerated e‘ from  the ZnO  to  acceptors in  the 
photodeposition process [30]. The D R /U V -v is  spectra o f  the prepared catalysts can 
b r ie fly  ascertain the ox ida tion state o f  A u , w h ich  are A u+, A u 5+, bu lk  A u , and Au°.
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D R /U V -v is  spactra o f  the prepared catalysts shows a weak band o f  around 520-570  
nm , w h ich  is w ith in  the surface plasmon resonance band o f  Au° (go ld  nanoparticles) 
[31 ]. The background noise was m in im ized  by subtracting the ZnO  spectra. 
Boccuzzi e t  a l . [32] studied the ro le o f  A u° v ia  the investiga tion o f  the CO ox ida tion  
mechanism over the A u /ZnO  by FT -IR , w h ich concluded that CO molecules are 
found to be activated on the Au° at both o f  the normal terrace sites and the borderline  
o f  the A u  particles. A dd itio n a lly , A u ° sites are able to adsorb both O2 and CO  
molecules simultaneously. Th is action demonstrated that the d irect ox ida tion  o f  CO  
was to occur rap id ly  at the surface o f  the Au° partic les, w h ile  the CO ox ida tion  
between CO molecule and the surface la ttice oxygen species o f  the catalyst support, 
was induced more s low ly .
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F ig u re  6.1 X R D  d iffractogram s o f  ZnO , prepared, and spent catalysts: (a) ZnO , (b )  
A u /Z n O -1 1 w -lh , (c ) A u /Z nO -11 W -3h, (d ) Au/ZnO -1 lW -5 h , (e) A u /ZnO -176W , (f)  
A u /Z n O -แ พ - 3h_spent, (g) A u /Z n 0 -Fe203- 1 1 พ - 3h, and (h ) A u /Z n 0 -Fe203-11W - 
3h_spent.
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F ig u re  6.2 T ransm ission electron m icrographs o f  the prepared catalysts: (a) A u/Z nO - 
l i w - l h ,  (b) A u/Z nO -l 1 W -3h, (c) A u /Z n O -1 1 W -5h, (d) A u/Z nO -176W -0.2h , (e) 
A u/Z n 0 -Fe2 0 3 - 1  lW -3h, and (1) A u/Z nO -not exposed to U V -vis light.
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F ig u re  6.3 U V -v is  spectras o f  the prepared catalysts: (a) E ffect o f  irrad ia tion  time, 
(b) E ffec t o f  u v  lig h t power, (c) E ffec t o f  p rec ip ita ting  agent, and (d) E ffe c t o f  
catalyst support.

The actual amount o f  deposited A u  on the catalyst was evaluated b y  A A S  
(Table 6.1) and the results showed that the amount o f  A u  was no ticeab ly low e r than 
the calculated value. Th is result was due to A u  loss in  the preparation and/or the 
washing steps.

A lso , it  was evident that A u  and metal ox ide interface p lay an im portan t ro le  
in  the presence o f  PROX activ ity . The deposition o f  A u  on the supports b y  using  
Na2CC>3 is an e ffective method fo r creating sm aller Au  partic les that result in  an 
increase o f  the number o f  A u -ox ide  interfaces. These, in  turn, enhanced the ca ta lytic  
ac tiv ity  fo r th is reaction.



Tab le  6.1 C ha ra c te ris tic  o f  the p repared ca ta lys ts

Catalyst
P recip ita ting

agent
A c tua l A u  content 

(% atom )a

A u /Z nO -11 W - lh Na2CC>3 0.37

A u /Z nO -11 W -3h Na2CC>3 0.36

A u /Z nO -11 W -5h Na2CC>3 0.41

Au /ZnO -44W Na2C03 0.42

Au /ZnO -88W Na2CC>3 0.41

A u /ZnO -176 พ Na2CC>3 0.38

Au/ZnO -U rea urea 0.57

A u /Z n 0 -Fe203- 1 1 W -3h Na2C03 0.48

a Actua l A u  load ing achieved by AAS . 
b Degree o f  metal d ispersion evaluated by H 2 chem isorption. 
c Mean A u  partic le size achieved by TE M . 
n ' not indicated

Degree o f  metal d ispersion Mean A u  partic le  size

(% )b (dTEM, nm)'

12.23 4.4±0.68

14.87 3.2±0.58

9.49 4.0±0.80

8.73 n.i.

6.86 n.i.

3.59 3 .U 0 .7 5

8.62. n.i.

5.31 3.6±1.1

๐0
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Boccuzzi e t  a l . [32] studied the ro le o f  Au° v ia  the investigation o f  the CO  
ox ida tion mechanism over the Au /ZnO  by FT -IR , w h ich concluded that CO  
molecules are found to be activated on the Au° at both o f  the normal terrace sites and 
the borderline o f  the A u  particles. A dd itio n a lly , Au° sites are able to adsorb both O2 

and CO molecules simultaneously. Th is action demonstrated that the d irect ox ida tion  
o f  CO was to occur rap id ly  at the surface o f  the Au° partic les, w h ile  the CO  
ox ida tion between CO molecule and the surface la ttice oxygen species o f  the catalyst 
support, was induced more s low ly . The actual amount o f  deposited A u  on the 
catalyst was evaluated by AA S  (Table 6.1) and the results showed that the amount o f  
Au was noticeably lower than the calculated value. Th is result was due to A u  loss in  
the preparation and/or the washing steps.

A lso , it was evident that A u  and metal oxide interface p lay an im portan t ro le  
in the presence o f  PROX activ ity . The deposition o f  A u  on the supports by using  
Na2CC>3 is an effective method fo r creating smaller A u  partic les that result in  an 
increase o f  the number o f  A u -ox ide  interfaces. These, in turn, enhanced the ca ta lytic  
ac tiv ity  fo r th is reaction.

6.4.2 E ffect o f  Irrad ia tion  T im e

Because irrad ia tion  tim e is the most common parameter in the 
photodeposition method, in  th is section we w il l  exam ine the ro le o f  irrad ia tion  tim e  
on the ca ta lytic  a c tiv ity  o f  A u /ZnO  catalysts under atmospheric pressure in the 
temperature range o f  30 to 130°c. Figure 6.4 d isplays the ca ta lytic ac tiv ities  
dependence o f  the 1 % atom A u  catalysts at d iffe ren t irrad ia tion  tim es ranging from  1 
to 5 h. It is c learly seen that a ll catalysts exh ib ited an excellent CO conversion  
(100% ) w ith  a h igher CO se lectiv ity  ( -6 6 -7 3% ). W ith  increasing irrad ia tion  times, 
there is no s ign ifican t in fluence on the A u  loading measured by A A S .

To obtain a more quantita tive comparison o f  the amount o f  A u+, A u 5+, and 
Au° on the catalyst surface, the prepared catalysts were analyzed by D R /U V -v is . The  
results shown in Figure 6.3a reveals that A u+ and A u 5+ (at around 385 nm ) dras tica lly  
decreased w ith  increasing irrad ia tion tim e; however, the plasmon resonance o f  Au
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nanoparticles at 550 nm increases w ith  th is pa rticu la r effect, except when the catalyst 
was irradiated w ith  U Y -v is  lig h t fo r 5 h. A l l  prepared catalysts d id not show the band 
at 410 nm  wh ich  was indicated in  the bu lk  o f  Au . These results are in  agreement w ith  
the TE M  results (F igure 6.2 (a-e)) in that the bu lk  o f  A u  d id not appear on the 
catalyst surface.

Some researchers have suggested a ro le fo r A u+ and A u 5+ but it  is not clear 
that ion ic  species (A u + and A u 5+) and/or gold nanoparticles (A u °) act as an active site 
fo r the reaction [33, 34], A lso , Hodge e t  a l . [35 ] proposed that a m ixed ox ida tion  
state fo r the A u  was found and explained by the Bond-Thompson mechanism. B y  
th is method, CO molecules adsorb to Au° and are attacked by the O H ' group situated 
at A u5+, resulting in the fo rm ing  o f  a carboxylate group at the Au-support interface. 
The carboxylate is attacked by a superoxide from  the support to produce CO 2, and 
the resu lting O H 2' oxid izes another carboxylate, fo rm ing  another CO 2 molecule.

Our observation indicates that m eta llic  particles are the m a jo r cause fo r the 
increase in  cata lytic ac tiv ity . In  this study, A u /Z n O -11 พ - 3h exh ib ited the highest 
ca ta lytic  activ ities fo r the PRO X reaction in  terms o f  CO se lectiv ity , w h ich  is much  
higher than that o f  the other prepared catalysts. It prov ided almost 100% CO  
conversion, and 73% CO se lectiv ity  at 30 °c . These results are probab ly due to the 
m ixed ox ida tion states o f  A u  in  the suitable ra tio presence on the support. TE M  
images show that nano-size A u  particles homogeneously disperse on the catalyst 
support surface w ith  the narrow  partic le size d is tribu tion . The size o f  A u  partic le at 
around 2^1 nm o f  Au/ZnO -1 lW -3 h  catalyst is preferred fo r the PR O X  at a low  
temperature o f  3 0 °c . In  addition, the metal dispersion o f  A u /Z n O -11 W -3h  is higher 
than that o f  those prepared catalysts, as presented in  Table 6.1. I t  is apparent that by  
increasing irrad ia tion  time, a fter th is section, the irrad ia tion tim e  at 3 h was selected 
as the most suitable preparation cond ition fo r these catalysts.
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F ig u re  6.4 E ffect o f  irrad ia tion tim e on the A u /ZnO  ca ta lytic  activ ities : CO  
conversion (■ ), CO se lec tiv ity  ( :1 ), and O2 conversion ( n  ). The preferentia l CO  
oxida tion reactions were conducted at 30 °c .

6.4.3 E ffec t o f  Power o f  U V -v is  L igh t

The dependence o f  the preferentia l CO ox ida tion  on reaction temperature  
was studied over A u /Z nO  catalysts w ith  the d ifference in the power o f  U V -v is  lig h t 
in  the dry simulated reformate. F igure 6.5 shows CO conversion and CO se lectiv ity  
as a function  o f  the reaction temperature. The CO conversion o f  a ll prepared 
catalysts reached 100% in  the temperature range o f  30 -50 °C  except the Au /ZnO -176  
พ  catalyst. A t 7 0 -1 2 0 °c , the CO conversion decreases w ith  the increasing o f  the 
reaction temperature. Th is suggests that the increasing o f  the temperature also 
fac ilita tes H 2 ox ida tion , w h ich  is com petitive  w ith  CO ox ida tion  and the decreasing  
o f  CO selectiv ity.

The TE M  results in Table 6.1 show that the A u  partic le  size was not 
affected by the appliance o f  the h igh power o f  U V -v is  lig h t fo r preparation o f  the 
catalysts. A lthough , the A u  partic le size o f  A u /Z n O -176พ  was close to its A u /ZnO -
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11 พ , the metal d ispersion o f  A u /Z n O - l lW  is higher than that o f  A u /ZnO -176W , 
w h ich  suggested that the h igher power o f  U V -v is  lamp leads to a coalescing o f  an A u  
partic le on the catalyst support. Furthermore, the size d is tribu tion  in the prepared 
catalyst, w h ich  irradiated under the U V -v is  lig h t at the power o f  11 พ , has a 
narrower size d is tribu tion  than that o f  the catalyst that was exposed in 176 พ . The 
D R /U V -v is  spectra o f  the prepared catalysts (F igure 6.3b) revealed that A u + and 
A u s+ (at around 385 nm ) decreased w ith  increasing the power o f  U V -v is  ligh t. As a 
consequence, w ith  the effect o f  irrad ia tion tim e, the presence o f  a m ixed ox ida tion  
state o f  A u  in the A u /Z n O -11 พ  catalyst exh ib its  a more impressive performance in  
cata lytic ac tiv ities than other catalysts.

F ig u re  6.5 Ca ta ly tic  ac tiv ities o f  the prepared catalysts on the effect o f  power o f  U V -  
v is  lig h t; 11 w  ( •  ), 44 พ (๐ ) ,  88 พ ( T ) ,  and 176 พ  ( A ): CO conversion ( —  ) 
and CO se lectiv ity  (■ ■ ■ ).

- Ù -  176 พ

20 40 60 80 100 120 140

T e m p e ra tu re  (°C )



88

6.4.4 E ffect o f  P recip ita ting Agent

Since the type o f  the prec ip ita ting agent s ign ifican t affects the partic le size 
o f  Au , it is expected that the type o f  prec ip ita ting agent w i l l  also have an in fluence  
on the cata lytic ac tiv ity . To further investigate the differences in cata lytic ac tiv ity  
between A u  photodeposition on ZnO  support using d iffe ren t p rec ip ita ting  agents, 
experiments o f  A u /Z n O -11 พ - 3h prepared by Na2CC>3 and N H 2C O N H 2 (urea) were 
performed. A t 3 0 °c , the CO conversion o f A u /ZnO -N a2C Û 3 was 100%, w h ile  the 
Au/ZnO -urea catalyst achieved on ly 78%  CO conversion, as illus tra ted in F igure 6.6. 
In addition, CO se lectiv ity  p ro files o f  the prepared catalysts also fo llow ed  a s im ila r 
trend in that the CO se lectiv ity  decreased w ith  the ra is ing o f  the reaction  
temperature. The observed effect o f  p rec ip ita ting  agent type is rather complex. We  
expect th is to be due to the d iffe ren t concentrations o f  A u 5+ and A u ° partic les on the 
surface o f  catalysts, estimated by the D R /U V -v is  results in F igure 6.3c. Furthermore, 
the A u /Z n 0 -Na2C 03 (11 พ , 3h) shows a h igher degree o f  metal d ispersion than 
Au/ZnO-urea, suggesting that the metal dispersion and the amount o f  A u 8+ and Au° 
depended on the nature o f  the p rec ip ita ting agent, presented in Table 6.1. Using  
Na2C 03 as a prec ip ita ting agent s ig n ifican tly  im proved the performance o f  the 
catalyst in terms o f  CO conversion at a low  temperature range o f  30 -50°C . Based on 
those results, Na2C 03 was selected as a suitable p rec ip ita ting  agent fo r prepare the 
Au /ZnO  catalyst v ia  the photodeposition under the U Y -v is  lig h t irrad ia tion .
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Temperature (°C)
F ig u re  6.6 Cata ly tic activ ities o f  the prepared catalysts on the effect o f  p rec ip ita ting  
agent; CO conversion ( • ) ,  O2 conversion (๐), and CO se lectiv ity  ( T ) :  N a2C 03 (— ) 
and urea (■ ■ ■ ).

6.4.5 E ffec t o f  M ixed -O x id e  Catalyst Support

The nature o f  the support is one o f  the im portant parameter to obta in the 
active catalyst. It m igh t therefore be expected that a A u  supported on Fe203, 
reducible oxide support that facilita tes the active O2, was more active than any other 
reducible oxide support fo r CO oxida tion [33, 36], Q iao and Deng showed that fe rric  
hydrox ide supported A u  catalysts prepared w ithou t any pretreatment exh ib ited an 
excellent environment fo r CO ox ida tion in air, and also fo r PRO X in the presence o f  
H 2 [37], Thus, the l% A u /Z n 0 -Fe203 at a ra tio o f  ZnO  to  Fe203 is 5 to 1 was 
prepared and investigated to determ ine the ir performance. It was found that the CO  
conversion o f  A u /ZnO  and A u /Z n 0 -Fe203 reached 100% at 30 -50°C . The CO  
se lectiv ity  o f  a A u /ZnO  catalyst was h igher than that o f  the A u /Z n 0 -Fe203 catalyst 
in  a ll o f the tested temperature ranges, as shown in  F igure 6.7. We therefore suggest 
that Fe2Ü 3 provides su ffic ien t dissociated O2 to enhance both the CO and H 2



90

oxidation . However, the catalytic performance o f  the Au/Fe2Û 3 in this reaction is 
strongly related to the support phase, being sensitive to the m icrocrys ta lline  structure  
and the ox ida tion  state o f  the Fe2C>3, as explained by Scirè e t  a l . [38],

A dd itio na lly , X R D  results revealed that the phase o f  Z nF ed ) present in the 
crysta lline structure o f  Z n0 -Fe203. It suggested that some o f  the Fe2C>3 had been 
incorporated in ZnO lattice, resulting in an improvement o f  its oxygen m o b ility  and 
thermal s tab ility . The addition o f  Fe2C>3 also had an in fluence on the e lectronic state 
o f  supported A u  catalysts. The D R /U V -v is  results (F igure 6.3d) revealed that the 
plasmon resonance band o f  Au /ZnO  was more v is ib le  than that o f  A u /Z n 0 -Fe203.

In  2006, Hutchings e t  a l . [39 ] studied the ro le o f  A u  cation over A u /a -F e 2C>3 

on the CO ox ida tion reaction. They proposed that A u + and A u 6+ p lay a cruc ia l role in  
cata lyzing that reaction at 2 5 °c  and also noted that the most active catalysts contain  
more cation ic Au. They further concluded that the least active catalyst contained  
more Au°.

100 - 

80 - 

60 - 

40 - 

20 -

0

F ig u re  6.7 Cata lytic ac tiv ities o f  the prepared catalysts on the effect o f  catalyst 
support; CO conversion ( •  ), O2 conversion ( o ), and CO se lectiv ity  ( T ) :  A u /ZnO  
( —  ) and A u /Z n 0 -Fe203 (■ ■ ■ ).
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6.4.6 In fluence o f  CO? and H 7O on Cata ly tic A c tiv itie s

W ith in  the range o f  reaction temperatures investigated, the catalysts exhibited  
the highest ac tiv ity  at 30 °c . Therefore, the effect o f CO2 and H 2O presence in the 
feedstream on the cata lytic performance o f  A u /Z nO -11 พ - 3h and A u /Z n 0 -Fe203- 
แ พ - 3h catalysts was investigated at a constant temperature (30°C ) w ith  tim e on 
stream. The results shown in F igure 6.8 illustra te that the ca ta lytic ac tiv ities o f  both  
catalysts fo r the PROX reaction, in  the absence o f  CO2 and H 2O in  the simulated  
stream, are stable w ithou t s ign ifican t loss o f  CO conversion and CO se lectiv ity.

W ith  the addition o f  H 2O, the CO. se lectiv ity o f  both catalysts was improved  
dramatica lly . Boccuzzi e t  a l . [32 ] proposed th is prom otiona l effect. They found that 
the Au /ZnO  catalyst could produce atom ic hydrogen v ia  CO -H 2O co-adsorption  
experiments. From  th is result, we suggest that the H 2O molecule could promote the 
water gas sh ift reaction over the Au /ZnO  and A u /Z n 0 -Fe203 catalysts. The addition  
o f  CO 2 wou ld  then lead to a severe reduction in  the ca ta lytic activ ities . Th is effect 
can be explained by the accumulation o f  carbonate-like species on the catalyst 
surface. This in tu rn  then b locks the active sites fo r the PROX reaction [40,41],

A u /Z n 0 -Fe203-1 1 พ - 3h showed improved resistance towards deactivation  
more than that on Au /ZnO  caused by the presence o f  CO2 in  the simulated stream. 
Furthermore, the ca ta lytic ac tiv ities o f  A u /ZnO  improved even fu rthe r w ith  the 
add ition o f  PI2O to the simulated stream. Daté e t  a l . [42 ] suggested that the H 2O 
could attack and decompose the carbonate intermediate; moreover, the presence o f  
O H ' group extends the life tim e  o f  the catalyst and prevents the deactivation by 
carbonate-like species accumulation.

On the other hand, the Au /ZnO  catalyst exh ib ited h igh a c tiv ity , good 
se lectiv ity , and h igh  s tab ility  at low  temperatures in the simulated stream w ith  and 
w ithou t C 0 2 and H 20 . Based on those results, it  is seen that the CO 2 has stronger 
in fluence on the ca ta lytic performance o f  both the A u /ZnO  and A u /Z n 0 -Fe203 

catalysts than the H 2O. To compare the structures o f  the spent catalysts a fter testing  
in  the simulated stream, the catalysts were analyzed by X R D  and U V -v is  techniques. 
There was a s ligh t dev ia tion in  the structure o f  the spent catalysts, as seen in Figure
6.2 ( 2 f  and 2h) and Figure 6.3d.
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F igu re  6.8 The effect o f  CO 2 and H 2O on the cata lytic ac tiv ities o f  A u /ZnO  catalyst. 
The reaction was tested at constant temperature o f  3 0 °c  and m onito red w ith  tim e on 
stream.

F ig u re  6.9 The effect o f  CO 2 and H 2O on the ca ta lytic  ac tiv ities  o f  A u /ZnO -Fe2C>3 

catalyst. The reaction was tested at constant temperature o f  3 0 °c  and m onitored w ith  
tim e on stream.
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6.5 Conclus ions

Our results showed that A u /ZnO  and A u /Z n 0 -Fe203 catalysts can be 
successfully prepared v ia  the photodeposition under U V -v is  lig h t irrad ia tion in  order 
to obta in A u  partic les that are in  nanometer size (1 -6  nm). M oreover, it revealed that 
the prepared catalysts (w ithou t heat treatment step) exh ib ited higher cata lytic  
ac tiv ity , where it achieves a complete conversion o f  the CO at 3 0 °c  and 50 -73 %  
CO selectiv ity. The presence o f  a m ixed ox ida tion state o f  A u  is the active site fo r 
the PROX reaction. Na2C Ü 3 can be used as an appropriate p rec ip ita ting  agent fo r the 
Au photodeposition under U V -v is  lig h t irrad ia tion. In add ition , the m ixed metal 
oxide support (Z n 0 -Fe203) can reduce the in fluence o f  CO 2, w h ich  is present in  the 
simulated stream.
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