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CHAPTER 1
INTRODUCTION

In recent years, there have been many studies on reaction-diffusion equations

involving a nonlocal term of convolution type of the form:

atu—Au:u<f(u)—afRng(x—y)u(y,t)dy> reR™ t>0,
(1.1)

u(x,0) = ug (z) x €R™,

where v = u(z,t) is an unknown real valued function defined on R™ x [0, 00), f

and g are given functions, « is a positive constant and ug is the initial condition

/ng(x)dx _1

These problems are used, for example, to study the dynamics of population with

of u with

competition between individuals of the same species.

In 1989, Britton [2] introduced (El!) with f(u) =1+au—bu?> and o = 1+a—1b
for 0 < b <14 aand a > 0, to model a single biological population that derives
some competitive advantage from local aggregation (represented by awu) within
the capacity of the local environment (represented by —bu?). In this model, the
population also compete among themself through the depletion of resource in a
neighborhood of its original position (represented by the convolution term).

Later, Britton [3] carried out a linear stability analysis for the uniform steady-
state solution of (El!) and then investigated the bifurcation from this uniform
steady-state.

In 2001, Gourley et al. [§] and in 2004, Billingham [1] studied travelling wave-



front solutions of () when n = 1 and assumed that the kernel g(z) = Le71*l by
using numerical and asymptotic techniques.

In 2008, Deng [4] established a comparison principle and employed the tech-
nique of monotone sequences to get the existence and uniqueness of solutions for
(@), and analyze the long-time behavior of solutions when n = 1.

In 2014, Sun [11] proved the existence and uniqueness of positive solutions for
a nonlocal dispersal population model by the monotone iteration sequences tech-
nique.

In 2015, Deng and Wu [5] extended the results of [4] in 2008 to the case of arbi-
trary n > 1 and established a comparison principle and then constructed monotone
sequences to show the existence and uniqueness of solution for (@), and analyzed
the global stability.

In this work, motivated by Deng and Wu [5], we extend the study to the

reaction-diffusions equation of a more general form:

8tu—Au:u<f(u)—oszng(m,y)u(y,t)dy) r€R™ t>0,
(1.2)

u(z,0) =ug () x € R".

Here, g needs not be radially symmetric, that is, we do not require g(z,y) =
g(x —1y); more importantly, our nonlinear local term f can behave more irregularly
in the sense that f(u) can be positive for all v > 0. The condition on f is a bit
more general than that of Deng and Wu [5], where in [5] it was assumed that
f(u) <0 for all u sufficiently large which allows the global existence result to be
easily established. As will be shown in Chapter IV, the positivity of f(u) for large
u imposes a nontrivial difficulty. Throughout this work, we assume that g satisfies

the following conditions:

(i) ¢ is a nonnegative continuous function on R™ x R";



(ii) there exits a constant C; > 0 such that

/ g(z,y)dy < C, forall zeR"™

(iii) V,g is a bounded continuous function on R" x R™ with V,g(x, -) is integrable

for all z € R".

This thesis is organized into four chapters as follows. In Chapter II, we in-
troduce some notions, definitions and preliminaries that will be useful. Next, in
Chapter III, we establish our fundamental result, the comparison principle and
uniqueness of solution. Next, by constructing monotone sequences of coupled up-
per and lower solutions, we can prove the basic (local) existence of solutions to
the problem (E) Finally, the global existence of solutions will be obtained in
the last chapter under various conditions on the local nonlinear term f. To prove
this result, we shall study the maximal solution to certain initial value problem. It
will be followed that the solutions obtained are bounded by the maximal solutions.

Thus, we also get the asymptotic behavior of solutions.



CHAPTER II
PRELIMINARIES

In this chapter, we introduce some notations, definitions, and preliminaries
which will be used in this work. For more details, the reader can consult any

textbooks in partial differential equations (PDEs) or analysis see [6] , [7], [10].

2.1 Notation
Let X be a measurable space and 0 < T' < oo.
(1) QT =R" x (O, T) and Yr=R" X [0, T)

(ii) For 1 < p < oo, the space LP(X) consists of the Lebesgue measurable func-

tions v : X — R such that

/ |u|Pdx < oo.
X

The LP norm of v € LP(X) is defined by |Jul|z»(x) = {fX|u|pdx}1/p.
(iii) The space L*°(X) consists of the Lebesgue measurable functions u : X — R
such that
l|u]| Lo (x) = sup|u(z)| < oo.
zeX
(iv) C*1(Qr) denotes the space of all functions that are twice continuously dif-
ferentiable in x and continuously differentiable in ¢, for all (z,t) € Qr.

(v) If X is also a topological space, C'(X) denotes the space of continuous func-

tions on X.



(vi) For k > 1, C*(X) denotes the set of all functions whose derivatives of up to

k are all continuous in X.
(vii) Cp(X) denotes the space of all bounded continuous functions on X.

(viii) The space C([0,T); Cy(X)) consists of the continuous function w : [0,7) —
Cyp(X).

2.2 Basic Theory

Theorem 2.1 (Minkowski’s inequality). Assume that 1 < p < oo and u,v €
LP(X). Then,

lu+v|lecx) < llullecx) + [|0] e x)-

Theorem 2.2 (Gronwall’s inequality, the integral form). Suppose that a continu-

ous functions u : [0, T] — [0,00) satisfies
t
u(t) < Cy + C’g/ u(s)ds for all t€[0,T]
0
where C1,Cy > 0 are constants. Then,
u(t) < CL(1+ Cote®™)  for all t € [0,T].

Theorem 2.3 (Dominated Convergence Theorem). Let { fi}re, be a sequence of

real-valued measurable functions on X such that
(1) f(x) =limg_,o fr(x) exists for all x € X, and

(ii) there exists a function g € L'(X) such that

|fu(x)] < g(x) forall k€N and z€X.



Then,

lim fkdm:/ lim fidx.
k—oo [ x x k—o0

Theorem 2.4 (Contraction Mapping Theorem or Banach Fixed Point Theorem).
Let X be a complete metric space and A : X — X a contraction mapping. Then,

A has a unique fixed point v € X.

Theorem 2.5 (Young’s inequality). If 1 <p < oo, f € L}Y(R") and g € L>°(R"),
then

1f * gllLee@ny < || fllr@myllgllzoe @ny,

where the convolution f x g is defined by

(f xg)(x) = . flx=y)g(y)dy for x € R"

2.3 Coupled Upper and Lower Solutions

Definition 2.6. A classical solution u of the problem (B) is a function which
satisfies the problem (@) and u € C*(Qr).

Definition 2.7 (Mild Solution). A function w is called a mild solution of the
problem () if u € C([0,T); Cy(R™)) for some 0 < T" < oo and u satisfies the

equation

u(z,t) = G(t)uo(x) + /0 G(t — s)u(x,s) (f(u(a:, s))—a(gru(z, 3))>ds (2.1)

at each x € R", 0 <t < T, where

geute.t) = [ gty Dy



and the operator G(t) is given by

1 _le—y?

Oz —y,t — dy = —————€ =9 dy.
@t =)oy = [ e oty )y

Gt — s)u(z, s) = /

n

Note that ® is the fundamental solution of the heat equation (or the heat kernel)
given by

1 —lz|? n
We 4 (.TE]R,t>0)

O(x,t) =

Remark 2.8.

(i) If u is a solution of (@) for some 0 < T' < oo, then one often call u is a local
(in time) solution of (@)

(ii) On the other hand, if u is a solution of () with T' = oo, then u is called a
global (in time) solution of (@)

(iii) If there exists 0 < T < oo such that

Jim (- t)|| oo gny = 00,

then u is called a blow-up solution of (@)

Theorem 2.9 ([10]). Let F,V,F € C,(R"x (0,00)), ug € Cp(R™) and u be defined
by

t
u(z,t) = G(t)uo(z) + / G(t — s)F(x,s)ds (2.2)
0
for (z,t) € R" x (0,00). Then, u € C*(R" x (0,00)) and satisfies
Ou—Au=F in R" x (0,00),

and for any xo € R™, lim g 1) (20,0) w(x, ) = uo(0).



Lemma 2.10. Fiz T > 0. The operator G(t) salisfies
1G] Loy < [|v]| o0 Ry

forve L®(R") and 0 <t <T.

Proof. When t = 0, we have G = id. Thus, the desired estimate holds trivially.
Assume that t > 0. We have

1G(t)v]| Lo @ny = ‘

/n (- —y,t)u(y)dy

Lo (R™)

Applying Theorem @ (Young’s inequality) , we get

< 12C, Ol @y V] ooy
Loo(RM)

/n (- —y, t)u(y)dy

= ||v|lpoe ®ny,

because [g, ®(z,t)dr =1 for all t > 0. O

Definition 2.11. Functions u and u are called coupled upper and lower classical

solutions of (@) on Qr, respectively, if they satisfy the following conditions:
(1) u,u € 02’1(QT) N Ob(ZT);
(i) u(e,0) < uo() < (x,0) in R

(iii) For any (z,t) € Qr,

O — AT > E(f (@) —ag *@>’ (2.3)

Definition 2.12. Functions u and u are called coupled upper and lower mild

solutions of (@) on Qr, respectively, if they satisfy the following conditions:

(i) w, uw € C([0,T); Cy(R™)) and @, u € L>®(Q7);



(i) u(z,0) < wug(x) <u(x,0) in R™;
(iii) For any (z,t) € Qr,
ale,t) > G(t)ya(e, 0) + f; G(t — $)ulz, ) (f (@, 5)—algrulz, 5)) ) ds,
u(,1) < G(0u(,0) + J; Gt = s)ulr. ) (f(ulr, $)) ~algei(z, ) )ds.
We summarize the hypotheses for this work here.

(H1) g is a nonnegative continuous function on R™ x R™ satisfying:

(i) There exists a positive constant C; > 0 such that

SUP/ g(z,y)dy < Cy;

z€R™

(ii) V,g is a bounded continuous function on R" x R" with V,g(z,-) €

LY(R™) for all z € R™.
(H2) wug is a nonnegative continuous function on R"™ with uy € L>®(R™).

(H3) f is continuously differentiable on R. Further properties of f will be provided

when needed.

Lemma 2.13. Suppose that (H3) holds and let v = v(x,t) and w = w(x,t) be
bounded functions on Qr. Then, there exists a function 6 which lies between v and

w at each point such that
vf(v) = wf(w) = (F6) + 05 (0) (v - w).
Proof. Since v and w are bounded, there exists M > 0 such that
lv| <M and |w| < M.

Setting W(e) = ef(e) for e € [-M, M].
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Clearly, ¥ is continuous and differentiable on [—M, M| and we have

!

V(e) = f(e) +<f (o).

Applying the Mean Value Theorem, there exists § = (1 — A)w + v for 0 < A < 1
such that

This implies the desired result. [

Proposition 2.14. Assume that (H1)-(H3) hold. Let u,V,u € Cy(R™ x (0, 00))
and be defined by (21) for (z,t) € R" x [0,00). Then, u € C*'(R" x (0,00)) and

satisfies
8tu—Au:u<f(u)—ag*u). (2.4)

Proof. Setting F'(z,t) = u(f (u) — ag u) Since u and V,u are bounded, there
exist M, M’ > 0 such that

lul <M and |V,u| < M.
By (H1), there exist C,, C, > 0 such that
sup / g(z,y)dy < C, and Veg(w,y)|ldy < C; forall zeR"
n R’n

reR”™

By (H3), we obtain that f(¢) and f'(¢) are bounded for ¢ € [-M, M] , i.e. there
exist L, L’ > 0 such that

If(e)] <L and |f'(e)| < L.
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We then estimate F' by

| F || oo (r s (0,00)) < | f ()] oo (R x (0,00)) + [|te(g * ) || oo (mnx (0,00))

< M| f ()] oo ®r x (0,00)) + &M ||g % || oo (®mrx (0,00))

/n 9(,y)dy

=ML+ aC,M? < 00

< ML+ aM?

L= (R" x(0,00))

which implies that F' is a bounded continuous function on R" x (0, o).

Next, we have

VoF =u v, (f (W)= agxu) +(vou) (f () - ag«u)
= u( Va f (1) = (Tagu) ) + (vaw) (f (w) —agxu)
= u( /() (Vow) — a(Vagu) ) + (7ou) (f ()~ ag xu).

By the assumption, we get V,F' is a continuous function on R" x (0, 00).

We then estimate V,F' by

| Va F'[| Loo R x(0,00))
< Ju (f (u)Vou — a (Vag * u)) || Lo @ (0,00) T (Vatt) (f (1) — g * ) || Lo (0,00))
< ||| oo (rr x(0,00)) (Hf’(u) (Vo) || oo mrx (0,00)) + || (Vg * u) "LW(R"X(O,OO)))

1| 7 oo x @o0n (1 (@)l oe (0.0 + e (9% ) 22w oo
/ Vag (-, y)dy )
n Lo (R % (0,00))

/ g(-, y)dy )
n Lo (R" % (0,00))

<M (M'L'+aMC}) + M'(L + aCyM)<oo.

<M (M’L’ taM

+ M’ <L+aM

Then, we get that s7,F is a bounded continuous function on R" x (0,00). By

Theorem @, we conclude that u € C**(R"™ x (0,00)) and satisfies (@) O
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Lemma 2.15. Assume that u € C*'(Qr) N Cy(Xr) satisfies

Ou—Au+c(z,t)u <0 in Qr

u(z,0) <0 on R"

and c is bounded function in Qr. Then, u < 0 on Y.

Proof. Since ¢ is bounded, there exists § > 0 such that ||c||L=(g,) < 9.

Let w = e %u. Then, w satisfies

ow—Aw+ (§+c)w <0 in Qr
(2.5)

w(xz,0) <0 on R™

To show that w < 0 in 7, we assume that w > 0 somewhere in Q7. We then let

v = be an auxiliary function where v > 0 is a constant to be specified.

__w_
14|z ]2+t

From (@) and the fact that A(fg) = (Af)g+2(Vf)(Vg) + fAg, we get

;

(1 + |z* + ’yt) (vt — Av+ (6 + ¢(, t))v)

43 wve, + (v = 20)0<0 in Qr (2.6)

v(z,0) <0 on R™
\

Since v(x,0) < 0 on R" and w is bounded on Qr,

lim v(xz,t) =0 foreach 0<t<T.

|z|—o00

Thus, v attains its positive maximum vy,.y at (z*,¢t*) in Q7. Then, at the point

(x*,t*), we have v; > 0, Vv = 0 and Av < 0. Hence, by (@) we have
(6 +c) (1 + 2+ 7t*)vmax + (7 — 2n) Ve < 0. (2.7)

Since § + ¢ > 0 and vy, > 0, it follows by choosing ~ large enough that (@) is a

contradiction. Hence, w < 0 in Q. Since w = e %, u < 0 in Ly l



CHAPTER I11
MAIN RESULT 1

In this chapter, we prove the comparison principle for coupled upper and lower

mild solutions of (@) and derive the local existence and uniqueness of solutions

for ()

3.1 Comparison Principle

In this section, we establish a comparison principle for mild solutions of ()

under the Definition .

Theorem 3.1. Suppose that (H1)-(H3) hold. Let w and u be a pair of nonnegative

coupled upper and lower mild solutions of (@), respectively, and V,u,V,u €
Co(Qr). Then, ©w > w in Lr.

Proof. The proof of this theorem is essentially that of Deng and Wu [p]. We
present it here for completeness. First, let us consider w = w — u. Then, for any

(x,t) € Qr, w satisfies

w(z,t) < G(t)u(z,0) + /Ot G(t = s)u(z, s) (f(u(x, s))—a(gxt(z, 3)))ds
—G(®)ur,0) = / Gt — syt o (f(@le, ) ~algru(x, 5))) ds
= 6(t) (u(z,0) — u(x,0))
+ /Ot G(t —s) (u(w, s) f(u(x, s))—u(z, s) f (@l s)))ds
_a/otg(t =) (@(x’ s)(g xu(x, s))=T(x, s)(g * u(z, s)))ds
,0)

=G(Hw(z
+ /Ot G(t — s) (u(x, s)f(u(z, s))—u(z,s)f(u(z, 3))>d3
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~a [ 616 = 5)(ule.)(g . ). 5) w ) ) s
We define w to be the solution of the following integral equation:
@ =60yt [ 60— 9)(uf)-a(@) — aulg ) +anlg ww))ds ()
with @y = w(z,0). It follows that
w<w in Xp. (3.2)
We then claim that w is a classical solution of the following problem:

Oy — A = uf(u) —uf () — au(g W) + ali(g *u) in Qr (3.3)

w(z,0) = w(z,0) on R™

Letting F(x,t) = uf(u)—uf(u) — au(g *w) + au(g * w). Then,
VoF = u (Vo f(w) + (Vo) f(w)—u (Vo f (@) — (Vau) f(u)
— o (Vegxu) — a (Vi) (9 1) + ot (Vag *u) + a (V) (g u)

= uf'(w) (Vou) + (Vou) f(u) —uf' (@) (V1) — (V1) f (1)
—au(Veg*1u) —a(Veu) (g+u) + au(Veg *xu) + a(V,a) (g% w).

By the assumption, we get V,F' is a continuous function on (7. Since u and u
are nonnegative and u, u, V,u and V,u are bounded, there exist M, M’ > 0 such

that
0<uu<M and |V,u|,|V,u <M on Qr. (3.4)

By (H3), it follows that f(g) and f’(g) are bounded for ¢ € [0, M], i.e., there exist
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L, L' > 0 such that
[f(E) <L and [f(e) <L (3.5)
By (H1), there exist C,, C, > 0 such that
T€ER™

sup / g(z,y)dy < Cy, and IVeg(z,y)ldy < C, forall xecR" (3.6)
n Rn

We then estimate F' and V,F' by

1 F || oo (@r) < llwf (Wl zoo(@r) + 1f (@) || Lo (@) + lat(g * @) || oo (@r) + [lat(g * )| Lo (@r)

/ g(-,y)dy )
R" L(Qr)

<2M(L + aCyM) < o0

<2M (L—kon’

and

IVaF oo @r) < lluwf () (Vo) (| zoo@r) + || (Verr) f(w)|| 2o (o)
+@f (@) (V) |z @r) + 11 (Va@) f(@)|| 2 @r)

(
+Haw (Veg *0) || @r) + la (Vaw) (9% W) [| e @r)

+aw (Veg * ) || @r) + la (Vo) (9% w) || o (qr)
<2AMM'L' + M'L)
+ M'M

/ 9(,y)dy
L>(Qr) "
<2MM'L' + M'L + aM>*C), + aM'CyM) < .

+ a<M2 Vag(-,y)dy

Rn

)

L>=(QT)

This implies that F and V,F are bounded functions on (7. By Theorem @, we
conclude that w € C%1(Qr) with T < oo and satisfies (@) Moreover, from (@)
we get that

—2M <w<2M on Xg.
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From (@)—(@), we obtain

lef'(e) + fe) — agxu| < |f(e) +0f ()] + |lag * ul

/n 9(z, y)dy‘

<ML +L+aC,M =:§

<L+ML +aM

or equivalently,
dt(ef'(e)+ fle) —agxu) >0 for 0<e<M.
From (@) and (@), it follows that for any (x,t) € Qr

O — Aw = uf(u)—uf(u) — au(g +u) + au(g  u)

(wf(w) — /(@) = aulg«7) +au(g*w) — aug+u) +a@i (g x 1)

= (65'0)+ £(0)) (w—1) +au(g (=) —alu—7) (g*1)
= (07'0)+ 1(6) — agxu)w + au g+ w)

< (0£'0) + £(6) — ag*u)w + au (g )

= (05'0) + 1) = agu+6)w — dw+ au (g )

< (070)+ 1(0) — agxu+6) @+ d(~w) + au g+ )

< (050)+ 1(6) — agxu+06)d+ 20M + au g+ ).

where in the third equality we have used Lemma and 60 is between u and .
We also note that

w(z,0) = w(z,0) = u(r,0) —u(x,0) <0 on R"™

To study the problem (@), we set c(z,t) = 0f () + f(0) — ag*u.
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Observe that 6 &+ ¢(x,t) > 0. Thus, W satisfies

00 — Aw < (c(z,t) + 0)w +20M + au(g*w) in Qr

w(x,0) <0 on R™
Now, we let u = e~2%0. Then, by (@), we have
Xt (20u + uy — Au) < (c(x,t) + 0)e®u + au (g% eQétu) +2Mé in Qr
and
u(z,0) = w(z,0) <0 on R™
Thus, u satisfies

u — Au+ (6 — c)u < au(g*u) +2Mse ™ in Qr (38)
u(z,0) <0 on R™

Now, we claim that v < 0 in ()7, where T, = min {T, m} for some
R > 0. Weletv:m
be specified. By (@) and the fact that A(fg) = (Af)g+2(Vf)(Vg) + fAg, we
get

be an auxiliary function where v > 0 is a constant to

(

(1 + |z)* + yt) <vt —Av+ (0 — ¢z, t))v) — 437" v, + (Y — 2n)v

<au(gxu)+2Mée=2* in Qr (3.9)

v(z,0) <0 on R™
\

Assume that v > 0 somewhere in ()7;,. Since u is bounded, we have

Usyp = sup u(z,t) > 0.
(:Evt)eQTO
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By the definition of ug,, and (@), there exists (z*,t*) in Qg, such that

u(a®, 1) > L (3.10)
Since v(x,0) < 0 on R™ and u is bounded on Qr,,

lim v(z,t) =0 foreach 0<t<T,.

|z| =00

Thus, v attains its positive maximum v, at (Z,t) in Qr,. Thus, by () we
have that

u(z,t) u(a*, t*) Usup
Umax = Max > > )
(@0€Qr, 1+ |22+t = T4 [2*2 +yt* = 2(1 + [2*]2 + y1%)

Since V. > 0, we obtain

Uswp 2(1+\:1:*|2+7t*>. (3.11)

max

Moreover, at the point (Z,t) we have v; > 0, Vv = 0 and Av < 0. Hence, by (@)

we have at (T, t)

(5 - C) (1 + ‘E|2 + 'Y%> Umax + (7 - 2n>vmax S a@(f7 z) / g(jv y>u<y7%)dy + 2M56725t

n

< au(T, t)usup / 9(T, y)dy + 20M.

n

Since 0 — ¢ > 0 and vy, > 0, it follows that

(7 = 2n)Vmax < (T, ) tsyp / 9(T,y)dy + 20M.

n

Hence, by (H1), (@) and () we get that

20M

max

usu

v —2n < au(Z,t)

£ / 9(T, y)dy +

Umax

45M(1 + |z*)? + mf*)

< 2au(z, 1) (1 + |2+ vt*> / 9(T,y)dy +

n Usup
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45M(1 + o + VTO)

< 2aM(1 + 2" + 'yT0> / 9(Z,y)dy +

n Usup

4(5M<1 + a4+ 7T0)

< 2aM<1 + |w*|2+7T0> sup/ 9(T,y)dy +

TER™ Usup

46M<1 e+ 7T0>

< 2aM(1 + |zt +7T0)Og + -
sup

45M> + 2MT07<ong + 20 )

sup sup

- (1 + |x*|2> <2aMCg +

This implies that

(12T (aC, + 20 )7 < (1412 F) (2000, + oM

sup sup

)+ (312)

Since x* is independent of v, it follows by taking v large enough that () is
impossible. Thus, we get a contradiction. Therefore, v < 0 in )7, where Ty =
min {T, m} with R = Usup - Since u = 6_2515,[2}7 w<w<0in ETO which
means that v <win Xg.

If T'> T, we can continue the process using ¢ = Tj as the initial condition and

obtain u > w on [Ty, 275] and so forth. O
As a direct consequence of Theorem @ , we have

Corollary 3.2. Suppose that (H1)-(H3) hold. Letu and u be a pair of nonnegative

coupled upper and lower classical solutions of (), respectively, and V u,V u €
Co(Qr). Then, uw > w in L.

Theorem 3.3. Suppose that (H1)-(H3) hold. Letw and u be a pair of nonnegative

coupled upper and lower classical solutions of (@), respectively. Then, w > u in

Y.

Proof. The proof uses the same argument as in Theorem @ [
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3.2 Local Existence and Uniqueness

For this section, we prove the local existence and uniqueness of solution for the

problem () We first introduce the uniqueness result.

Theorem 3.4. Suppose that (H1)-(H3) hold. Then, problem (@) has at most

one bounded solution.

Proof. Suppose that u; and uy are two bounded solutions of the problem (E) in
Q7. Then, for each i € {1, 2}, the solution u; satisfies

ui(z,t) = G(t)uo(x) + /Ot G(t — s)u(z, s) (f(wi(z, s))—a(grui(z, 5))) ds.
We let v = uy — uy. Then, for any (z,t) € Qr, v satisfies
ol t) = /Ot G(t — s)ui(z, 5) <f(u1(x, s))—a(gwua (z, 5>))d5
-/ G(t — s)us(i, ) (e, ) —algrun(a, 5))) ds
- / Gt — ) (1,9 f(un (2, 9)) — wa(, ) (ual, 5))) s
=7 't~ 5) (1. 5) (g0 . 8)) — e, ) (g, ) ) s

=1+1I.
First, we consider /. By Lemma (EZ13), we get

1:/0 Gt — s) (f(G(x,s))—i—@f/(@(x,s)))v(x,s)ds (3.13)

where 6 is between u; and uy. Next, we consider 1. Since

uy (grur) — uz(grug) = uy(gruy) — ug(grug) + ug (grus) — us(grus)
= ur(gx(ur — ug)) + (ur — ug)(grus)

= u1(g*v) + v(gxus),
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we obtain

I]::—11]€tg(t——s)(ulﬂtgﬁ(g*v(x,s»-+1(x,5ﬂg*u2ﬁvﬁﬂ)>ds. (3.14)
From (BT3) and (B13), we obtain
o 1) /gt—s )+ 07 (02, 5)) (. $)ds
—a/ G(t - s) (ul(x ) gs0(@. ) + v(z, 5) (grualr, ) )ds
/gt—s s)) + 0f (6(x, ))—ag*uz(x,s)>v(az,s)ds
—oz/o g t—s)(ul(x,s)(g*v(x,s))>ds.

Since u; and uy are bounded, there exists M > 0 such that
|ugl, Juz] < M and thus, |0] < M. (3.15)

By (H1) and (H3), we get that f(0) and f'(#) are bounded for 6 € [—~M, M], i.e.,
there exist Ly, Ly > 0 such that

1f(0)] < L and |f(0)| < L,

and hence,

F(O)+0f (0) — g * uy

<[ £O) + 65 (6)] + g us|
<170+ [ atenas

<L+ML +aMC, =: R, (3.16)

efwﬂ+aM

By Lemma P10, (B13) and (B1H), we estimate that

||U ||L°° (R™)

(t —s) )+«9f 0(-,s)) —ozg*u2(~,s)> v(-, 8)ds

Lo (Rn)



22

+|a / G(t — 5) (11 (- 5) (gv(-, ))) ds

Lo (Rn)

t
<,
0

t
<
0

Gt =) (O ) + 05 (6. 5)) = agrua(-.9)) v(-s)]| - ds

Lo (R")
ta / 19t — 5) (-, 5) (g0, ) o 5

ds
Loo(R™)

(£6C.5) +0F (6. ) = agrua(-s) ) vl-,5)

t
ta / i1, $)(g%0C, )|y

t t
<R [ ool tald [ g, ds
Ot Ot
<R / 10, )| e ey dsta M / / o(-.y)dy 10, )| s
0 0 R™ Loe (R7)

t
/g(-,y)dy )/ |v(-; 8)|| oo mmyds
n L (rn) ) Jo

t
< (R+aMOg)/ [o(:; $)l| oo ey dis
0

= <R+04]\/[

for all t € (0,7"). Thus, by applying Theorem @ (Gronwall’s inequality) we get
that

(-, )| e qny = O for £ € (0,T).

Since v is continuous, v = 0. That is u; = uy in Xr. OJ

Theorem 3.5. Suppose that (H1)-(H3) hold and let w and @ be a pair of nonnegative
lower and upper classical solutions of (), respectively. Then, the problem ()

has a unique solution u in Qr, and u satisfies
u<u<u in Xr.

Proof. By Definition , we have w and u are bounded and thus, there exists
M > 0 such that

0<u<M and 0<T<M in Sr. (3.17)
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By (H3), f and f” are bounded on [0, M], i.e., there exist L, L’ > 0 such that
If(e)| <L and |f(e)| <L for 0<e<M. (3.18)
Then,
fEe)+ef ()| <L+ML <2(L+ ML) =:8,

or equivalently,
ef'(e)+fle)+B>0 for 0<e<M.

We divide the proof into three steps.
Step 1. Denote u’ = v and @° = 7.
We then construct sequences {gk}zozo and {ﬂk}zozo by iteratively solving the fol-

lowing linear problem. For k € N | let u* and @" satisfy

O’ — Au* =" f (WP —adt (9T = B - P in Qr

(3.19)

and

ou* — Aut =u"f (W) — ot (gx ) - B@ -7 in Qr

(3.20)
Then, ©* and @* are well-defined, since the existence and uniqueness of () and
() are guaranteed by [9]. We also note that u* and u* are classical solutions.

Moreover, we consider the linear problem () and let
Ap(t) := A — Fy(x,t)I

be a linear operator where Fi(z,t) = a (g u* ')+ 3 and I represents the identity
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operator, i.e., Jv = v. Then, we can write () as

O — Ap(t)u = o' f (1) + Bt in Qr

uf (2,0) =up(r) on R™

Therefore, the solution of problem () satisfies

t

uf(z,t) = Si(t,0)ug +/ Sk(t, s) <gk_1(x, s)(f (Q_Lk_l(it, s)) + ) )ds

0

where the solution operator Sy, is given by
t t
Sk (tg, tl) _ eft12 Ag(r)dr _ e(tz—tl)A—ftl2 Fy(z,7)dr and F, (.T,', t) = (g *ﬂk’—l) " B

We can check that the operator Sy has the following properties:
(1) Sk(ta t) = [;

(11> Sk(t, T)Sk(?”, 0) — e(tfr)Aff: Fk(x,f)dTerAffOT Fy(z,)dr _ etAffot Fy(z,r)dr _ Sk(t, 0)

I

(i) % = =NA=JIendr (A — Fy(a,)]) = Sy(t, r) Au(t).

Furthermore, we use these properties of Sy to get that

uk ¢ s
d& _ aSka(?O)uO b (f (ukfl) —i—ﬁ) +/ 85%(? )(ukl (f (gkfl) +ﬁ) >ds

0

— AO(Sult 0+ [ Suls) (6 () +8) )ds) + o (F () + B)

= Ap(O)u" + " (f (W) + 8)

and  u*(x,0) = S,(0,0)ug = ug. By () and (), we get
0< Fi(z,t)=a(g*u’) + 8 <aC,M+j

and then for v € L>(Qr) and t; < o

to—t) A= [} Fi(am)dr ) < Mle® ™20 e gr) < Nlollzeon)

151 (t2, t1)0] oo 0p) = [l V| Lo Qr



because el2="1)%y = G(ty — t,)v. Therefore, for k = 1

t
|Ql| < |etA—f0tF1(x,T)dTu0| +/
0

<M+ M(L+ p)t

which yields

w2y < M + (L + B)T < oo.

= IA S Falanir (0 ( (u0) + B) ) |ds
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This shows that u' is bounded on Y. Similarly, for the linear problem (), we

obtain @' is bounded on X7.

Step 2. We show that {gk}zozo and {ﬂk};ozo satisfy the following monotone prop-

erty:
W < uf <P <T < @F <@

for k € N.
Let us begin to show that () holds if k =1, i.e.,

<ol <w <z’ oin Ip.

Step 2.1 To show that

0 S Ql in ET,

IS

let v = u® — u'. Then, v satisfies

o — Av = (0’ — Au’) — (' — Aut)

= (0 — Au®) — (u’f(°) — au' (g*uo)—ﬂ(_

— Bu’ —u')

:(8&— Au—uf(u )—l—au g*u

< —au(g*u) +au' (9+a°) — B’ —u')

u"))

(3.21)

(3.22)



and
v(z,0) = u°(x,0) — u'(x,0) = u(z,0) — up(z) <0
Thus, by Lemma , we obtain v < 0 in Y7 which means that
W <u' in Tp

Step 2.2 We show that

1

Let w = u' — @°. Then, w satisfies

ow — Aw = (o' — Au') — (0’ — Au°)

= (@7(@) - ot (g+u) - B@' — ) — (9" -

on R".

<atu—Au—uf( )) —au' (g u’) — B’ — )

<at(gxu)—au' (gxu’) — B(@' —u°)

= au’ (g u’) —au' (g u’) - f(@" —a’)

= —a(u — ) (g a) B — )
—<ag*u0+ﬂ>(ﬂl—ﬂo)

= —<ocg*@0+ﬁ)w in  Qr

AT

)

26
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and

w(z,0) = ' (x,0) — a’(x,0) = uo(x) —u(z,0) <0 on R"
Thus, by Lemma , we obtain w < 0 in X7 and hence,
u <u’ in Y.
Step 2.3 Now, we claim that

ut <@ in Y.

Let u! = u' —w'. Then, u! satisfies

ot — Au'
= (0! — Au') — (0" — Au')
(uof(uo) —au'(g*a’) - Blu' — @“)) - (ﬂof(ﬂo) — ot (g *u’) — B(E' — a0)>
= (uof(uo) - ﬂof(ﬂ0)> —Bu' —u’) + (@ —u") — au'(gx7°) +au' (g% u°)
= (0F/0) + £0)) (@ —7) — Blu* ") + B’ — )
—aut(g*@°) + au' (g * 1) — au' (g xu°) + au' (g u°)
= (07'@) + £0) + 8) (W’ ) - Blu' — ")
—a(u' —a") (g*a°) + au'g (u’ — )
< (8 0)+ £(0) + 8) W — ) — u’ — au (g« ")
—(ag*ﬂo + ﬁ)ul in Qr

and
UI(I70) :Ql(x70)_ﬂl(x70):u0_u0§0 on Rna

where 6 is between 1’ and 7°. By Lemma , we get that ! < 0 in X7 and
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hence,
u <u in Yp.

From Steps 2.1-2.3, we conclude that () holds.

Step 2.4 Now, we show that u! and @' are coupled lower and upper classical

solutions of (), respectively. From (), we obtain that

O’ — Au' =’ f(u) — au'(g+u”) — B(u' — u°)

Cf(u’) — au'(gx ") — Bu' —u)

Cf) —ut fuh) +utf(uh) - aul(gx ) = Blut —u)
01 (0) + £(0) + B)(u® —u') +u' f(u") — au' (g ")

u' f(u') —au'(gxu') in Qr

IN
£

I
[S
S

—

IN

and

ou' — Au' =u’f(u°) — au' (g % u°) — B(u' —u?)

f@) = au'(gxu') — (@' —a’)

f@) -3 f@) +a' f(@) - aa'(gxu') - BE@ - a°)
= (0 0) + f(O) + B)(@ — ") +u' f(u') — au' (g u')

>u'f(u') —ou'(gxu') in Qr,

S|

=L

>

I
S

where 6 is between u® and u!, and 6 is between @° and @'.
Next, we assume that for some k > 1, v* and @* are coupled lower and upper
classical solutions of (), respectively. Continuing the above process, we can

show that
uf <uFTP<EFT <@t oin Bp

and we have that ©**! and w**! are also coupled lower and upper classical solutions
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of (), respectively. By induction, we conclude that
C<F <M <TH <wF<a® in Yy
for k € {0,1,2,...} . This shows that
W <M and W< M forall k>0

Step 3. We show the existence and uniqueness of solution ()
Since the sequences {gk}]io and {ﬂk}zozo are monotone and bounded, there exist

two functions U and U such that
lim v* =U and lim @* =U

k—oo k—oo

pointwise on Q7. Since u* < ¥ for all k > 1, we take k — oo to obtain

and hence,

u’ <

1<
IN
-
IN
el
=)
O
S

We now show that U = U. Let W = U — U. Since U < U, W > 0. By the
Duhamel’s principle, we get that the solutions of problems (BT19) and (B=Z0) are

given by the integral representations
t
u* = g(t)u0+/ G(t—s) (uk‘lf (1) —au® (g x ") = B (uf — ) )ds
0
and

" = G(t)up+ /Otg(t—s) (a’“—lf (@) — au* (gxuf) - B (@ —u ) )ds.
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Since for each k£ > 1

cp(x—y,t—s)( =y (gk—l) - (g*ﬂk—l) _B(gk; _gk—1)>‘

< (ML +aM?Cy+2B8M)®(x — y,t — s) =: g(x — y,t — 5)
and

Bz —y,t —s) (ﬂk—lf (ﬂk—l) — ot (g*gk—l) .y (Uk _ ﬂk—l) )‘

< (ML +aM?Cy+ 28M)®(x — y,t — s) =: g(x — y,t — ),
we obtain
t
// gl —y,t — s)dyds = (ML + aM?*C, + 28M)t < co.

Applying Theorem @ (Dominated Convergent Theorem), we get that

t

U =G(thuo + lim i G(t —s) (@'Hf (W) —au® (gxu*") — B (uf — ) )ds
ot [ 6t 5)( Qf(Q)—aQ(g*U)—ﬂ(Q—Q))dS
u0+/gt $)U ozg*U)d

and

t

U =G(t)u + hm Q(t - s)( o f (@) — ot (gt - B (@ -t )ds
u0+/ G(t —)(Uf (U) ~al (gx 1) ~ B (T~ T) ) ds

(t)u0+/0 Q(t—s)U f(0) —ozg*Q)ds.

Next, we claim that U and U are continuous on [0.T). For any ¢, € [0,T), we
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have

1U(t) = U( )| e
<Hg Uo—g /UOH

5) = agxT(-s))ds

- [ a9t (f (U(5)) = ag«TU(-s))ds

0

Lo (R")

= [l gt ]| .,

>(f (U(5)) — 09 T(-,5) ) ds

Taking t — t/, we obtain

|U(-,t) = U, )] Lo mny — 0.

This implies that U is continuous on [0,7). Similarly, we can show that U is
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continuous on [0,7"). Then, W satisfies

W:/Otg(t—@ [Uf(U) —Uf(U) —aU(gxU) +al (g U)] ds

= [g=9[ (o5 01+ 10) @ -1)
—aU(g*Q)—|—on(g*Q)—aQ(g*Q)+on(g*U)}ds

= [[6=9) (o8 )+ F0) W-aW (g 1) +aU (g s W] ds .

where p is between U and U. We then estimate

W (s Ol o= )

ds

Gt —s)al(-,s) <g*W(',s)>

|-

(o7 () + 1(p)mag x UC.9) )W s ds

+/
0

t t
< (84 aMCy) [ IW (e s)limquordstadd [ lgxW(.5) lmieods
0 0

ds
Loo(R™)

al(-,s) (g% W(.s))

t t
g(5+aMcg)/ ||W(-,s)||Loo(Rn)ds+aMC’g/ W (-, 8)|| ooy ds
0 0

t
= (2aMC, +B)/O W (-, )l oo mmyds.
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By Theorem @ (Gronwall’s inequality), we obtian
W (-, t)||Loomny =0 for t€0,T).

Since W is continuous, W = 0 which implies that U = U in ¥. Therefore, for

any (l‘,t) € QT

Uz, t) = G(t)uo(z) + /0 tg@—s)g(x, s)(f (U(z, s)) —a / g*U(m,s))dS

n

= G(t)up(x) + /Otg(t—s)g(x, s) (f (U(x,s)) —a/ g*Ulx, s))ds.

n

We then define u = U = U and hence, we can find that u is a solution of ()

and satisfies
u<u<u m .

Moreover, we conclude that u is the unique bounded solution of (), by The-

orem @ ]



CHAPTER IV
MAIN RESULT 11

In this chapter, our aim is to prove the global existence result of problem (@)

We begin this chapter by studying a nonlinear ordinary differential equation.

4.1 Nonlinear Ordinary Differential Equation

Lemma 4.1. Assume that ¢ := p(t) is a differentiable function which is a solution

of the following problem:

de
E—gpf(gp) for 0<t<T, (1)

¢(0) = ¢o,
where g is a constant. Then, ¢ satisfies
t
o) = o+ [ el (els)ds for 0<t<T (12)
0

Proof. Integrating both sides of (El!) with respect to s, from 0 to ¢, we obtain

| Gas = et = o0 = [ eorriel)as

and hence, @ satisfies (@) O

Theorem 4.2 (Local Existence and Uniqueness). Assume that the following as-

sumptions hold:

(i) There exists M > 0 such that |f(p)| < M for all ¢ € C(]0,T]),
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(ii) f is Lipschitz-continuous on R, i.e., there exists a constant L > 0 such that

[f(u) = f(v)] < Lju —v]

for all u,v € R.

Let R > 0 be a constant. If

R 1
T < min , ,
{M(R + llpoll) " 2L(R + [lepoll + M /L) }
then the problem (@) has a unique solution on the interval [0,T].

Proof. Let X = C([0,T]) be the Banach space of all continuous functions ¢ on
[0, 7] with the norm

lell = sup [o(t)] < oo.
0<t<T
For R > 0, let
Br(po) ={p € X :|l¢— ol < R}.

Then, Bgr(po) is a complete metric space, since it is a closed subset of the Banach

space (X, || -||). We define a map A : Br(py) — X as follows

Ap(t) = g0 + / o) () .

First, we show that A is well-defined on Bgr(py), that is Ap € X for ¢ €
Br(po). For ¢ € Br(pg) C X, we have

Ap(0)] < loal + | () F(o(5))lds

t
< Il +M/ o(s)lds < ol + Mgt
0
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and thus,
MA@ < [[oll + Mjop]| T < oo.

Moreover, for any t,t" € [0, T], we have

| Ag(t) — Ap(t)]| = / o(5) (o)) ds — / o(5) ((5))ds|| —» 0

as t' — t. Then, A is well-defined on Bg(¢y).

Next, we show that A is a self-map on Br(py). For ¢ € Br(p), we have

Ap(t) — po| < / o) F(9(s)]ds
<M / o(s)ds
<M / lollds

t
- M/ o — o+ ollds
0

< M(lle = @oll + llol )t
and we have by the assumption on 7" that
[ Ap(t) = @oll < M(R + [0l )T < R.

Finally, we show that A is a contraction map. For any ¢, 2 € Bgr(¢o), we

have

| A1 — Aps|
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< / (lor(s)F(1()) — @1(3) F(2a(s))] + lon () F(als)) — () Flsoals))]) ds
/ e () F(@1()) — Fleals)] + lorls) — wa(s)lIf (oa(s))]) ds
/ 01(5) — @2(8)] (Llia(5)] + M) ds

< llo1 — o] / (Ll + M) ds

M
= ler = eallL (er =+l + 25 ) ¢
M
<l =l (o1 = el + lloll + 3 )

M
<lles = palle (R + lnll + 7 )

and hence,

M 1
4p1 = Agall < llos = a2 (Bt ol + 57 ) T < 3l =l

L

By Theorem @ (Contraction Mapping Theorem), A has a unique fixed point, i.e.,
there exists exactly one p* € Br(pg) such that

Ap™ =7,
that is
t
SO =0t [ 5O s
0
This means that ¢*(¢) is the unique solution of the problem (@) O

Lemma 4.3. Assume that ¢ € C'([0,T)) satisfies

o) = g0 + / () f(p(s))ds.
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Then, ¢ is a solution of the problem (@)

Proof. Substituting t = 0, we get ¢(t) = ¢g. Since ¢(t) is continuous, the integrand
v(s)f(¢(s)) is also a continuous function. By the fundamental theorem of calculus,

we obtain

de
ar = pf(p).

This implies the desired result. [

Next, we study the global solutions of the problem (@) and an upper estimate

of the global solutions are given.

Lemma 4.4. Assume that p € C*([0,T)) is a positive solution of the problem (@)

and the integral

00 d"] e
[oo T =% (4.3)

Then, ¢ can be extended to a global solution of (@) and furthermore,

where

H(go):/%% for vo< ¢

and H™' is the inverse function of H.

Proof. Let ¢ be a positive solution of the problem (@) for t € [0,7).
First, we show that ¢ is a global solution, i.e., T" = co. Assume by contradiction

that o(t) blows up at finite time, i.e.

T <oo with lim [p(t)| = .
t—T—
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Since (t) > 0, lim;_,7- ¢(t) = oo. We can rewrite (@) as

L de

EONCOE

Integrating both sides from 0 to ¢, we obtain

t 1 de .
/Omd—st—t for 0<t<T.

Letting n = ¢(s), we get
o) g
/ 4 for 0<t<T. (4.4)
©

Passing to the limit as t — T, we get

_ [T dn
_/% nf(n) feeo

which is a contraction. Thus, ¢ is defined on [0,00). In addition, from (@) we

have

B s@(t)ﬂ_
H(@‘/m ) ="

1

Observe that H is non-decreasing and thus, H ™" exists. Then,

The proof is completed. [

Lemma 4.5. Assume that p € C*([0,T)) is a positive solution of the problem (@)
and there ezists a function F such that f(p) < F(p) with the integral

[oo D) = 00. (4.5)
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Then, ¢ can be extended to a global solution of (@) and furthermore,

o(t) < TH(1),

where

_[7_dn
‘I’(SD)—/@OUF—(U) Jor w9 < ¢

and U~ is the inverse function of W.
Proof. The proof is entirely the same as that of Lemma B4, O

For the rest of this work, we consider the following typical types of the nonlinear

function f on [0,00). Let K > 0 be a constant.
(H4) f is a positive decreasing function such that
f(0) < K and lim, o f(s) = 0.
(H5) (Exponential function)
f(s) = Ke™* for some € > 0.
(H6) (Power function)
K

f(s) = o7 for some 5> 0.

Proposition 4.6. Assume that (H4) holds and let ¢ € C'([0,T)) be a positive
solution of the problem (@) Then, the solution ¢ of (@) satisfies

o(t) < @oe™  forall t>0

Proof. By (H4), there exists K > 0 such that f(¢) < K for all ¢ > 0 and we
obtain that

o(t) < @+ K/o o(s)ds.
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By Theorem @ (Gronwall’” s inequlity), we get
o(t) < poe™  forall te[0,T).

We can check that the condition (E3) holds. By Lemma 4.5, we obtain that ¢

must be a global solution and
o(t) < poe™  forall t>0.

The proof is completed. [

Proposition 4.7. Assume that (H5) holds and let ¢ € C*([0,T)) be a positive
solution of the problem (@) For each k € N, there exists a positive constant CY

that depends on a positive integer k such that the solution o satisfies
o(t) < Cp(1+ )% forall t>0
and

lim (t) = oo.

t—o00

Proof. By (H5), we have

d
d_stp =pKe * for some € > 0.

By Taylor series, we know that

(€0)* | (ep)’
“ — ANV o AT
e 1 +ep+ o T T

Since ¢ > 0, we have

k
1+%§6“" for all k> 1.



Then,

dp k!
oY < )
dt <Ky (k:! + (eap)’f)

We can rewrite (@) as

| k
md_@ <Kk
® dt —

Integrating both sides from 0 to ¢, we obtain

t | k
/ Rt (eo)de o g
0 ¥ ds

Letting n = ¢(s), we get

©(t) k o) L k
/ (en) dn S/ L(En)dn < Kklt,
) U] ) Ui

0

0

where g = ¢(0). Therefore, we have that

0 k k 00 k k|~
€n € _ € n
/ (K)k;vd”: Kk:l/ " 1d":(m;v) k|
¢o AR " Jeo :
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which implies that the condition (E73) holds. By Lemma B8 , we obtain that ¢

must be a global solution. Moreover, from (E21) we have

w(t)
< Kklt

(eo(t)" — (ep)® _ (em)*
K K

%0

and hence,

(ep(t))F < Kkk!t + (epp)*
w0 < (B50) et
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Thus, for allt > 0

Kkk!
where Cj, = {/max{ KB ok}
Now, we claim that lim; . ¢(t) = co. Assume that there exists a constant
M > 0 such that

0<p(t) <M forall t>0.

Setting xk = min, o aq N e, we obtain

de
< 2 = pKe
k< -0 =pKe
and hence,
kt < p(t) <M

Taking t — oo, we get

oo = lim kt < tlim o(t) < M,
—00

t—o0
a contradiction. O]

Proposition 4.8. Assume that (H6) holds and let ¢ € C([0,T)) be a positive
solution of the problem (@) Then, there exists a positive constant C' such that

the solution ¢ satisfies

ot) <CA+tY? forall t>0



44

and

lim (t) = oo.
t—ro0
Proof. By (H6), we have
d K
—@g—gp for some [ > 0.
dt = (1+¢)#
Since
©? < (1+¢)? forsome >0,
we obtain

We can rewrite (@) as

Integrating both sides from 0 to ¢, we obtain

t
d
/ gpﬂ_l—gpds < Kt.
0 ds

Letting n = ¢(s), we get

o(t)
/ n’tdn < Kt,
(%

0

where ¢y = ¢(0). We check that the condition (E3) holds. By Lemma B3, we get
that ¢ must be a global solution. Moreover, we have

o(t)
< Kt

— Y

()’ —@o” _ 7’
B g

©o
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and thus,
(o(t)® < Bt + g
Then,
p(t) < (BKt+¢0)? < C(1+1)/7

. 51\ /P
for t > 0 with C' = (max{ﬁK,apO}> :
By an argument similar as the proof of Proposition @, we can prove that

limy o () = o0. O

4.2 Global Solution

Theorem 4.9. Assume that (H1)-(H4) hold. Then, the problem () has a unique

global solution satisfying
0 < u(w,t) < |Jupllpe@me™  forall (z,t) € R" x [0,00),

where K is a positive constant.

Proof. Let u := o(t) € C*([0,T)) be the positive solution of the following problem:

d
d—f =pf(p) for 0<t<T,
p(0) = [luoll e @)

and u = 0. Tt is clear that u,u € C*'(Qr) N Cy(Xr) and
w(,0) = 0 < ug() < fol=er) = (x,0) on R
Furthermore, for any (z,t) € Qr

&eu—Ay—u(f (w) —ag*ﬂ) <0
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and

o~ A —(f (1) —agxu) = %~ o1(g) > 0.

Then, u = 0 and w = ¢ are coupled lower and upper classical solutions of (@) )

By Theorem @, we get that the problem (@) has a unique solution u such that
0 <wu(z,t) < p(t) for (z,t) € Qr.
By Proposition @, we have that ¢ is a global solution and hence,
0 <wu(zx,t) < Hu0||Loo(Rn)etK for all t > 0.

The proof is completed. [

Theorem 4.10. Assume that (H1)-(H3) and (H5) hold. Then, the problem ()

has a unique global solution satisfying
0 <wu(z,t) < CL(1+ )Y for all (z,t) € R" x [0,00),

where Cy is a positive constant that depends on a positive integer k.
Proof. The proof uses the same argument as in Theorem E=9. [

Theorem 4.11. Assume that (H1)-(H3) and (H6) hold. Then, the problem ()

has a unique global solution satisfying
0 <u(x,t) < CA+H)YP forall (x,t) € R" x [0, 00),

where C' and B are positive constant.
Proof. The proof uses the same argument as in Theorem E—9. 0
Remark 4.12.

(i) In addition we notice that either (H5) or (H6) implies (H4).
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(ii) We see that the assumption (H4) gives exponential growth for global solution
u, but (H5) and (H6) give polynomial growth solution.

(iii) Compare to Deng and Wu [p], we can find a constant K > 0 such that the

global solution u of the problem ([1.2) satisfying

0 <u(z,t) < K for (z,t) € R" x [0, 00)

if there exists r > 0 such that f(r) =0 and f(n) < 0 for n > r.



[10]

[11]
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