DISSOLUTION KINETICS OF FRACTIONATED ASPHALTENES

Ms. Waraporn Pumpaisanchai

.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1997

ISBN 974-636-048-5

117647761

Thesis Title	:	Dissolution Kinetics of Fractionated Asphaltenes
By	:	Ms. Waraporn Pumpaisanchai
Program	:	Petrochemical Technology
Thesis Advisors	:	Prof. H. Scott Fogler
		Dr. Pornpote Piumsomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the college

(Prof. Somchai Osuwan)

Thesis Committee

A Seat Loy of

(Prof. H.Scott Fogler

PPA

(Dr. Pornpote Piumsomboon)

Sumaith Chandej

(Dr. Sumaeth Chavadej)

ABSTRACT

##951019 : PETROCHEMICAL TECHNOLOGY PROGRAM KEYWORD : ASPHALTENE / ASPHALTENE DISSOLUTION / DISSOLUTION KINETICS WARAPORN PUMPAISANCHAI : DISSOLUTION KINETICS OF FRACTIONATED ASPHALTENES : PROF. H. SCOTT FOGLER, AND DR. PORNPOTE PIUMSOMBOON 47 pp. ISBN 974-636-048-5

The pentane-insoluble asphaltene was fractionated into two fractions with different polarities which were formulated using dichlomethane-heptane binary solvent at 25% v/v for fraction 1 and 5% v/v for fraction 2. The kinetic study was conducted in a differential reactor flow system. Two amphiphiles, dodecylbenzenesulfonic acid (DBSA) and nonylphenol (NP), were used with n-heptane as alkane solvent. The results showed that both of the mass transfer processes and surface reactions played an important role for the dissolution of fractionated asphaltenes. The dissolution rate followed the Langmuir-Hinshelwood kinetics with respect to the amphiphile concentration. The apparent activation energies were 5.87, 10.77, 2.41 and 4.11 kcal/mole for the dissolution of asphaltene fraction 1 in 10wt% DBSA (AspF1-10DBSA), asphaltene fraction 1 in 20wt% NP (AspF1-20NP), asphaltene fraction 2 in 10wt% DBSA (AspF2-10DBSA), and asphaltene fraction 2 in 20wt% NP (AspF2-20NP), respectively.

บทคัดย่อ

วราภรณ์ พุ่มไพศาลชัย : การศึกษาจลนศาสตร์การละลายของแอสฟาลทีนซึ่งแยกลำคับ ส่วน (Dissolution Kinetics of Fractionated Asphaltenes) อ.ที่ปรึกษา : ศ. คร. เอช สกอตต์ ฟอกเลอร์ และ คร.พรพจน์ เปี่ยมสมบูรณ์ 47 หน้า ISBN 974-636-048-5

แอสฟาลทีน ส่วนที่ไม่ละลายในเพนเทน ถูกแยกเป็นสองส่วน และปรับความเป็นขั้วให้ ต่างกัน โดยใช้ตัวทำละลายผสมของไคคลอโรมีเทนและเฮปเทน ที่ความเข้มข้นร้อยละ 25 โดย ปริมาตร สำหรับ แอสฟาลทีน ลำดับส่วนที่หนึ่ง และที่ความเข้มข้นร้อยละ 5 โดยปริมาตร สำหรับ แอสฟาลทีน ลำดับส่วนที่สอง

ในการศึกษาจลนศาสตร์ของการละลาย ทำโดยใช้ระบบการไหลผ่านเครื่องปฏิกิริยาแบบ ดิฟเฟอเรนเซียล สารละลายที่ใช้ในการศึกษาประกอบด้วยสารลดแรงตึงผิว สองชนิด คือ กรคโคเด ซิลเบนซีน ซัลโฟนิค และ โนนิลฟีนอล ผสม ในดัวทำละลายเฮปเทน ผลการทดลองแสดงให้เห็น ว่ากระบวนการถ่ายโอนมวลสาร และการเกิดปฏิกิริยาที่ผิวของแอสฟาลทีนมีบทบาทสำคัญต่อการ ละลายของแอสฟาลทีนซึ่งแยกลำดับส่วน อัตราการละลายของแอสฟาลทีน จะขึ้นอยู่กับความเข้ม ข้นของสารลดแรงตึงผิวที่ใช้ในสารละลาย ซึ่งเป็นไปตามกฎจลนศาสตร์ของ แลงเมียร์-ฮินเซลล์วูด แอสฟาลทีนมีก่าพลังงานกระดุ้นของการละลาย เป็น 5.87, 10.77, 2.41 และ 4.11 กิโลแกลอรีต่อ โมล สำหรับกรณีการละลายของ แอลฟาลทีนลำดับส่วนที่หนึ่งในสารละลายซึ่งมีกรคโดเดซิล เบนซีนซัลโฟนิค ร้อยละ 10 โดยน้ำหนัก, แอลฟาลทีนลำดับส่วนที่หนึ่งในสารละลายซึ่งมีโนนิล ฟีนอล ร้อยละ 20 โดยน้ำหนัก, แอลฟาลทีนลำดับส่วนที่สองในสารละลายซึ่งมีกรคโดเดซิลเบนซีน ชัลโฟนิค ร้อยละ 10 โดยน้ำหนัก และ แอลฟาลทีนลำดับส่วนที่สองในสารละลายซึ่งมีโนนิลฟีนอล ร้อยละ 20 โดยน้ำหนัก ตามลำดับ

ACKNOWLEDGMENTS

I would like to express my appreciation to Prof. H. Scott Fogler for providing constant encouragement and valuable guidance throughout my graduate work. With the same sense of gratitude, I would like to thank my coadviser, Dr. Pornpote Piumsomboon. His support and endless patience enabled me to complete this research.

The generous support offered by Dr.Sumaeth Chavadej in serving on my committee is immensely appreciated.

I would like to thank Thai Olefins Co., Ltd.(TOC) for providing me a graduate scholarship, The National Research Council of Thailand (NCRT) for partially funding this research grant.

It would be remiss of me if I did not express my thanks to my classmates; Berm, Pan, Krit, Nat, Nok, Or, Jeed, Ton, Ann(Rachada), Ann(Piyarat), So, Joi, Lek, Rat, Nui, and my close friends Ome, Nueng and Nuch who played invaluable roles in my learning experience. I have to thank the graduate students at the University of Michigan; Onnop (nop), Nopparat (ratt), Lei Li, Dong Shik Kim, David Maurer, Chris N. Fredd., Venkatchalam, Viblav Navalya, Probjot Singh, Barry Wolf and George Leung who provided me their best friendships. Many thanks are also given to Prof. James O. Wilkes and his wife Mary Ann, Prof. Erdogan Gulari and his wife Mayurachat. Their help and friendship made my time at Ann Arbor memorable. I would like to thank the staff of The Petroleum and Petrochemical College. They have provided me invaluable assistance.

.

Finally, my heart felt gratitude is extended to my parents, sisters and brothers, who always give me love and understanding. I could not have succeeded without their support.

TABLE OF CONTENTS

Cł	HAPTER	PAGE
	Title Page	i
	Abstract	iii
 Title Page Abstract Acknowledgments Table of Contents List of Tables List of Figures I INTRODUCTION II HISTORICAL BACKGROUND 2.1 Definition of Asphaltenes 2.2 The Structure of Asphaltenes 2.3 Asphaltene Physical Model III EXPERIMENTAL SECTION 3.1 Sample Preparation 3.1.1 Asphaltenes (original) 3.1.2 Fractionated Asphaltenes 3.2 Experimental Procedure 3.3 Kinetic Analysis IV RESULTS AND DISCUSSION 4.1 Effect of Amphiphile Concentration 	V	
	Table of Contents	vii
	List of Tables	ix
	List of Figures	x
I	INTRODUCTION	1
п	HISTORICAL BACKGROUND	
	2.1 Definition of Asphaltenes	2
	2.2 The Structure of Asphaltenes	4
	2.3 Asphaltene Physical Model	5
ш	EXPERIMENTAL SECTION	
	3.1 Sample Preparation	7
	3.1.1 Asphaltenes (original)	7
	3.1.2 Fractionated Asphaltenes	7
	3.2 Experimental Procedure	8
	3.3 Kinetic Analysis	9
IV	RESULTS AND DISCUSSION	
	4.1 Effect of Amphiphile Concentration	12

CI	HAPTER4.2 Effect of Flow Rate4.3 Effect of Temperature	
	4.2 Effect of Flow Rate	22
	4.3 Effect of Temperature	31
v	CONCLUSIONS	41
	REFERENCES	42
	APPENDICES	44
	CURRICULUM VITAE	47

viii

LIST OF TABLES

TABLE	
3.1 List of the experimental conditions conducted in this	10
study	
4.1 The slope of the relation between logarithm of specific	31
dissolution rate constant and flow rate at each of	
fractionated asphaltenes-amphiphile/heptane solutions	

LIST OF FIGURES

FIGURE

PAGE

2.1	The separation of petroleum into four major fractions	3
2.2	Hypothetical structures for asphaltenes	5
2.3	Peptization of asphaltenes with resins	6
3.1	A schematic illustration of the experiment setup	11
3.2	The enlarged view of the differential reactor	11
4.1	The profile of asphaltene fraction 1 dissolution by	14
	heptane-based fluid containing different concentrations	
	of DBSA amphiphile	
4.2	The profile of asphaltene fraction 2 dissolution by	14
	heptane-based fluid containing different concentrations	
	of DBSA amphiphile	
4.3	The profile of asphaltene fraction 1 dissolution by	15
	heptane-based fluid containing different concentrations	
	of NP amphiphile	
4.4	The profile of asphaltene fraction 2 dissolution by	15
	heptane-based fluid containing different concentrations	
	of NP amphiphile	
4.5	Kinetic analysis of asphaltene fraction 1 dissolution	16
	by heptane-based fluid containing different	
	concentrations of DBSA amphiphile	
4.6	Kinetic analysis of asphaltene fraction 2 dissolution	16
	by heptane-based fluid containing different	
	concentrations of DBSA amphiphile	

4.7	Kinetic analysis of asphaltene fraction 1 dissolution	17
	by heptane-based fluid containing different	
	concentrations of NP amphiphile	
4.8	Kinetic analysis of asphaltene fraction 2 dissolution	17
	by heptane-based fluid containing different	
	concentrations of NP amphiphile	
4.9	The specific dissolution rate constant, k, as a function of	20
	the DBSA concentration in solutions	
4.10	The specific dissolution rate constant, k, as a function of	20
	the NP concentration in solutions	
4.11	The process of the dissolution of asphaltene	21
4.12	The profile of asphaltene fraction 1 dissolution by	24
	heptane-based fluid containing 10wt% DBSA amphiphile	
	at different flow rates	
4.13	The profile of asphaltene fraction 2 dissolution by	24
	heptane-based fluid containing 10wt% DBSA amphiphile	
	at different flow rates	
4.14	The profile of asphaltene fraction 1 dissolution by	25
	heptane-based fluid containing 20wt% NP amphiphile	
	at different flow rates	
4.15	The profile of asphaltene fraction 2 dissolution by	25
	heptane-based fluid containing 20wt% NP amphiphile	
	at different flow rates	
4.16	Kinetic analysis of asphaltene fraction 1 dissolution by	26
	heptane-based fluid containing 10wt% DBSA amphiphile	
	at different flow rates	

4.17	Kinetic analysis of asphaltene fraction 2 dissolution by	26
	heptane-based fluid containing 10wt% DBSA amphiphile	
	at different flow rates	
4.18	Kinetic analysis of asphaltene fraction 1 dissolution by	27
	heptane-based fluid containing 20wt% NP amphiphile	
	at different flow rates	
4.19	Kinetic analysis of asphaltene fraction 2 dissolution by	27
	heptane-based fluid containing 20wt% NP amphiphile	
	at different flow rates	
4.20	The specific dissolution rate constant, k, of asphaltene	29
	fraction 1 as a function of the 10wt% DBSA-heptane	
	solution flow rate	
4.21	The specific dissolution rate constant, k, of asphaltene	29
	fraction 2 as a function of the 10wt% DBSA-heptane	
	solution flow rate	
4.22	The specific dissolution rate constant, k, of asphaltene	30
	fraction 1 as a function of the 20wt% NP-heptane	
	solution flow rate	
4.23	The specific dissolution rate constant, k, of asphaltene	30
	fraction 2 as a function of the 20wt% NP-heptane	
	solution flow rate	
4.24	The profile of asphaltene fraction 1 dissolution by	34
	heptane-based fluid containing 10wt%DBSA amphiphile	
	at different temperatures	

4.25	The profile of asphaltene fraction 2 dissolution by	34
	heptane-based fluid containing 10wt% DBSA amphiphile	
	at different temperatures	
4.26	The profile of asphaltene fraction 1 dissolution by	35
	heptane-based fluid containing 20wt% NP amphiphile	
	at different temperatures	
4.27	The profile of asphaltene fraction 2 dissolution by	35
	heptane-based fluid containing 20wt% NP amphiphile	
	at different temperatures	
4.28	Kinetic analysis of asphaltene fraction 1 dissolution by	36
	heptane based fluid containing 10wt% DBSA amphiphile	
	at different temperatures	
4.29	Kinetic analysis of asphaltene fraction 2 dissolution by	36
	heptane based fluid containing 10wt% DBSA amphiphile	
	at different temperatures	
4.30	Kinetic analysis of asphaltene fraction 1 dissolution by	37
	heptane based fluid containing 20wt% NP amphiphile	
	at different temperatures	
4.31	Kinetic analysis of asphaltene fraction 2 dissolution by	37
	heptane based fluid containing 20wt% NP amphiphile	
	at different temperatures	
4.32	The specific dissolution rate constant, k, of asphaltene	38
	fraction 1 as a function of the 10wt% DBSA-heptane	
	temperature	

4.33	The specific dissolution rate constant, k, of asphaltene	38
	fraction 2 as a function of the 10wt% DBSA-heptane	
	temperature.	
4.34	The specific dissolution rate constant, k, of asphaltene	39
	fraction 1 as a function of the 20wt% NP-heptane	
	temperature.	
4.35	The specific dissolution rate constant, k, of asphaltene	39
	fraction 2 as a function of the 20wt% NP-heptane	
	temperature.	
4.36	The activation energy for dissolution of fractionated	40
	asphaltenes in the heptane-based fluid containing	
	amphiphiles.	