REFERENCES

- Baerns, M. Oxidative Coupling of Methane for the Utilization of Natural Gas.
 in H.I. de Lasa, G. Dogu, A. Ravella (eds.), <u>Chemically Reactor</u>
 <u>Technology for Environmentally Safe Reactors and Products</u> -- <u>NATO ASI Series. Series E: Applied Science</u> 225 (1992): 289.
- Casey, P.S., McAllister, T. and Foger, K. Selective Oxidation of Methane to Methanol at High Pressures. <u>Ind. Eng. Chem. Res</u> 33 (1944): 1120-1125.
- Chang, M.B. and Tseng, T.D. Gas-Phase Removal of H₂S and NH₃ with Dielectric Barrier Discharges <u>J. Env. Eng.</u> 122 (1996): 41-45.
- Chaumette, P., et al. in G. Imarisio, J.M. Bemtgen (eds.), Progress in Synthetic Fuels. <u>Comm. Eur. Comm.</u> (1988): 58.
- Chen, S. Y. and Willcox, D. Transient Kinetic Studies of the Partial Oxidation of Methane on V₂O₅/SiO₂. <u>Ind. Eng. Chem. Res</u> 33 (1994): 832-839.
- Edwards, J.H., and Maitra, A.M. The Chemistry of methane reforming with carbon dioxide and its current and potential application. <u>Fuel</u> <u>Processing & Technology</u> 42 (1995): 269-289
- Eliasson, B., Hirth, M. and Kogelschatz, U. Ozone Synthesis from Oxygen in Dielectric Barrier Discharge. J. Phys. D: Appl. Phys 20 (1987): 1421-1437.
- Gesser, H.D.; Hunter, N.R. and Prakash, C.B. The Direct Conversion of Methane to Methanol by Controlled Oxidation. <u>Chem. Rev</u> 85 (1985): 235-244.
- Gillespie, J., et al. <u>Chemistry revised printing</u>. 2nd ed. U.S.A.:Prentice-Hall International Editions, 1989

•

- Gogolides, E., Mary, D., Rhallabi, A. and Turban, G. RF Plasmas in Methane:
 Prediction of Plasma Properties and Neutral Radical Densities with
 Combined Gas-Phase Physics and Chemistry Model. <u>Jpn. J. Appl.</u>
 Phys 34 (1995): 261-270.
- Huang, J., et al. Partial Oxidation of Methane to Methanol through Microwave
 Plasmas. Reactor Design to Control Free-Radical Reactions. J. Phys.
 <u>Chem</u> 98 (1994): 206-210.
- Khanti Thanyachotpaiboon. <u>Direct conversion of methane to higher</u> <u>hydrocarbons under dielectric-barrier discharge influence.</u> Master's Thesis, Chulalongkorn University, 1996.
- Krylov,O.V. and Mamedov, A.Kh. Heterogeneous catalytic reaction of carbon dioxide. <u>Russian Chemical Reviews</u> 64 (1995): 877-900.
- Li, J., et al. Streamer Discharge Simulation in Flue Gas. <u>IEEE Trans. Plasma</u> <u>Sci</u> 23 (1995): 672-678.
- Lide, D.R. <u>Handbook of chemistry and physics</u>. 72nd ed. U.S.A.:CRC Press,1991
- Lui, C., et al. Oxidative Coupling of Methane with ac and dc Corona Discharges. <u>Industrial & Engineering Chemistry Research</u> 35 (1996): 295-330.
- McCarty, J.G. Kinetic and Thermodynamic Descriptions of Co-oxidative Methane Dimerization. in G.A. Huff, A.D. Eastman (eds.), <u>Preprints of</u> Symposium on Methane Upgrading 36⁽¹⁹⁹¹⁾.
- Morinaga, K., Suzuki, M., The Chemical Reaction in Silent Electric Discharge. I. <u>Bull. Chem. Soc. of Japan</u> 34 (1961): 157-161.
- Morinaga, K., Suzuki, M., The Chemical Reaction in Silent Electric Discharge. II. The Frequency Effect on Ozone Formation. <u>Bull.</u> <u>Chem. Soc. of Japan</u> 35 (1962): 204-207.

- Nasser, E. <u>Fundamentals of Gaseous Ionization and Plasma Electronics</u>. John Wiley & Sons, Inc. USA. 1971.
- Nishiyama, T.,and Aika, K. Mechanism of the Oxidative Coupling of Methane Using CO₂ as and Oxidant over PBO-MgO. <u>Journal of Catalysis</u> 122 (1990): 346-351.
- Nomoto, Y., et al. Improvement of Ozone Yield by a Silent-Surface Hybrid Discharge Ozonizer. <u>IEEE Trans. Industry Appl</u> 31 (1995): 1458-1461.
- Omata, K., Fukuoka, N. and Fujimoto, K. Methane Partial Oxidation to Methanol. 1. Effects of Reaction Conditions and Additives. <u>Ind.</u> <u>Eng.Chem. Res</u> 33 (1944): 784-789.
- Pattama Poonphatanapricha. <u>Methane conversion in an AC electric discharge.</u> Master's Thesis, Chulalongkorn University, 1997.
- Penetrante, B.M., et al. Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processing of NO in N₂. <u>IEEE Trans. Plasma</u> <u>Sci</u> 23 (1995): 679-686.
- Periana, R.A., et al. A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol. <u>Science</u> 259 (1993): 340-346.
- Rosacha, L.A., et al. Treatment of Hazardous Organic Wastes Using Silent Discharge Plasmas. in B.M. Penetrante and S.E. Schultheis (eds.), <u>Non-Thermal Plasma Technique for Pollution Control -- NATO ASI</u> <u>Series G 34 (1993).</u>
- Speight, J., <u>Gas processing: Environmental Espects and Methods</u>. Oxford: Butterworth-Heinemann,1993.
- Wang, S., and Lu, G.Q. Carbon Dioxide Reforming of Methane to Produced Synthesis Gas over Metal-Supported Catalysts : State of the Art . <u>Energy & Fuels</u> 10 (1996): 896-904.

- Walsh, D.E., et al. Direct Oxidative Methane Conversion at Elevated Pressures and Moderate Temperatures. <u>Ind. Eng. Chem. Res</u> 31 (1992): 1259-1262.
- Yarlagadda, P.S., et al. Direct Catalytic Conversion of Methane to Higher Hydrocarbons. <u>Fuel Science & Technology Int'l</u> 5 (1987): 169-183.
- Zanthoff, H. and Baerns, M. Oxidative Coupling of Methane in the Gas Phase. Kinetic Simulation and Experimental Verification. <u>Ind. Eng. Chem.</u> <u>Res</u> 29 (1990): 2-10.
- Zerger, R.P., Suib, S.L. and Zhang, Z. Preparation of Oxygenates with Methane/Oxygen Microwave Plasmas. in G.A. Huff, D.A. Scarpiello (eds.), <u>Preprints of Symposium on Natural Gas Upgrading II</u> 37 (1992).

APPENDICES

APPENDIX A

Experimental Data

Table A.1Methane conversion, carbon dioxide conversion and product selectivities at different voltage (CO2 : CH4ratio of 1:1, 80% helium concentration and space time of 4 minutes)

Voltage	Methane		·	Product Sele	ectivities (%)			Carbon dioxide
(V)	Conversion (%)	acetylene	acetylene ethane CO methanol H2					
5,500	16.00	0.23	0.20	23.11	76.41	0.05	1.72	9.04
6,600	24.34	0.11	0.14	12.69	87.00	0.06	1.07	14.00
7,700	30.21	0.24	0.09	17.16	82.43	0.09	7.34	17.75

Table A.2Methane conversion, carbon dioxide conversion and product selectivities at different voltage ($CO_2 : CH_4$ ratio of 1:1, 80% helium concentration and space time of 6 minutes)

Voltage	Methane			%selec	ctivity			Carbon Dioxide
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen	Conversion (%)
5,500	24.24	0.46	3.75	17.51	78.21	0.07	2.35	14.55
6,600	33.66	0.20	0.09	17.94	81.70	0.07	7.35	18.49
7,700	39.14	0.18	0.07	15.04	84.65	0.06	11.01	22.50

Table A.3Methane conversion, carbon dioxide conversion and product selectivities at different voltage ($CO_2 : CH_4$ ratio of 1:2, 80% helium concentration and space time of 4 minutes)

Voltage	Methane			%selec	ctivity			Carbon Dioxide
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen	Conversion (%)
5,500	21.86	0.62	0.44	65.06	33.86	0.02	9.16	15.58
6,600	25.22	1.11	0.38	66.89	31.59	0.03	9.62	16.00
7,700	29.49	0.63	0.29	65.11	33.93	0.04	12.04	20.57

Table A.4Methane conversion, carbon dioxide conversion and product selectivities at different voltage ($CO_2 : CH_4$ ratio of 1:2, 80% helium concentration and space time of 6 minutes)

Voltage	Methane			%selec	tivity			Carbon Dioxide
(V)	Conversion (%)	Acetylene	Ethylene	Hydrogen	Conversion (%)			
5,500	29.40	0.79	0.34	65.94	32.90	0.03	12.20	22.88
6,600	37.68	0.41	0.26	65.75	33.55	0.03	14.73	25.77
7,700	41.17	0.33	0.29	63.08	36.27	0.03	16.46	29.19

Table A.5Methane conversion, carbon dioxide conversion and product selectivities at different voltage (CO2 : CH4ratio of 2:1, 80% helium concentration and space time of 4 minutes)

Voltage	Methane			%selec	ctivity			Carbon Dioxide
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen	Conversion (%)
5,500	28.33	0.19	0.22	65.33	34.24	0.026	13.72	12.87
6,600	34.42	0.32	0.31	33.70	65.63	0.046	16.46	14.73
7,700	39.64	0.22	0.21	31.41	68.11	0.049	19.67	18.18

Table A.6Methane conversion and product selectivities at different voltage (CO2 : CH4 ratio of 0:1, 80% helium
concentration and space time of 4 minutes)

Voltage	Methane			%sele	ctivity			
(V)	Conversion (%)	Acetylene	Acetylene Ethylene Ethane CO Methanol Hydroger					
7,700	14.87	0.58	0.72	98.70	0.00	0.00	3.83	

Table A.7Methane conversion and product selectivities at different voltage (CO2 : CH4 ratio of 1:1, 50% helium
concentration and space time of 4 minutes)

Voltage	Methane			%sele	ctivity		
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen
5,500	6.07	0.69	0.65	68.92	29.65	0.08	2.33
6,600	14.79	0.48	0.41	67.96	31.08	0.07	4.85
7,700	17.94	0.52	0.47	68.16	30.78	0.07	6.55

Table A.8Methane conversion and product selectivities at different voltage (CO_2 : CH_4 ratio of 1:1, 50% helium
concentration and space time of 6 minutes)

Voltage	Methane			%sel	ectivity		
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen
5,500	14.83	0.26	0.29	64.36	35.00	0.08	5.12
6,600	22.08	0.33	0.14	61.97	37.50	0.06	7.93
7,700	25.21	0.11	0.14	63.21	36.47	0.07	9.70

Table A.9Methane conversion and product selectivities at different voltage ($CO_2 : CH_4$ ratio of 1:1, 50% helium
concentration and space time of 8 minutes)

•

Voltage	Methane	%selectivity								
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen			
5,500	12.13	0.41	0.38	52.40	46.72	0.09	4.36			
6,600	24.49	0.05	71.28	18.53	10.12	0.02	7.98			
7,700	26.49	0.17	0.17	61.41	38.18	0.07	19.96			

Table A.10Methane conversion and product selectivities at different voltage (CO2 : CH4 ratio of 1:1, 20% helium
concentration and space time of 4 minutes)

Voltage	Methane			%sele	ectivity		
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	СО	Methanol	Hydrogen
5,500	0.25	5.94	4.46	89.58	0.00	0.03	0.02
6,600	3.20	1.07	1.28	69.50	28.06	0.09	1.15
7,700	9.87	1.15	1.03	64.39	33.35	0.09	3.37

Table A.11Methane conversion and product selectivities at different voltage (CO2 : CH4 ratio of 1:1, 20% helium
concentration and space time of 6 minutes)

Voltage	Methane			%sele	ectivity		
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen
5,500	0.94	5.36	3.08	91.56	0.00	0.00	0.28
6,600	3.98	0.74	0.67	60.09	38.38	0.11	1.92
7,700	16.86	0.46	0.46	59.43	39.58	0.08	5.24

Table A.12Methane conversion and product selectivities at different voltage ($CO_2: CH_4$ ratio of 1:1, free helium in
feed and space time of 6 minutes)

Voltage	Methane		%selectivity							
(V)	Conversion (%)	Acetylene	Ethylene	Ethane	CO	Methanol	Hydrogen			
5,500	0.38	7.03	1.42	91.55	0.00	0.00	0.02			
6,600	0.32	18.58	18.69	62.73	0.00	0.00	0.06			
7,700	6.61	0.30	0.27	64.21	35.12	0.10	2.28			

APPENDIX B

Calculation Procedures

To facilitate the calculations, some valid assumptions were made as follows:

- 1) All the gaseous behaviors obey the ideal gas law.
- 2) Pressure drop across the system is very small and can be negligible.
- 3) The pressure in the system equals atmospheric pressure (1 atm.)
- 4) The temperature change due to the reactions is very small and can be negligible. All experiments are assumed to be carried out at the ambient temperature.
- 5) The flow rate change across the reactor due to the variation in the gaseous compositions during the reaction time is very small and is assumed to be negligible.

The total molar flow rate of the gaseous stream can be calculated from the following equation:

$$N = \left(\frac{P}{RT}\right) \times q$$

where

- P = Total pressure of the system (i.e., 1 atm)
- q = Total volumetric flow rate (determined by using soap bubble meter)

R = Gas constant

T = Absolute ambient temperature (K)

With this, the molar flow rate of each component can also be determined by multiplying its percent volume derived from the GC analysis with the total molar flow rate.

The conversion is defined generally as:

$$\% Conversion = \left(\frac{\text{Mole reactant In} - \text{Mole reactant Out}}{\text{Mole reactant In}}\right) \times 100$$

Since there are two reactant, consisted of carbon atom in each molecule, so the percent selectivity of each hydrocarbon product is defined on the basis of the amount of carbon produced in each product relative with total carbon produced. The hydrocarbon product selectivity was defined as follows,

% C2 Selectivity =
$$2 \times \left(\frac{C_2 \text{ produced}}{\text{Total Carbon Occured}}\right) \times 100$$

% CO Selectivity =
$$\left(\frac{\text{CO produced}}{\text{Total Carbon Occured}}\right) \times 100$$

% CH₃OH Selectivity =
$$\left(\frac{\text{CH}_3\text{OH produced}}{\text{Total Carbon Occured}}\right) \times 100$$

Whereas;

% H₂ Selectivity =
$$\left(\frac{\text{H}_2 \text{ produced}}{\text{CH}_4 \text{ Reacted}}\right) \times 100$$

CURRICULUM VITAE

Name:Ms. Malinee LeethochawalitBirth Date:January, 29, 1975Nationality:ThaiUniversity Education:1992-19951992-1995Bachelor's Degree of Science (Industrial Chemistry)
Srinakarinwirot University

ia.

6