MODELLING OF THE THINNING OF THE CANDU REACTOR FEEDER PIPES

Ms.Orawee Silpsrikul

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2001

ISBN 974-130-710-1

I19766026

Thesis Title:	Modelling of the Thinning of the CANDU Reactor Feeder
	Pipes
By:	Orawee Silpsrikul
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Frank R. Steward
	Ass.Prof. Thirasak Rirksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunya W'nt. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

mant R Steward

(Prof. Frank R. Steward)

Thello-

(Ass.Prof. Thirasak Rirksomboon)

Kitipat Siemanond

(Dr.Kitipat Siemanond)

บทคัดย่อ

อรวีร์ ศิลป์ศรีกุล : การออกแบบสมการสำหรับการสึกกร่อนของท่อในถังปฏิกรณ์ นิวเคลียร์ที่ชื่อว่า แคนดู (Modelling of the Thinning of the CANDU Reactor Feeder Pipes) อ. ที่ปรึกษา : ศ. แฟรงค์ อาร์ สจ๊วต (Prof. Frank R. Steward) และ ผศ. ธีรศักดิ์ ฤกษ์สมบูรณ์ เอกสารจำนวน 136 หน้า ISBN 974-130-710-1

ทางมหาวิทยาลัย New Brunswick ได้เสนอและพัฒนาสมการที่แสดงการสึกกร่อนของ ท่อในถังปฏิกรณ์นิวเคลียร์ที่มีชื่อว่า แคนดู (CANDU) สมการเหล่านี้ใช้อธิบายกลไกต่างๆของการ ้สึกกร่อนของท่อที่ทำด้วยเหล็กการ์บอน โดยมีน้ำโมเลกุลหนักซึ่งเป็นสารแลกเปลี่ยนความร้อนอยู่ ภายในท่อ เพื่อความเข้าใจที่ดีขึ้นเกี่ยวกับกลไกการสึกกร่อน จึงได้มีการติดตั้งการทดลองโดย ้จำลองมาจากลักษณะการไหลวนของสารแลกเปลี่ยนความร้อนในเตาปฏิกรณ์ การทคลองนี้ได้ ้ดำเนินการโดยมหาวิทยาลัย New Brunswick สำหรับในงานนี้ ได้ศึกษาอัตราการสึกกร่อนของท่อ ้ชื่อ S08 ที่อยู่ที่สถานีพลังงานนิวเคลียร์ Point Lepreau และ ส่วนชิ้นงานทคสอบในการทคลองที่ ช่วงความเป็นกรคเบส 9.8-11.55 อุณหภูมิ 310 องศาเซลเซียส จากการวิเคราะห์สมการที่เกี่ยวข้อง พบว่าอัตราการละลายของออกไซด์และพลังงานอิสระของการกระตุ้นสำหรับปฏิกิริยาการกัด กร่อนเปลี่ยนแปลงตามค่าความเป็นกรดเบส ความสัมพันธ์พระหว่างค่าคงที่ของการละลายของ ออกไซด์กับความเป็นกรคเบสแสคงในรูปโพลิโนเมียลอันคับหก ส่วนพลังงานอิสระของการ กระตุ้นมีความสัมพันธ์เชิงเส้นตรงกับความเป็นกรคเบส ซึ่งเป็นที่น่าสนใจสำหรับการศึกษาความ ้สัมพันธ์ของค่าพลังงานอิสระของการกระตุ้นกับความเป็นกรคเบสในลำคับต่อไป นอกจากนี้ สม การในขณะนี้เกี่ยวข้องกับหลักของผลจากไฟฟ้าเคมีต่อการสึกกร่อนซึ่งค่อนข้างสลับซับซ้อน สม การที่ใช้หลักการของปฏิกิริยาเคมีและการถ่ายโอนมวลสารซึ่งเป็นรูปแบบสมการที่ไม่สลับซับ ซ้อนได้ถูกเสนอขึ้นและพัฒนาค่อไป

ABSTRACT

4271014063: PETROCHEMICAL TECHNOLOGY PROGRAM
Orawee Silpsrikul: Modelling of the Thinning of the CANDU
Reactor Feeder Pipes.
Thesis Advisors: Prof. Frank R. Steward, Asst. Prof. Thirasak
Rirksomboon, 136 pp ISBN 974-130-710-1
Keywords: CANDU/Corrosion/Outlet Feeder Pipes/FAC

A model of the thinning of the CANDU reactor outlet feeder pipes has been developed by University of New Brunswick. This model describes the mechanisms of corrosion of outlet feeder pipes which are carbon steel in CANDU reactors. To understand the mechanisms better, an experimental loop simulating the primary coolant loop in a CANDU was constructed at the University of New Brunswick. This work focused on the corrosion rate of outlet feeders at the Point Lepreau Station and the test section in the experimental loop at various pH, 9.8-11.55 at 310°C. It was found in an analysis of the model that the dissolution rate and the free energy of activation of the corrosion reaction changed with pH. The relation between the dissolution rate constant and pH was represented by a sixth order polynomial. The free energy of activation was found to be a linear function of pH. Further study on the relation between this free energy of activation and pH should be undertaken to clarify the effect of the reaction rate on the flow assisted corrosion. The present model was based on electrochemical effects that are quite complicated. A simpler model based on chemical reaction and mass transfer was proposed and could be studied further.

ACKNOWLEDGEMENTS

.

I would like to express my deep gratitude to Dr. Frank R. Steward and Dr. Thirasak Rirksomboon, my supervisors as well as Dr. Derek H. Lister. Without them, I would not have an opportunity to do research at University of New Brunswick, Canada. I would like to thank them for their valuable advice, knowledge and support.

I deeply thank the Petroleum and Petrochemical College for the scholarship that support my Master study.

I would like to express sincere gratitude to Mr. Norman Arbeau and Mr. William Cook for their help and suggestion.

Appreciation is forwarded to Dr. D.F. Yang, Dr. I. Kondratova and Dr. G. Villemure for electrochemical knowledge.

I would like to thank staff of the Petroleum and Petrochemical College, of Centre for Nuclear Energy Research(CNER) and of Chemical Engineering Department of University of New Brunswick.

Many thanks are due to my friends in Fredericton, Canada and in Thailand for the valuable encouragement.

Last but not least, I would like to deeply thank my parents for the important support, love and everything throughout this work.

v

TABLE OF CONTENTS

Title Page	i
Acceptance Page	ii
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xi
Abbreviation	XV
List of Symbols	xvi

PAGE

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE SURVEY	6
	2.1 CANDU Primary Coolant Loop	6
	2.2 Material Composition	8
	2.3 Corrosion Mechanism and Species in	
	the System	10
	2.3.1 Magnetite	13
	2.3.2 Dissolved Iron	14
	2.3.2.1 Pore Solution Model	14
	2.3.2.2 Grain Boundaries Model	16
	2.3.3 Hydrogen	17
	2.3.4 Oxygen	17
	2.4 Oxide Solubility	18

III

2.4.1 Temperature Effect	20
2.4.2 H_2 Effect	21
2.5 Erosion-FAC	22
2.6 Surface Roughness and Geometry	29
2.7 Entrance Effect	34
2.8 Electrochemistry	35
2.8.1 Nernst Equation	36
2.8.2 Exchange Current Density	37
2.8.3 Butler Volmer Equation	42
2.8.4 Mixed Potential	44
2.8.5 The Effect of Mixed Potential	45
EXPERIMENTAL	48
3.1 The Experimental Loop	48
3.2 Model and Mechanisms ⁻	53
3.2.1 Corrosion	54
3.2.2 Precipitation of Dissolved Iron	54
3.2.3 Dissolved Iron Diffusion	55
3.2.4 H_2 Evolution	56
3.2.5 H_2 Diffusion	57
3.2.6 Mass Transfer of H_2 to Bulk	58
3.2.7 Oxide Dissolution	60
3.2.8 Mass Transfer of Dissolved Iron to Bulk	59
3.2.9 Erosion	61
3.2.10 Overall Equations	65
3.3 Computation	66

-

IV	RESULTS AND DISCUSSION	68
	4.1 The Sensitivity of Input Variables	68
	4.2 Application of the Model to the Wire Probe	70
	4.2.1 The Effect of Dissolution Rate Constant	72
	4.2.2 The Effect of Free Energy of	
	Activation for Corrosion Reaction	75
	4.2.3 The Effect of Mass Transfer Coefficient	79
	4.3 Application of the Model to the Tube Probe	82
	4.4 The Effect of Outer Oxide Layer on H_2 Diffusion	86
	4.5 The Effect of Porosity on Corrosion Rate	87
	4.6 Rationalizing Dissolution Rate Constant	
	and Free Energy of Activation from	
	Experimental Data	89
V	CONCLUSIONS AND RECOMMENDATIONS	96
	5.1 Conclusions	96
	5.2 Recommendations for the Future Work	96
	REFERENCES	97
	APPENDICES	101
	Appendix A Input for the program	101
	Appendix B Program code for feeder pipes	108
	Appendix C Program code for test probe	109
	Appendix D Samples of calculations	130
	Appendix E A simpler model	132

 \sim

CHAPTER

CURRICULUM VITAE

.

.

.

.

136

PAGE

LIST OF TABLES

TABLE

PAGE

1.1	Reactor components and materials	3
2.1	Material construction summary	8
4.1	The effect of input variables	69
4.2	The corrosion rate of wire probe from the experiment	71
4.3	Dimension of wire probe and flow condition	71
4.4	The scaling factor for kd at each pH and predicted	
	corrosion rate of wire probe	72
4.5	The scaling factor for kd at each pH and predicted	
	corrosion rate of wire probe	77
4.6	The effect of mass transfer coefficient (h) on	
	corrosion rate	80
4.7	The corrosion rate of tube probe from the experiment	81
4.8	The scaling factor for kd at each pH and predicted	
	corrosion rate of tube probe	83
4.9	The corrosion rate and oxide thickness with and	
	without outer layer effect on H ₂ diffusion	86
4.10	Corrosion rate and oxide thickness when outer	
	porosity equaled 0.3	87
4.11	Corrosion rate and oxide thickness when inner porosity	
	equaled 0.1	87
4.12	Corrosion rate and oxide thickness when the ratio of	
	outer porosity to inner porosity was 10	89

LIST OF FIGURES

FIGURE		RE -	PAGE	
	1.1	Schematic of ²³⁵ U fission	2	
	1.2	Diagram of nuclear power plant process	2	
	2.1	Primary coolant loop	7	
	2.2	Corrosion rate of mild steel versus exposure	9	
	2.3	Section through piping and Grayloc hub : outlet feeder		
		S08 removed from Point Lepreau	10	
	2.4	Duplex of magnetite, Potter-Mann layer	11	
	2.5	Diagram of species transportation and corrosion		
		mechanism .	13	
	2.6	Corrosion rate constant for mild steel in pure water and		
		steam	15	
	2.7	Transportation in oxide	17	
	2.8	Distribution of species after equilibrating Fe ₃ O ₄ at 300°C	19	
	2.9	Predominant species diagram at 300°C	20	
	2.10	Solubility of Fe_3O_4 in aqueous solutions saturated with		
		H ₂ at 1 atm and 25°C	21	
	2.11	Four main mechanisms of flow-induced corrosion	23	
	2.12	The relation between corrosion current and flow rate in		
		different in controlled step regions	25	
	2.13	Flow velocity effect on erosion-corrosion rate	27	
	2.14	Moody Diagram	29	
	2.15	Mass transfer from rough surfaces	30	
	2.16	Roughness effect for circular tube	31	
	2.17	Geometry factors	32	
	2.18	Geometry effect on wall thinning	33	

FIGURE

.

PAGE

2.19	The entrance of outlet feeder pipe	34
2.20	Energy of reaction	39
2.21	Evans diagram for corrosion process	
	$M + Ox \rightarrow M^{n+} + Re$	45
3.1	Diagram of feeders in the CANDU reactor	49
3.2	Experimental loop	50
3.3	The tube probe in the test loop	51
3.4	The wire probe in the test loop	52
3.5	The ultrasonic probe in the test loop	53
3.6	Mechanisms of corrosion of feeders	53
3.7	Solubilities at 523K and 473K	60
3.8	Erosion of oxide	61
3.9	Size distribution	63
3.10	Shear stress for tube probe with fluid 20m/s,	
	from FLUENT	63
3.11	Shear stress for tube probe with fluid 20m/s,	
	from FLUENT	64
3.12	Computational segments in the loop	67
4.1	Effect of dissolution rate constant in term of scaling	
	factor on corrosion rate of wire probe at pH10.4	72
4.2	Effect of dissolution rate constant in term of scaling	
	factor on corrosion rate of wire probe at pH11.4	73
4.3	Oxide thickness profile with scaling factor 0.5 for kd	
	at pH10.2	74
4.4	Oxide thickness profile with scaling factor 1.0 for kd	
	at pH10.2	74

		٠	٠	•
	v	1	1	1
	- 74	1		1
		-	-	•

		4.5	Oxide thickness profile with scaling factor 5 for kd	
			at pH10.2	75
		4.6	Dissolution rate constant at pH10.2 and one datum	
			at pH11	76
		4.7	The relation of free energy of activation and corrosion	
			rate at pH11	77
4		4.8	The oxide thickness profile within 10000 exposure	
			hours with scaling factor for ΔG_1^{\neq} is 0.8	78
		4.9	The oxide thickness profile within 10000 exposure	
			hours with scaling factor for ΔG_1^{\neq} is 1	78
		4.10) The oxide thickness profile within 10000 exposure	
			hours with scaling factor for $\Delta G_1^{\neq 1}$ is 1.1	79
		4.11	The oxide thickness profile when scaling factor for mass	
			transfer coefficient was 0.01	81
		4.12	2 The oxide thickness profile when scaling factor for mass	
			transfer coefficient was 1	81
		4.13	The oxide thickness profile of tube probe with scaling	
			factor for kd 0.00064	84
		4.14	The oxide thickness profile of tube probe with scaling	
			factor for kd 1	84
		4.15	The oxide thickness profile of tube probe with scaling	
			factor for spalling constant at 0.001	85
		4.16	The oxide thickness profile of tube probe with scaling	
			factor for spalling constant at 0.1	85
		4.17	The oxide thickness profile of tube probe with scaling	
	÷		factor for spalling constant at 10	86

÷	4.18	Corrosion rate of feederS08, wire and tube probes at	
		various pH based on figure4.6	90
	4.19	The expression for dissolution rate constant at	
		various pH	91
	4.20	The relation between activation free energy	
		of reverse corrosion reaction and pH at 310°C	92
	4.21	The relation between dissolution rate constant and	
		pH at 310°C	93
	4.22	Corrosion rate of wire probe from experiment and	
1		prediction	94
	4.23	Corrosion rate of tube probe from experiment and	
		prediction	94
	4.24	The relation between oxide thickness and corrosion rate	
		of wire probe	94
	4.25	The relation between oxide thickness and corrosion rate	
		of tube probe	95

.

ABBREVIATIONS

•

4

•

- FAC Flow-assisted corrosion
- Ox Oxidized species
- Re Reduced species

LIST OF SYMBOLS

А	Factor of frequency						
А	Cross sectional area						
a _{Ox}	Activity of oxidized species						
a _{Re}	Activity of reduced species						
C_{b}	Dissolved iron concentration in bulk solution (g/cm ³)						
Co	Concentration of oxidized species						
C _{os}	Dissolved iron concentration at oxide/solution interface						
	(g/cm^3)						
C _R	Concentration of reduced species						
\mathbf{C}_{sol}	Solubility of iron dissolved						
C _w	Iron dissolved concentration at wall						
D	Diffusion coefficient (cm ² /s)						
D_{h}	Hydraulic diameter						
d	Diameter						
d	Diameter of particle to be removed (µm)						
dm dt	Rate of mass loss						
E	Potential						
E _e	Equilibrium potential						
E _{O/R}	Potential difference for reduction reaction						
E° _{O/R}	Standard potential difference for reduction reaction						
e ⁺	Dimensionless roughness height						
e-	Electron						
F	Faraday constant (96480 C/mol)						
F*	Surface area factor						
f	Friction factor						
f	Mass fraction of iron in oxide						

- h Mass transfer coefficient
- h Planck's constant = 6.62×10^{-34} J s
- I₀ exchange current density.
- i Current (Amps)
- i_a, Anodic current
- i_c Cathodic current
- i_{corr} Corrosion current
- J = mass flux $(g/cm^2 s)$
- K Equilibrium constant of reaction
- K Correlation factor
- k" The number of times per second that the rate process occurs (Boltzmann constant = 1.38×10^{-23} J K⁻¹)
- $k_{d,adj.}$ Adjusted dissolution rate constant by electrochemical effect
- k_d Dissolution rate constant
- k_f Rate constant for forward reaction
- k_L The entrance loss effect
- $k_{p,adj}$ Adjusted precipitation rate constant by electrochemical effect
- k_p Precipitation rate constant
- k_r Rate constant for reverse reaction
- L Distance from the duct entrance
- 1 The length for tube probe
- MW Molecular weight
- m The amount of metal loss per unit area $(g/cm^2 s)$
- n The number of electrons involved in the reaction
- P Pressure
- P_s pressure at upstream (inlet)
- R Gas constant (8.314 J/mol K)
- R Electrical resistance
- R_K Kinetic rate of oxide dissolution

R _{MT}	Mass	transfer	limited	rate

R_T Overall rate of flow-assisted corrosion

Re Reynolds number

r_f Rate of forward reaction (reduction)

r_r Rate of reverse reaction (oxidation)

Sc Schmidt number

Sh Sherwood number

s Proportionality spalling (erosion) constant

T Absolution temperature (K)

t Time (seconds)

u Fluid velocity

 ΔE° Standard potential difference

 ΔE_{f}^{\neq} Activation energy for forward reaction

 ΔE_r^{\neq} Activation energy for reverse reaction

 ΔG Gibbs Free energy

 ΔG° Gibbs free energy at standard state

 ΔG^{\neq} Free energy of activation

 ΔG_{f}^{\neq} Free energy of activation for forward reaction

 ΔG_r^{\neq} Free energy of activation for reverse reaction

 $\Delta G_{0,c}^{\neq}$ Free energy of activation for cathodic reaction caused by chemical reaction

 $\Delta G_{0,a}^{\neq}$ Free energy of activation for anodic reaction caused by chemical reaction

 ΔH^{\neq} Enthalpy of activation

 ΔS^{\neq} Activation entropy

 α_c Cathodic transfer coefficient

 α_a Anodic transfer coefficient

β Symmetry Factor

300

 δ The amount of oxide in oxide layer per unit area (g/cm²)

.

- ρ Fluid density
- ρ Resistivity of the probe

 ρ_{metal} Density of metal (g/cm³)

 ρ_{ox} Density of oxide (g/cm³)

φ Porosity

μ Fluid viscosity

τ Tortuosity factor

 τ_w Wall shear stress