OZONE DEGRADATION OF AQUEOUS CONTAMINANTS IN BONDED ADMICELLES

Mr. Pornthep Santipornvit

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma

and Case Western Reserve University

1998

ISBN 974-638-446-5

T18122437

Thesis Title : Ozone Degradation of Aqueous Contaminants in Bonded

Admicelles

By : Mr. Pornthep Santipornvit

Program : Petrochemical Technology

Thesis Advisors: Assoc. Prof. Lance L. Lobban

Prof. Somchai Osuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Assoc. Prof. Lance L. Lobban)

Simult. Chovaday

Lance Lobbar

(Prof. Somchai Osuwan)

(Dr. Sumaeth Chavadej)

ABSTRACT

961020 : PETROCHEMICAL TECHNOLOGY PROGRAM

KEY WORDS: Ozone oxidation/ Trichloroethylene /Bonded admicelles

Pornthep Santipornvit : Ozone Degradation of Aqueous Contaminants in Bonded Admicelles. Thesis Advisors : Assoc. Prof. Lance L. Lobban and Prof. Somchai Osuwan 48 pp. ISBN 974-638-446-5

Ozone oxidation is one of powerful methods to destroy aqueous organic contaminants. But, it is not efficient for a case of the low contaminant concentrations. Therefore, the admicellar catalyst was used in this work to improve the oxidation efficiency. The contaminant was first adsorbed and then destroyed in this admicellar catalyst by using ozone gas. The higher efficiency of the ozonation process was caused presumably by the increase of interaction between the contaminant and ozone. In this work, the admicellar catalyst was synthesized by chemical bonding of octadecyltrichlorosilane (ODS) and silanol group onto the silica surface. The contaminant used was trichloroethylene (TCE). FTIR and elemental analyzer were used to confirm the attachment of octadecylsilyl group and find the maximum coverage of ODS onto silica surface. The maximum coverage of ODS was found to be 429.22 µmole/g.

The kinetics experiments were conducted in a semibatch reactor. The reaction rate equation was first order with respect to TCE concentration and the overall apparent pseudo first order reaction rate was $0.002 \text{ (g.min)}^{-1}$. The effectiveness of catalyst was also studied and the results showed that the catalyst could greatly improve the ozonation process.

บทคัดย่อ

พรเทพ สันติพรวิทย์ : การย่อยสถายสารมลพิษในน้ำโดยใช้ก๊าซโอโซนในแอคไมเซล (Ozone Degradation of Aqueous Contaminants in Bonded Admicelles) อ. ที่ปรึกษา : รศ.คร. แลนซ์ ลอบแบน (Assoc. Prof. Lance Lobban) และ ศ. คร. สมชาย โอสุวรรณ 48 หน้า ISBN 974-638-446-5

การย่อยสลายสารมลพิษในน้ำโดยใช้ก๊าซโอโซนเป็นวิธีที่มีประสิทธิภาพวิธีหนึ่ง แต่การ ย่อยสลายโดยกระบวนการนี้มีประสิทธิภาพต่ำในกรณีที่สารมลพิษในน้ำมีปริมาณค่อนข้างน้อย ดังนั้นจึงมีการใช้เทคนิคตัวเร่งปฏิกิริยาแอคไมเซล (Admicellar catalyst) มาช่วยปรับปรุงซึ่ง จะสามารถเพิ่มประสิทธิภาพของการย่อยสลายโดยการเพิ่มปฏิสัมพันธ์ของสารมลพิษและก๊าซโอโซน โดยสารมลพิษจะถูกดูดซับและถูกย่อยสลายโดยก๊าซโอโซนในตัวเร่งปฏิกิริยาแอคไมเซล ในงานนี้ตัวเร่งปฏิกิริยาแอคไมเซลถูกเตรียมโดยการทำปฏิกิริยาระหว่างสารออกตะเดคซิลไตร คลอโรไซเลน (Octadecyltrichlorosilane) กับหมู่ฟังก์ชันไซลานอน (Silanol) บนพื้นผิว ซิลิกา สารไตรคลอโรเอธิลีนซึ่งเป็นสารพิษถูกนำมาดูดซับด้วยตัวเร่งปฏิกิริยาแอ๊คไมเซลและทำปฏิกิริยากับก๊าซโอโซนต่อไป

คุณสมบัติของตัวเร่งปฏิกิริยาได้จากการวิเคราะห์โดยเครื่อง FTIR และ Elemental Analyzer โดยพบว่ามีการยึดเกาะของหมู่ออกตะเดคซิลบนพื้นผิวซิลิกาและปริมาณการปกคลุม มากที่สุดของสารออกตะเดคซิลบนพื้นผิวซิลิกามีค่าเท่ากับ 429.22 ไมโครโมลต่อกรัม

จากการศึกษาปฏิกริยาการกำจัดไตรคลอโรเอทธิลีน โดยใช้ก๊าซโอโซนพบว่าเป็นปฏิกริยา อันดับหนึ่ง มีค่าคงที่อัตราเร็วของการเกิดปฏิกริยามีค่าเท่ากับ 0.002 ต่อกรัมนาที ประสิทธิภาพใน การกำจัดสารไตรคลอโรเอธิลีนด้วยสารโอโซนในระบบที่ใช้ตัวเร่งปฏิกิริยาแอดไมเซลมีค่าสูงกว่า ระบบที่ไม่ใช้ตัวเร่งปฏิกิริยาแอดไมเซลมาก

ACKNOWLEDGMENTS

First of all, I am deeply indebted to Assoc. Prof. Lance L. Lobban for serving as my thesis advisor, for providing constant advice throughout the course of my work. It has been an honor and pricilege to work with Professor Lobban.

Prof. Somchai Osuwan acted as my thesis co-advisor, provided many useful suggestions and provided everything throughout my work.

I am most obliged to Esso Standard (Thailand) Co. Ltd., for my scholarship and financial support. I also thank PPG Siam Silica Co., Ltd. for donating the sample of precipitated silica Hi Sil[®] 233.

I would like to thank the faculty and the PPC staff. I thank all of my friends in the college for their useful and enjoyable discussions when we were working together in our laboratory.

Finally, I would like to express my whole-hearted gratitude to my family who always give me love, support and encouragement. Their respect in my decision and understanding and trust in whatever I do, contributed so deeply in my work.

TABLE OF CONTENT

				PAGE	
	Title	i			
	Abs	tract		iii	
	Ack	Acknowledgments			
	List	ix			
	List of Figures			X	
CHAPTER I	INT	`RODU	CTION	1	
II	LITERATURE SURVEYS				
	2.1	Surfac	etant	3	
	2.2	Micel	lization	3	
	2.3 Solubilization		ilization	4	
	2.4	Surfac	ctant adsorption onto the solid surface	6	
	2.5	Adsol	ubilization	8	
	2.6	Forma	ation of hydrocarbon aggregate chemically		
		bonde	d to mineral oxide surface	11	
	2.7	Ozona	ation	12	
		2.7.1	Ozone decomposition	13	
		2.7.2	Kinetics	14	
		2.7.3	Trichloroethylene reaction	16	

CHAPTER				PAGE
III	EXPERIMENTAL SECTION			
	3.1 Materials		als	18
	3.2	2 Catalyst preparation		18
	3.3		st characterization	19
		3.3.1	Fourier transform infrared spectrometry	
			(FTIR)	19
		3.3.2	Elemental analysis	19
	3.4	Appar	atus	19
		3.4.1	Ozone generator system	21
		3.4.2	Semibatch reactor system	21
		3.4.3	Head space gas chromatograph	22
	3.5	Adsolı	ubilization measurement	23
	3.6	Reaction rate studies		23
		3.6.1	Mass transfer limitation	23
		3.6.2	Reaction order	24
IV	RES	SULTS	AND DISCUSSION	
	4.1	Cataly	st characterization	25
		4.1.1	FTIR spectroscopy	25
		4.1.2	Elemental analysis	26
	4.2	Adsor	ption of bonded ODS on silica Hi-Sil®233	26
	4.3	•		
	monolayer			28
	4.4	Effect	iveness of catalyst	28

CHAPTER				PAGE
	4.5	5 Reaction studies		28
		4.5.1	External film resistance	28
		4.5.2	Reaction order	33
V	CONCLUSIONS			35
	REFERENCES			37
	APPENDIX			41
	CUI	RRICU	LUM VITAE	48

LIST OF TABLES

TABLE		PAGE
2.1	Comparative oxidation potential	13
4.1	Changes of IR spectra of silica by the treatment of ODS	25
4.2	Percentage of carbon in the treated silica	26
A-1	External limitation at 550 rpm	41
A-2	External limitation at 750 rpm	43
A-3	External limitation at 900 rpm	44
A-4	External limitation at 1000 rpm	45
A-5	Effectiveness of catalyst	46
A-6	Adsolubilization curve	47

LIST OF FIGURES

FIGURE		PAGE
2.1	Surfactant structure	5
2.2	Ionic micelle	5
2.3	Solubilization in ionic micelle	5
2.4	Solubilization in nonionic micelle	5
2.5	A typical adsorption isotherm for an ionic surfactant	9
	on an oppositely charged substrate	
2.6	A comparison of solubilization to adsolubilization	10
3.1	Schematic flow diagram	20
4.1	ODS adsorption isotherm on silica Hi Sil® 233	27
4.2	Adsolubilization curve	29
4.3	Effectiveness of catalyst	30
4.4	Effect of stirring speed on TCE concentration	31
4.5	External limitation tests	32
4.6	TCE reaction order	34