REACTIVE COMPATIBILIZATION OF POLYETHYLENE AND POLY(VINYL CHLORIDE) USING METHYL METHACRYLATE AS COMPATIBILIZER

Mr. Chaiwat Towichayathamrong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahomas,

and Case Western Reserve University

1999

ISBN 974-331-921-2

Thesis Title

: Reactive Compatibilization of Polyethylene and Poly

(vinyl chloride) Using Methyl Methacrylate as

Compatibilizer

By

: Mr. Chaiwat Towichayathamrong

Program

: Polymer Science

Thesis Advisor

: Professor Alexander M. Jamieson

Dr. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Director

(Professor Somchai Osuwan)

Thesis Committee:

(Professor Alexander M. Jamieson)

(Dr. Rathanawan Magaraphan)

Anuct Souver!

R Magarephen

(Associate Professor Anuvat Sirivat)

บทคัดย่อ

ชัยวัฒน์ โตวิชยธำรง: การศึกษาสมบัติของโพลิเมอร์ผสมระหว่างโพลิเอทธิลีน และโพลิ-ใวนิลกลอไรค์ด้วยวิธีการแบบริแอกทีฟโดยใช้เมทธิลเมทธาคลิเลตเป็นตัวช่วยผสม (Reactive Compatibilization of Polyethylene and Poly(vinyl chloride) Using Methyl Methacrylate as Compatibilizer) อ. ที่ปรึกษา : ศ. คร. อเล็กซานเคอร์ เอ็ม เจมิสัน (Prof. Alexander M. Jamieson) และ คร.รัตนวรรณ มกรพันธุ์ 42 หน้า ISBN 974-331-921-2

การเกิดปฏิกิริยาระหว่างเมทธิลเมทธาคลีเลต (methyl methacrylate) กับ โพลิเอทธิลีนความหนาแน่นสูง (High-Density Polyethylene) สามารถเกิดขึ้นได้ด้วยวิธีการผสมแบบ รีแอคทีฟ (reactive blending) โดยใช้ตัวเริ่มปฏิกิริยายาไดคูมิวเปอร์ออกไซด์ (dicumyl peroxide initiator) ผลิตภัณฑ์ที่ได้จากปฏิกิริยานี้ก็คือโคโพลิเมอร์แบบกิ่งระหว่างเมทธิลเมท ธาคลีเลตกับโพลิเอทธิลีน (MMA grafted HDPE) ซึ่งสามารถตรวจสอบการเกิดโคโพลิเมอร์ และปริมาณการเกิดโคโพลิเมอร์นี้ได้โดยใช้ฟูริเออร์ทรานสฟอร์มอินฟราเรดสเปกโตมิเตอร์ (FTIR spectrometer) ในขณะเดียวกันผลิตภัณฑ์ที่ได้ยังเกิดการขาดของโมเลกุล (Chain degradation) และการเชื่อมโยงระหว่างโมเลกุล (Crosslinking) อีกด้วย เมื่อผสมโคโพลิเมอร์นี้กับโพลิไวนิลคลอไรด์ (poly(vinyl chloride)) ด้วยวิธีการผสมแบบรีแอคทีฟในขั้น ตอนเดียว (one-step reactive blending) พบว่าโพลิเมอร์ผสมที่ได้จะมีการเปลี่ยนแปลง สมบัติรูป อสัณฐาน (morphology) และคุณสมบัติทางกล (mechanical properties) ไปใน ทางที่ดีขึ้นเมื่อเปรียบเทียบกับโพลิเมอร์ผสมระหว่างโพลิเอทธิลีนและโพลิไวนิลคลอไรด์ จากการ ศึกษาพบว่า การเปลี่ยนแปลงสมบัติต่างๆนี้จะขึ้นอยู่กับปริมาณของเมทธิวเมทธาคลีเลตและตัว เริ่มปฏิกริยาที่ใช้ในการเครียมโคโพลิเมอร์และปริมาณของโพลิไวนิลคลอไรด์ในโพลิเมอร์ผสม

ABSTRACT

##972006 : POLYMER SCIENCE PROGRAM

KEY WORD: HDPE/PVC blends / MMA / MMA grafted HDPE

Chaiwat Towichayathamrong: Reactive Compatibilization of

Polyethylene and Poly(vinyl chloride) Using Methyl Methacrylate as

Compatibilizer. Thesis Advisor: Prof. Alexander M. Jamieson and Dr.

Rathanawan Magaraphan 42 PP ISBN 974-331-921-2

The grafting of methyl methacrylate monomer (MMA) to high-density polyethylene (HDPE) prepared by reactive blending in brabender batch mixer has been studied. Grafting was successful with the free radical initiator dicumyl peroxide (DCP). The presence of MMA grafting and grafted content were determined by FT-IR spectroscopy, and the degree of crosslinking inferred from gel content and melt flow index. The effects of initial MMA and DCP concentration on the grafted content and basic properties were studied. Melt blending of these grafted HDPE with poly(vinyl chloride) (PVC) was obtained in all cases using one-step reactive blending. The changes in morphology to finer dispersed phase and enhancement of mechanical properties of blends obtained in all case of MMA grafted HDPE/PVC blends. These conclusions are supported by the observation of hydrogen bonding between two phases that showed by FT-IR.

ACKNOWLEDGEMENTS

This acknowledgement is gratefully made to all professors who so efficiently taught him at the Petroleum and Petrochemical College, Chulalongkorn University, especially in Polymer science program. The author would like to give special thanks to all the faculties who helped him to understand the material and provided the opportunity to study in this college. He also thanks the Petrochemical group, Siam Cement Co, Ltd. (Public) for their kindness in giving his scholarship during two academic years, and to Chulalongkorn University for financial support of his research. He also would like to give a sincere thank to Thai Polyethylene Co, Ltd., Thai Plastic and Chemical Co, Ltd., and Siam Stabilizer and Chemical Co, Ltd., for the donation of raw material.

He greatly appreciates the efforts of his research advisor, Prof. Alex M. Jamieson, who originated his thesis and gave valuable advice and suggestions. He really would like to express his appreciation to Dr. Rathanawan Magaraphan for her good advice and vital help throughout this research.

Moreover, He would like to thanks his parents, for their love, understanding, encouragement and limitless sacrifice and advice. They have persuaded the author to concentrate on his future and have been a constant source of inspiration.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgement	v
	Table of Contents	vi
	List of Tables	viii
	List of Figures	ix
CHAPTER		
I	INTRODUCTION	1
II	LITERATURE SURVEY	2
III	EXPERIMENTAL	8
	3.1 Materials	8
	3.2 Methodology	8
	3.2.1 Preparation of The Blends	8
	3.2.2 HDPE Grafted HDPE Characterization	9
	3.2.2.1 MMA Grafting Yield Measurement	9
	3.2.2.2 Molecular Weight Characterization	10
	3.2.2.3 Melt Flow Index Determination	10
	3.2.2.4 Gel Content Determination	11
	3.2.3 HDPE/PVC Blends Characterization	11
	3.2.3.1 Morphological Characterization	11
	3.2.3.2 Mechanical Characterization	11
	3.2.3.3 Thermal Characterization	12

CHAPTER		PAGE
IV	RESULTS AND DISCUSSIONS	13
	4.1 MMA Grafted HDPE Characterization	13
	4.1.1 MMA Grafting Yield Measurement	13
	4.1.2 Chain Determination of MMA Grafted HDPE	18
	4.1.3 Crosslinking of MMA Grafted HDPE	19
	4.2 HDPE/PVC Blend Characterization	21
	4.2.1 Morphological Characterization of HDPE/PVC	
	Blends	21
	4.2.2 Mechanical Properties of HDPE/PVC Blends	25
	4.2.3 Thermal Properties of HDPE/PVC blends	28
	4.2.4 Nature of Interaction Between MMA Grafted	
	HDPE and PVC	29
v	CONCLUSIONS	32
	REFERENCES	33
	APPENDICES	38
	CURRICULUM VITAE	42

LIST OF TABLES

TABLE	
3.1 Selected properties of HDPE and PVC used in this study	8
4.1 Efficiency of grafting reaction	16
4.2 GPC results of MMA grafted HDPE at various MMA and	
DCP concentrations	18
4.3 Gel content (%wt) of MMA grafted HDPE at various	
concentrations of MMA and DCP	20
4.4 Mechanical properties of final blends	26
4.5 Thermal properties of final blends	28

.

LIST OF FIGURES

FIGURE		PAGE
3.1	Calibration curve for MMA grafting yield measurement	10
4.1	FT-IR spectra of modified HDPE and HDPE	14
4.2	Influence of MMA concentration on the percentage of	
	grafting and reaction efficiency	17
4.3	Influence of initial MMA concentration on weight average	
	molecular weight of sol fraction of MMA grafted HDPE	19
4.4	Influence of initial MMA concentration on melt flow index	
	of MMA grafted HDPE	20
4.5	SEM micrographs of (a) 90:10 HDPE/PVC blends (b) 90:10	
	MMA grafted HDPE/PVC blends (modified with 5 % MMA	
	and DCP/MMA = $1/60$)	21
4.6	SEM micrograph of 90:10 MMA grafted HDPE/PVC blends	
	at high magnification (x10,000)	22
4.7	SEM micrographs of (a) 70:30 HDPE/PVC blends (b) 70:30	
	MMA grafted HDPE/PVC blends (modified with 5 % MMA	
	and DCP/MMA = $1/60$)	22
4.8	SEM micrographs of (a) 50:50 HDPE/PVC blends (b) 50:50	
	MMA grafted HDPE/PVC blends (modified with 5 % MMA	
	and DCP/MMA = $1/60$)	23
4.9	SEM micrographs of 90:10 MMA grafted HDPE/PVC blends	
	(a) modified by 5% MMA and (b) modified by 10% MMA	24
4.10	SEM micrographs of 90:10 MMA grafted HDPE/PVC blends	
	(a) modified by 5% MMA and (b) modified by 10% MMA	24
4.11	SEM micrographs of 90:10 MMA grafted HDPE/PVC blends	
	(a) modified by 5% MMA and (b) modified by 10% MMA	24

FIGURE	PAGE
4.12 Stress-strain curve of HDPE/PVC blend compared with	
MMA grafted HDPE/PVC blends	25
4.13 Effect of initial MMA concentration on the modulus of	
MMA grafted HDPE/PVC blends	25
4.14 Effect of initial MMA concentration on Izod impact strength	
of MMA grafted HDPE/PVC blends	25
4.15 Hydrogen bonding between MMA grafted HDPE and PVC	30
4.16 Carbonyl band shifts in MMA grafted HDPE/PVC blends as	
a function of initial MMA concentration	