INTERACTION OF MONO- AND BIMETALLIC RUTHENIUM CATALYSTS WITH OXYGENATED COMPOUNDS

Ms. Duangdao Sukjit

÷ 4

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 1999 ISBN 974-331-890-9

119584684

Thesis Title	:	Interaction of Mono-and Bimetallic Ruthenium Catalysts
		with Oxygenated Compounds
Ву	:	Ms. Duangdao Sukjit
Program	:	Petrochemical Technology
Thesis Advisors	:	Prof. Johannes Schwank
		Assoc. Prof. Sumaeth Chavadej

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

d hel

(Prof. Johannes Schwank)

Simueth Churdej

(Assoc. Prof. Sumaeth Chavadej)

Abr

(Prof. Somchai Osuwan)

ABSTRACT

##971004 : PETROCHEMICAL TECHNOLOGY

KEY WORDS : Bimetallic Catalysts/ TPD/ TPR/ Ruthenium/ Gold/ Oxygenated Compounds

Duangdao Sukjit : Interaction of Mono-And Bimetallic Ruthenium Catalysts with Oxygenated Compounds. Thesis Advisors: Prof. Johannes Schwank and Assoc. Prof. Sumaeth Chavadej 70 pp ISBN 974-331-890-9

Characterization and temperature-programmed studies were performed over a series of bimetallic Ru-Au catalysts supported on SiO₂ to examine their activity in methanol oxidation. Temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) of methanol and oxygen were used to probe the surface to understand its adsorption/desorption characteristics and redox characteristics. The relative amounts of Ru and Au in these bimetallic catalysts affected their characteristics (TPR and TPD profiles, BET surface areas, surface morphologies observed in SEM micrographs, and XRD patterns) and the catalytic activity in methanol oxidation. Although Au and Ru are immiscible in their bulk state, the TPR profiles, SEM micrographs, and XRD patterns provided evidence for interactions between Ru and Au in the bimetallic catalysts, especially in sample RS091 (3.32 %wt Ru, 0.61 %wt Au). Compared to other Ru-Au/SiO₂ catalysts investigated, catalyst RS091 had the highest BET surface area and was proved to be the best candidate for methanol oxidation. It required the lowest temperature to achieve both methanol conversion levels of 50 and 90 %. It also exhibited the lowest apparent activation energy values. After reaction, Ru was oxidized to RuO₂ and the active species deriving from the interaction between Ru and Au on silica was still active. The support material also affected on catalyst

characteristics and methanol oxidation. No evidence for bimetallic clusters was found on the bimetallic catalysts supported on alumina. Various products in addition to CO_2 were found on these catalysts causing the high methanol conversion.

1.11

٠

.

บทคัดย่อ

ควงคาว สุขจิตต์ : การศึกษาคุณลักษณะและปฏิกิริยาระหว่างตัวเร่งปฏิกิริยาโลหะ ประกอบรูธิเนียมและทองกับสารที่มีออกซิเจนเป็นองค์ประกอบ (Interaction of Mono-and Bimetallic Ruthenium Catalysts with Oxygenated Compounds) อ.ที่ปรึกษา : ศ. โจฮันเนส ชวางค์ และ รศ. สุเมธ ชวเคช 70 หน้า ISBN 974-331-890-9

ลักษณะสมบัติและโปรแกรมการเพิ่มอุณหภูมิเพื่อการหลุดจากผิวดูดซับ(Temperature-Programmed Methods) ถูกศึกษาบนตัวเร่งปฏิกิริยาโลหะประกอบรูธิเนียมและทองบนซิลิกา เพื่อ ตรวจสอบความว่องไวในการทำปฏิกิริยาในปฏิกิริยาออกซิเคชั่นของสารเมธานอล โปรแกรมการ เพิ่มอุณหภูมิเพื่อการหลุดจากผิวดูดซับ(Temperature-Programmed Desorption) ของเมธานอลและ รวมถึงโปรแกรมการเพิ่มอุณหภูมิเพื่อการเกิดปฏิกิริยารีคักชั่น ออกซิเจน (Temperature-Programmed Reduction) ถูกใช้ทคสอบบนผิวดัวเร่งปฏิกิริยานี้เช่นกันเพื่อศึกษาลักษณะสมบัติการ ดุดซับและลักษณะการรีดักชั่น ปริมาณสัมพันธ์ของรุธิเนียมและทองมีผลต่อลักษณะสมบัติของตัว เร่งปฏิกิริยาโลหะคู่ได้แก่ การรีดักชั่น(TPR), การกาย (TPD) รวมถึงพื้นที่ผิว (BET surface area). รูปแบบและโครงสร้าง (SEM micrographs), ลักษณะของผลึก (XRD patterns) ของตัวเร่งปฏิกิริยา ถึงแม้ว่าโลหะสองชนิคนี้จะไม่รวมตัวกันก็ และความว่องไวปฏิกิริยาออกซิเคชั่นสารเมธานอล ตาม แต่ลักษณะของการรีคักชั่น, รูป SEM และ XRD ช่วยชี้ให้เห็นชัดเจนถึงการเกิดปฏิกิริยา ระหว่างรูธิเนียมและทองในด้วเร่งปฏิกิริยาโลหะคู่ โดยเฉพาะด้วเร่งปฏิกิริยา RS091 (3.42 เปอร์เซ็นต์โดยน้ำหนักของรูธิเนียม และ 0.61 เปอร์เซ็นต์โดยน้ำหนักของทอง) ซึ่งมีพื้นที่ผิวสูงสุด และว่องไวในการทำปฏิกิริยาสูงสุดเมื่อเทียบกับตัวเร่งปฏิกิริยาดัวอื่นๆ ในการออกซิไดซ์สารเมษา ้นอลตัวเร่งปฏิกิริยานี้ต้องการอุณหภูมิต่ำสุดในการเปลี่ยนเมธานอลที่ระดับ 50 และ 90 เปอร์เซ็นต์ นอกจากนี้ยังมีค่าพลังงานกระตุ้นต่ำสุดอีกด้วย หลังจากเกิดปฏิกิริยารูธิเนียมถูกออกซิไคซ์เป็นรูธิ เนียมออกไซด์ และดัวเร่งปฏิกิริยารูธิเนียมบนอะลูมินาถูกทคสอบคุณลักษณะเช่นเดียวกัน พบว่า ด้วสนับสนุนมีผลต่อคุณลักษณะปฏิกิริยาออกซิเคชั่นของเมธานอล เมธานอลถูกออกซิไดซ์เป็น สารประกอบอื่น ๆ หลากหลายชนิดนอกจากการ์บอนไดออกไซด์ที่พบเมื่อใช้ชิลิกาเป็นตัวสนันส นอกจากนี้แล้วรูธิเนียมและทองไม่เกิดปฏิริยากันบนตัวสนับสนุนอะลูมินานี้ นน

ACKNOWLEDGEMENTS

This thesis work was carried out at the Petroleum and Petrochemical College, Chulalongkorn University with the academic partnership among University of Michigan, University of Oklahoma, and Case Western Reserve University during the years 1997-1999. The scholarship from this college throughout my study is gratefully acknowledged.

I am very grateful to Assoc. Prof. Sumaeth Chavadej for entrusting me with this challenging topic, and for supporting my work over the year. To my US advisor, Prof. Johannes Schwank, I extend thanks for providing this invaluable work as well as the catalyst materials, contributions, advice and comments, as well as for the fine spirit maintained throughout the work. Above all, my thank is due to Mr. Pakornphant Chantaravitoon, PhD student, for the pleasant cooperation and useful suggestions.

My greatest debt of gratitude lines with the members of my family and my friends who have filled my life with daily joys and sorrows making the frustrations of an extended research effort easier to handle. And vice versa, it is surely my family and my friends who are most grateful that this work is finally at an end.

TABLE OF CONTENTS

Tittle Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vi
Table of Contents	vii
List of Tables	x
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	
	1.1 Introduction	1
	1.2 Research Objective	2
II	LITERATURE REVIEW	
	2.1 Background	3
	2.2 Theory	
	2.2.1 Temperature-Programmed Methods	8
	(a) Temperature-Programmed Reduction (TPR)	8
	(b) Temperature-Programmed Desorption(TPD)	10
	2.2.2 Bimetallic Catalysts	12
	2.2.2.1 Ruthenium-Gold Catalysts	15
	2.2.3 Methanol Oxidation	17

CH	A]	P7	ľE	R
----	----	----	----	---

PAGE

38

III	EXPERIMENTAL			
	3.1 Materials			
	3.1.1 Studied Catalysts	20		
	3.1.2 Studied Gases and Oxygenated Compounds	22		
	3.2 Catalysts Characterization			
	3.2.1 BET Surface Area	22		
	3.2.2 Scanning Electron Microscopy (SEM)	22		
	3.2.3 X-ray Diffraction Measurement (XRD)	22		
	3.2.4 Temperature-Programmed Desorption (TPD)			
	and Temperature-Programmed Reduction (TPR)	23		
	3.3 Study of Methanol Oxidation Reaction			
	3.3.1 Equipment Set Up	25		
	3.3.2 Procedure of Oxidation Experiment	26		
IV	RESULTS AND DISCUSSION			
	4.1 Catalyst Characterization			
	4.1.1 BET Surface Area	29		
	4.1.2 Morphology of Catalysts	32		

- 4.1.3 X-ray Diffraction Analysis (XRD)4.1.4 Temperature-Programmed Methods
 - (a) TPD Profile of Methyl Alcohol 42
- (b) TPD Profile of Oxygen 44
- (c) TPR Profile with Pretreatment with Oxygen 47
- (d) TPR Profile without Pretreatment with Oxygen 50
- 4.2 Methanol Oxidation 52

CHAPTER

PAGE

V	CONCLUSIONS AND RECOMMENDATIONS			
	5.1 Conclusions	64		
	5.2 Recommendations	65		
	DEEDENCES			
	REFERENCES	66		
	CURRICULUM VITAE	70		

LIST OF TABLES

TABLE

PAGE

2.1	The electron structure of the transition metal group VIII and	
	non-transition metal group IB	12
2.2	Metal-oxygen interaction for Pt, Ru, and Ni	15
3.1	Chemical composition, average particle size of the Ru-Au/SiO ₂	21
3.2	Chemisorption data for Ru-Au/SiO ₂	21
4.1	Chemical composition and BET surface area of the mono-and	
	bimetallic Ru-Au catalysts on silica support	30
4.2	BET surface area of the bimetallic catalysts Ru-Au on the	
	different supports at the metal content of about 1 %wt	32
4.3	The methanol conversion observed at 473 K on the different	
	support ruthenium catalysts	63

4

LIST OF FIGURES

FIGURE		PAGE
2.1	Pathway of methanol oxidation	18
2.2	Schematic representation of the main reaction products as a	
	function of acido-basic character of the active sites	19
3.1	Schematic diagram of TPD/TPR 2900 instrument for TPD and	
	TPR experiments	24
3.2	Flow diagram of the experiment of methyl alcohol oxidation	27
4.1	The BET surface area of the bimetallic Ru-Au/SiO ₂ as a	
	function of Au content by weight percent of the total weight	30
4.2	The BET surface area of the bimetallic Ru-Au/SiO ₂ as a	
	function of Au content by atomic percent of the metal content	31
4.3	SEM micrograph of RS000 (4.69 %wt Au/SiO ₂)	33
4.4	SEM micrograph of RS014 (Ru-Au/SiO ₂)	33
4.5	SEM micrograph of RS048 (Ru-Au/SiO ₂)	34
4.6	SEM micrograph of RS091 (Ru-Au/SiO ₂)	34
4.7	SEM micrograph of RS100 (3.86 %wt Ru/SiO ₂)	35
4.8	SEM micrograph of silica support (Davison 951N)	35
4.9	SEM micrograph of 0.7 % wt Ru-Au/η-Al ₂ O ₃	36
4.10	SEM micrograph of 0.7 % wt Ru/η-Al ₂ O ₃	36
4.11	SEM micrograph of 1 % wt Ru/SiO ₂	37
4.12	SEM micrograph of 1 % wt Ru/γ-Al ₂ O ₃	37
4.13	XRD patterns of (a)RS014 (b)RS048 (c)RS000 (d)RS091	
	and (f)Davision 951N silica	39

FIGURE

4.14	XRD patterns for (a)Ru-Au/ η -Al ₂ O ₃ (b)Ru/ η -Al ₂ O ₃	
	(c)Ru/SiO ₂ -Al ₂ O ₃ (d)Ru/ γ -Al ₂ O ₃ (e)1 %wt Ru/SiO ₂	41
4.15	Temperature-programmed desorption of methanol on (a)Ru me	etal
	(b)RS100 (c)RS091 (d)RS048 (e)RS014 (f)RS000 (g)SiO ₂	43
4.16	Temperature-programmed desorption of methanol on	
	(a)Ru/ η -Al ₂ O ₃ (b)Ru/SiO ₂ -Al ₂ O ₃ (c)Ru/ γ -Al ₂ O ₃	45
4.17	Temperature-programmed desorption of 5% oxygen on	
	(a)RS000 (b)RS091 (c)RS048 (d)RS014 (e)RS000	46
4.18	Temperature-programmed desorption of 5% oxygen on	
	(a) Ru/γ -Al ₂ O ₃ (b) Ru/SiO_2 -Al ₂ O ₃ (c) Ru/η -Al ₂ O ₃	
	(d)Ru-Au/ η -Al ₂ O ₃	48
4.19	Temperature-programmed reduction on (a)RS100 (b)RS091	
	(c)RS048 (d)RS014 (e)RS000 without pretreatment	
	with 5%oxygen	49
4.20	Temperature-programmed reduction on (a)RS100 (b)RS091	
	(c)RS048 (d)RS014 (e)RS000 pretreatment with 5% oxygen	50
4.21	Temperature-programmed reduction on (a)Ru/SiO ₂	
	(b)Ru/SiO ₂ -Al ₂ O ₃ (c)Ru/ γ -Al ₂ O ₃	53
4.22	Methanol conversion as a function of time on RS000 at	
	the different temperatures	54
4.23	Methanol conversion as a function of time on RS014 at	
	the different temperatures	55
4.24	Methanol conversion as a function of time on RS048 at	
	the different temperatures	55
4.25	Methanol conversion as a function of time on RS091 at	
	the different temperatures	56

PAGE

FIGURE

PAGE

4.26	Methanol conversion as a function of time on RS100 at	
	the different temperatures	56
4.27	Light-off temperature of methanol conversion in methanol	
	oxidation on the silica supported ruthenium catalysts	57
4.28	Arrhenius plots for the bimetallic ruthenium-gold catalysts	60
4.29	The rate of methanol oxidation on mono-and bimetallic Ru	
	catalysts as a function of Au content in atomic percent	61
4.30	XRD patterns after methanol oxidation for (a)RS014 (b)RS048	
	(c)RS000 (d)RS100 (e)RS091	62

. .

.

.