การสังเคราะห์และฤทธิ์ทางชีวภาพของออพติคัลลีแอกทีฟ 4,6-ไคอะมิโน-1,2-ไคไฮโคร-1,3,5-ไตรอาซีน

นางสาววนิคา วิริยะวารี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-13-0975-9 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

120507707

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF OPTICALLY ACTIVE 4,6-DIAMINO-1,2-DIHYDRO-1,3,5-TRIAZINE

Miss Wanida Wiriyawaree

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-13-0975-9

Thesis Title	Synthesis and Biological Activities of Optically Active 4,6-
	diamino-1,2-dihydro-1,3,5-triazine
By	Miss Wanida Wiriyawaree
Field of Study	Chemistry
Thesis Advisor	Assistant Professor Tirayut Vilaivan, D. Phil

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Ward: MTL. Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

Clar Kolep Chairman

(Professor Udom Kokpol, Ph.D.)

Through Vik- Thesis Advisor

(Assistant Professor Tirayut Vilaivan, D. Phil)

(Assistant Professor Preecha Lertpratchya, Ph. D.)

(Varawut Tangpasuthadol, Ph. D.)

วนิคา วิริยะวารี : การสังเคราะห์และฤทธิ์ทางชีวภาพของออพติคัลลีแอกทีฟ 4,6-ไดอะมิ-โน-1,2-ไคไฮโคร-1,3,5-ไตรอาซีน : (SYNTHESIS AND BIOLOGICAL ACTIVITIES OF OPTICALLY ACTIVE 4,6-DIAMINO-1,2-DIHYDRO-1,3,5-TRIAZINE) อาจารย์ที่ ปรึกษา : ผศ. คร. ธีรยุทธ วิไลวัลย์ ; 203 หน้า. ISBN 974-13-0975-9

สามารถแขกอิแนนทิโอเมอร์ของสารประกอบ 4,6-ไดอะมิโน-1,2-ไดไฮโดรไตรอาซีนบาง ชนิดได้โดยเทคนิดไครัล รีเวอร์สเฟส HPLC อิแนนทิโอเมอร์ที่แขกออกมาแสดงค่าดงที่การจับยึด กับเอนไซม์ไดไฮโดรโฟเลตรีดักเทส (DHFR) จากพลาสโมเดียมฟาลซิพารัมทั้งในแบบธรรมชาติ และมิวแตนท์ (mutant) A16VS108T ที่แตกต่างกันแต่ไม่สามารถระบุคอนฟิกกูเรชั่นของแต่ละ อิแนนทิโอเมอร์ที่แขกจากกันได้เนื่องจากสารที่แขกได้มีปริมาณจำกัดและเกิดการราซีไมซ์ได้ง่าย นอกจากนี้ยังสังเคราะห์ออฟติดัลลีแอกทีฟไดไฮโดรไตรอาซีนที่เป็นไดอะสเตอริโอไอโซเมอร์ได้ โดยวิธีการสังเคราะห์แบบอะซิมเมตริก (asymmetric synthesis) โดยทราบแอบโซลูทคอนฟิกกูเร-ชั่นที่แน่นอน แต่ไดอะสเตอริโอเมอร์ที่สังเคราะห์ได้ทุกตัวแสดงการจับขึดกับเอนไซม์ทั้งแบบ ธรรมชาติและแบบมิวแตนท์ได้ไม่ดี ดังนั้น จากผลการทดลองยังไม่สามารถยืนยันแบบจำลองของ โมเลกุลที่ทำนายรูปแบบของการจัดยึดกันระหว่างสารประกอบชนิดนี้กับเอนไซม์ได้ อย่างไรก็ตาม ผลการทดลองเบื้องค้นเสนอแนะว่าวิธีอะซิมเมตริก ทรานสฟอร์เมชั่น (asymmetric transformation) อาจนำไปสู่ความสำเร็จในการเตรียมออพติดัลลีแอกทีฟไดไฮโดรไตรอาซีนในปริมาณมากพอที่จะ ศึกษาคอนฟิกกูเรชั่นและฤทธิ์ทางชีวภาพต่อไป

ภาควิชา	เคมี	ลายมือชื่อนิสิต	afor a	igue off	
สาขาวิชา	เคมี	ลายมือชื่ออาจารย์ที่	ปรึกษา	d'anne.	Bloros
ปีการศึกษา		.ลายมืออาจารย์ที่ปรึเ	กษาร่วม		

4172429723 : MAJOR CHEMISTRY

KEY WORD: OPTICAL RESOLUTION / 4,6-DIAMINO-1,2-DIHYDRO-1,3,5-TRIAZINE / CYCLO-GUANIL / DIHYDROFOLATE REDUCTASE : SYNTHESIS AND BIOLOGICAL ACTIVITIES OF OPTICALLY ACTIVE 4,6-DIAMINO-1,2-DIHYDRO-1,3,5-TRIAZINE. THESIS ADVISOR : ASSISTANT PROFESSOR TIRAYUT VILAIVAN, D. Phil, 203 pp. ISBN 974-13-0975-9

Enantiomers of 4,6-diamino-1,2-dihydrotriazine have been successfully resolved by chiral HPLC. The enantiomers exhibited different binding constants to dihydrofolate reductase (DHFR) enzymes from *Plasmodium falciparum* both wild type and A16VS108T mutant. The absolute configuration, however, could not be determined due to the small amounts of materials available and racemization of the enantiomers. Another series of optically active diastereoisomers dihydrotriazines with known absolute configuration at C_2 were synthesized by asymmetric synthesis. These compounds showed very poor binding affinity to both wild type and mutant DHFR. No significant difference in binding constant between each diastereomer was observed. The model of binding of dihydrotriazine to DHFR has therefore not yet been successfully validated. However, preliminary studies suggested that asymmetric transformation could be a possible route to prepare optically active dihydrotriazines in sufficient quantities for determination of structural configuration and further biological study in the future.

Department	.Chemistry	Student's signature	ิกษิงา	วิรัยเอารี
Field of study	.Chemistry	.Advisor's signature	Lice	ugut Vilan
Academic year		.Co-Advisor's signatur	·e	

ACKNOWLEDGEMENT

I wish to thank and express my deepest gratitude to Assistant Professor Dr. Tirayut Vilaivan, my thesis advisor, for his kindness, guidance, suggestions and assistance throughout the course of this research; Professor Dr. Udom Kokpol, Assistant professor Dr. Preecha Lertpratchya and Dr. Varawut Tangpasuthadol, thesis examiners, for their valuable comments and suggestions.

I would like to thank of Department of Chemistry, The Thailand Research Funds and The Graduate School, Chulalongkorn University for financial support to this research, Prof Yodhathai Thebtaranonth and Miss Chavanee Sirichaiwat (Mahidol University/NSTDA) for providing the chiral column and HPLC in crystallization of the diastereomeric salts, Dr. Sumalee Kamchonwongpaisan and Ms. Duenpen Japroong (National Science and Technology Development Agency (NSTDA)) for analyses of anti-DHFR (wild-type and mutant A₁₆VS₁₀₈T type) activities of all samples; Assistant Professor Dr. Palangpol Kongsaeree (Mahidol University) for Xray analysis; Assistant Chuchat Thamcharoen for his kind suggestion on kinetic studies; Dr. Khanit Suwanborirux and Mr. Amnut Pakdeeto (Faculty of Pharmacy, Chulalongkorn University) for the use of CD speetrometer and polarimeter; Ms. Amporn Ungpakornkaew and Ms. Wanwimon Thabdee (Chulalongkorn Research Equipment Centre) for elemental and NOE analysis; Ms. Nanthiga Panchan (the Institute for Genetic Engineering and Biotechnology) for MALDI-TOF mass spectrometry; Department of Chemistry, Chulalongkorn University for the use of facilities, equipment, glassware, and chemicals. I am also grateful to Dr. Roderick W. Bates, Assistant Professor Warinthorn Chavasiri and Assistant Professor Worawan Bhanthumnawin for chemicals and glasswares.

I wish to express my special thank to my best friends, Miss Neungruthai Saesaengseerung and Miss Netnapa Charoensetakul, for all of their kindness and hearty help involving HPLC, NMR and MASS and other in experiments. Thanks go towards everyone who has contributed suggestions and support throughout this work. Finally, I would like to pay respect to my family who had mormally supported and encouraged me during the studies

CONTENTS

VII

ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDHEMENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xx
LIST OF SCHEMES.	xx
LIST OF ABBREVIATIONS	xxi

CHAPTER I INTRODUCTION

Malaria	1
Drug used in the treatment of malaria	3
Drug resistance	4
DHFR as a target for antimalarial drug development	5
Identification of DHFR	9
Resolution of 4,6-diamino-1,2-dihydro-1,3,5-triazine	12
CHAPTER II EXPERIMENTAL	.14
2.1 General	.14
2.2 Resolution by formation of dihydrotriazine salts followed by	
recrystallization	.15
2.3 Resolution by chromatography using chiral stationary or mobile	
phase	.21
2.4 Asymmetric synthesis and resolution by means of covalently	
attaching chiral auxiliary to the racemic mixture of enantiomer	
followed by separation of the diastereeomeric mixture formed	.23
2.5 Study of rearrangement of 4,6-diamino-1,2-dihydro-1,3,5-triazine	
hydrochloride	54
2.6 Enzyme assays and inhibition by cycloguanil analogues	55

Viii

CHAPTER III RESULTS AND DISCUSSION

3.1	Resolution by formation of a diastereomeric salts followed	
	by recrystallization	56
3.2	Resolution by chromatography using chiral stationary of	
	mobile phase	63
3.3	Asymmetric synthesis and resolution by means of covalently	
	attaching chiral auxiliary to the racemic mixture of enantiomer	
	followed by separation of the diastereomeric mixture formed	73
3.4	Racemization and rearrangement of 4,6-diamino-1,2-dihydro-	
	1.3,5-triazine	108
3.5	Biological studies of optically active 4,6-diamino-1,2-dihydro-	
	1,3,5-triazine	113
3.6	Further prospects	117
CHAPTER IV	CONCLUSION	119
REFERENCE	S	120
APPENDICES	5	125
VITA		203

LIST OF FIGURES

Figure 1.1	Life cycle of malarial parasites2
Figure 1.2	Structure of antimalarial drugs4
Figure 1.3	Structure of folate
Figure 1.4	Summary of the folate pathway7
Figure 1.5	Folate in the pathways of nucleic acid7
Figure 1.6	Thymidylate synthesis9
Figure 1.7	Model of cycloguanil and analogues bound to wild type and
	A16VS108T mutant DHFR11
Figure 1.8	Structure of enantiomer of 4,6-diamino-1,2-dihydro-1,3,5-
	triazine12
Figure 3.1	Diastereomeric-(+)-camphorsulfonate salt of 1-(4'-chloro-
	phenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	(ID 12)
Figure 3.2	¹ H NMR spectra (CDCl ₃ , 200 MHz) of (+)-camphorsulfonate
	salt of 1-(4'-chlorophenyl)-2-phenyl-4,6-diamino-1,2-dihydro-
	1,3,5-triazine (ID 12) from recrystallization before (upper)
	and after (lower) addition of more (+)-camphorsulfonic acid
	as a chiral solvating agent
Figure 3.3	Diastereomeric-(+)-hydrogentartrate salt of 1-(4'-chlorophenyl)-
	2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine (ID 16)
Figure 3.4	¹ H NMR spectra (CDCl ₃ , 200 MHz) of (+)-hydrogentartrate
	salt of 1-(4'-chlorophenyl)-2-phenyl-4,6-diamino-1,2-dihydro-
	1,3,5-triazine (ID 12) (after adding more (+)-camphorsulfonic
	acid as a chiral solvating agent) before (upper) and after
	(lower) recrystallization

х

Figure 3.5	Chiral HPLC chromatogram of 4,6-diamino-1,2-dihydro-1,3,5-
	triazine (4); entry 1(upper) and (5); entry 17 (lower), (mobile
	phases: 15% MeOH and 85% 0.1 M triethylammonium acetate)65
Figure 3.6	Chromatogram of peak 1 (4a) (upper) and peak 2 (4b) (lower)
	of compound (4) after separation by chiral reverse phase
	HPLC67
Figure 3.7	CD spectra of (4a) and (4b) of compound (4) after separation
	by chiral reverse phase HPLC68
Figure 3.8	Chromatogram of peak 1 (5a) (upper) and peak 2 (5b) (lower)
	of compound (5) after separation by chiral reverse phase
	HPLC
Figure 3.9	CD spectra of sample (5a) and (5b) of compound (5) after
	separation by chiral reverse phase HPLC70
Figure 3.10	CD spectrum: racemization of pure enantiomer71
Figure 3.11	Chromatogram of 1-(4'-bromophenyl)-2-phenyl-4,6-diamino-
	1,2dihydro-1,3,5-triazine (4) before (upper) and after (lower)
	deterioration of the chiral reverse phase column under the same
	conditions72
Figure 3.12	Synthesis of 1-(4'-chlorophenyl)-2-[4'-(2''S-isopropyl-5''R-
	methyl-1"S-cyclohexyloxy)phenyl]-4,6-diamino-1,2-dihydro-
	1,3,5-triazine hydrochloride (46c)74
Figure 3.13	Attempted synthesis of 4-(2'S-isopropyl-5'R-methyl-1'S-
	cyclohexyloxy)-benzaldehyde (46a)75
Figure 3.14	Synthesis of 4-(2'S-isopropyl-5'R-methyl-1'S-cyclohexyloxy)
	benzaldehyde (46a) via Mitsunobu reaction76
Figure 3.15	Two component condensation of 1-(4'-chlorophenyl)-2-[4'-
	(2"S-isopropyl-5"R-methyl-1"S-cyclohexyloxy)phenyl]-
	4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (46c)77
Figure 3.16	Two possible structure diastereoisomers of (46c) and (46c')77
Figure 3.17	Synthesis of 1-(4'-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-
-	dihydro-1,3,5-triazine hydrochloride (47c)78

Figure 3.18	X-ray structure of 1-(4'-butoxyphenyl)-2-phenyl-4,6-
	diamino-1,2-dihydro-1,3,5-triazine hydrochloride (47c)80
Figure 3.19	Synthesis of 1-['4(2''S-isopropyl-5''R-methyl-1''R-
	cyclohexyloxycarbonyl)phenyl]-2phenyl-4,6-diamino-
	1,2-dihydro-1,3,5-triazine hydrochloride (49d)82
Figure 3.20	Structure of diastereomers (49e), (49f) and (49g)83
Figure 3.21	Attempted synthesis of 1-[3'-(2"S-isopropyl-5"R-methyl-
	1"R-cyclohexyloxycarbonyl)phenyl]-2-phenyl-4,6-diamino-
	1,2-dihydro-1,3,5-triazine hydrochloride (50d)84
Figure 3.22	Attempted synthesis of 4-(α -methylbenzylcarbamoylphenyl)-
	biguanide hydrochloride (51c)85
Figure 3.23	Synthesis of dihydrotriazine via reaction of Schiff base with
	dicyanodiamide86
Figure 3.24	Synthesis of 1-benzyl-2-phenyl-4,6-diamino-1,2-dihydro-
	1,3,5-triazine (52b) <i>via</i> Schiff base
Figure 3.25	X-ray structure of dihydrotriazine (52b)
Figure 3.26	Attempted synthesis of diasteroisomer (53b)
Figure 3.27	Attempted synthesis of 2S-(2'phenyl-4',6'-diamino-1',2'-
	dihydro-1',3',5'-triazin-1'-yl)-2-phenylacetic acid methyl
	ester trifluoroacetate diastereomers (54b) and (54b')90
Figure 3.28	Cyclization of (54b) to (54c)
Figure 3.29	X-ray structure of dihydrotriazine (54d)92
Figure 3.30	¹ H NMR (DMSO, 200 MHz) spectra of the phenylalanine
	residue before (upper) and after (lower) racemization of the
	phenylalanine residue93
Figure 3.31	Resonance stabilization of the planar anion94
Figure 3.32	Mechanism of formation of all four possible stereoisomers
	of (54d) 95
Figure 3.33	Synthesis of 1-(1'RS-phenylethyl-2SR-phenyl-4,6-diamino-
	1,2-dihydro-1,3,5-triazine trifluoroacetate (55b)96

XI

xii

Figure 3.34	X-ray structure of synthesis of 1-(1'RS-phenylethyl)-
	2SR-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine
	picrate (55b) 97
Figure 3.35	The configuration structure of 1-(1'RS-phenylethyl)-2SR-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate
	(55b') and (55b'')
Figure 3.36	NOE difference spectra of 1-(1'S-phenylethyl)-2R-phenyl-
	4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate
	(55b'')
Figure 3.37	CD spectra (MeOH) of diastereomers (55b'); 49.1 µM
	and (55b'') ; 51.5 μM100
Figure 3.38	Attempted synthesis of (RS)-1- α -methylbenyl-2,2-dimethyl-
	4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (56b)101
Figure 3.39	NOE spectra of rearrangement product (57b)102
Figure 3.40	Structure of optically active dihydrotriazines (55b'),
	(55b''), (55b''') and (55c)103
Figure 3.41	Chromatogram of dihydrotriazines (55b") and (55b")104
Figure 3.42	Attempted synthesis of optically active dihydrotriazines (58)
	and (59)104
Figure 3.43	Alkylation of N-OH bond in dihydrotriazine of N_1 -hydroxy
	using optically active alkyl halides105
Figure 3.44	Attempted synthesis of S - α -(2'-phenyl-4',6'-diamino-
	1',2'-dihydro-1',3',5'-triazine-1'-yloxy)phenylacetic acid
	hydrobromide (61b)106
Figure 3.45	Attempted synthesis of S- α -(2'-phenyl-4',6'-diamino-1',2'-
	dihydro-1',3'-5'-triazin-1'-yloxy)phenylacetic acid methyl
	ester methanesulfonate (62c)107
Figure 3.46	Racemization and rearrange of (55b")108
Figure 3.47	¹ H NMR spectra (DMSO, 200 MHz) of (55b'') before,
	between, and after rearrangement respectively109

Figure 3.48	The assumption rearrangement/racemization mechanism of
	dihydrotriazine110
Figure 3.49	Transformation of diasteriomeric compound (3) by
	application of Dimroth's principle117
Figure 3.50	¹ H NMR spectrum (CDCl ₃ , 200 MHz) of the racemic (upper)
	and the asymmetrically transformed D(-)-mandelate salt
	of 1-(3',4'-dichlorophenyl)-4,6-diamino-1,2-dihydro-
	1,3,5-triazine (lower)118
Figure 1	¹ H NMR spectrum (D ₂ O) of 1-(4'-chlorophenyl)-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (1)126
Figure 2	¹ H NMR spectrum (D ₂ O) of 1-(4'-chlorophenyl)-2-
	methyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (2)
Figure 3	¹ H NMR spectrum (D ₂ O) of 1-(4'-chlorophenyl)-2-
	ethyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (3)128
Figure 4	¹ H NMR spectrum (D_2O) of 1-(4'-bromophenyl)-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (4)129
Figure 5	¹ H NMR spectrum (D ₂ O) of 1-(4'-methylphenyl)-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (5)130
Figure 6	¹ H NMR spectrum (D ₂ O) of 1-(3'-chlorophenyl)-2-
	propyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (6)131
Figure 7	¹ H NMR spectrum (D ₂ O) of 1-(3',4'-dichlorophenyl)-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (7)132

Figure 8	¹ H NMR spectrum (D ₂ O) of 1-(3',4'-dichlorophenyl)-2-
	methyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (8)133
Figure 9	¹ H NMR spectrum (D ₂ O) of 1-(3',4'-dichlorophenyl)-2-
	propyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (9)134
Figure 10	¹ H NMR spectrum (CDCl ₃) of 4-(2'S-isopropyl-5'R-methyl-
	1'S-cyclohexyloxy) benzaldehyde (46a)
Figure 11	¹ H NMR spectrum (DMSO) of 1-(4'-chlorophenyl)-2-[4'-(2''S-
	isopropyl-5R"-methyl-1"S-cyclohexyloxy)phenyl]4,6-
	diamino-1,2-dihydro-1,3,5-triazine hydrochloride (46c)136
Figure 12	¹ H NMR spectrum (DMSO) of 1-(4'-sec-butoxyphenyl)-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (47c)137
Figure 13	¹ H NMR spectrum (CDCl ₃) of 4-nitrobenzoic acid (-)-menthyl
	ester (49a)138
Figure 14	¹ H NMR spectrum (DMSO) of 4-(2'S-isopropyl-5'R-methyl-
	l'R-cyclohexyloxycarbonyl)phenylbiguanide
	hydrochloride (49c)139
Figure 15	¹ H NMR spectrum (DMSO) of 1-[4'-(2"S-isopropyl-5"R-methyl-
	1"R-cyclohexyloxycarbonyl)phenyl]-2-phenyl-4,6-diamino-
	1,2-dihydro-1,3,5-triazine hydrochloride (49d)140
Figure 16	¹ H NMR spectrum (CDCl ₃) of 3-nitrobenzoic acid (-)-menthyl
	ester (50a)141
Figure 17	¹ H NMR spectrum (CDCl ₃) of (\pm)- <i>N</i> -(α -methylbenzyl)-
	4-aminobenzamide (51b)142
Figure 18	¹ H NMR spectrum (CDCl ₃) of <i>N</i> -benzylidenebenzylamine (52a)143
Figure 19	¹ H NMR spectrum (DMSO) of 1-benzyl-4,6-diamino-1,2-
	dihydro-1,3,5-triazine trifluoroacetate (52b)144

Figure 20	¹ H NMR spectrum (CDCl ₃) of <i>N</i> -benzylidene- <i>R</i> -phenylglycine
	methyl ester (53b)145
Figure 21	¹ H NMR spectrum (CDCl ₃) of <i>N</i> -benzylidene- <i>S</i> -phenylalanine
	methyl ester (54a)146
Figure 22	¹ H NMR spectrum (DMSO) of dihydrotriazine (54d)147
Figure 23	¹ H NMR spectrum (CDCl ₃) of racemic <i>N</i> -benzylidene-
	2-methylbenzylamine (55a)148
Figure 24	¹ H NMR spectrum (DMSO) of racemic 1-(1'RS-phenylethyl)-
	2SR-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	trifluoroacetate (55b)149
Figure 25	¹ H NMR spectrum (CDCl ₃) of (R)- N -benzylidene-2-
	Methylbenzylamine (55a')150
Figure 26	¹ H NMR spectrum (DMSO) of 1-(1' <i>R</i> -phenylethyl)-2 <i>S</i> -phenyl-
	4,6-diamino-1,2-dihydro-1,3,5- triazine trifluoroacetate (55b')151
Figure 27	¹ H NMR spectrum (CDCl ₃) of (S)-N-Benzylidene-2-
	Methylbenzylamine (55a'')152
Figure 28	¹ H NMR spectrum (DMSO) of 1-(1'S-phenylethyl)-2 <i>R</i> -phenyl-
	4,6-diamino-1,2-dihydro-1,3,5- triazine trifluoroacetate (55b'')153
Figure 29	¹ H NMR spectrum (D ₂ O) of (<i>RS</i>)- α -methylbenzylbiguanide
	hydrochloride (56a)154
Figure 30	¹ H NMR spectrum (DMSO) of rearrangement product
	(57b)155
Figure 31	¹ H NMR spectrum (DMSO) of R - α -bromophenylacetic
	acid (61a) 156
Figure 32	¹ H NMR spectrum (DMSO) of (R)- α -methanesulfonyloxy-
	phenylacetic acid methyl ester (62b)157
Figure 33	Calibration curve of 1-(4'-bromophenyl)-2-phenyl4,6-
	diamino-1,2-dihydro-1,3,5-triazine hydrochloride (4)158
Figure 34	Calibration curve of 1-(4'-methylphenyl)-2-phenyl-4,6-
	diamino-1,2-dihydro-1,3,5-triazine hydrochloride (5)159

xvi

Figure 35	Calibration curve of 1-(1'S-phenylethyl)-2R-phenyl-4,6-
	diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (55b")160
Figure 36	Measurement the racemization of the rate of deuterium
	exchange of (54d) 161
Figure 37	Racemization/rearrangement of 1-(1'S-phenylethyl)-2R-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine (55b'')162
Figure 38	Rate of rearrangement of 1-(4'-chlorophenyl)-2-phenyl-4,6-
	diamino-1,2-dihydro-1,3,5-triazine hydrochloride (1)164
Figure 39	Rate of rearrangement of 1-benzyloxy-2-phenyl-4,6- diamino-1,2-dihydro-1,3,5-triazine (63)165
Figure 40	Rate of rearrangement of 1-benzyl-2-phenyl-4,6-diamino-
	1,2-dihydro-1,3,5-triazine hydrochloride (64)166
Figure 41	Rate of rearrangement of 1-benzyl-2-phenyl-4,6-diamino-
	1,2- dihydro-1,3,5-triazine trifluororacetate (65)167
Figure 42	Rate of rearrangement of 1-benzyl-2-(4'-nitrophenyl)-4,6-
	diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (66)168
Figure 43	Rate of rearrangement of 1-benzyl-2-(4'-chlorophenyl)-4,6-
	diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (67)169
Figure 44	Rate of rearrangement of 1-benzyl-2-(4'-methoxyphenyl)-4,6-
	diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (68)170

LIST OF TABLES

Table 1.1	Characteristics of a Putative Target5
Table 1.2	Metabolism of Nucleic Acids in Humans and Plasmodia8
Table 1.3	K _i values for the cycloguanil and derivatives compared with
	their 2-monomethyl derivatives10
Table 3.1	Diastereomeric salts of dihydrotriazine61
Table 3.2	4.6-Diamino-1,2-dihydro-1,3,5-triazine analyzed by
	chiral reverse phase HPLC64
Table 3.3	The k values of the reaction of rearrangement of
	dihydrotriazine111
Table 3.4	Inhibition costants (K _i) dihydrotriazine and its enatiomers
	against the Wild-type and A16V+S108T Mutant
	of <i>P. falciparum</i> 115
Table 1	Crystal data and structure refinement for 1-(4'-sec-
	butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-
	triazine hydrochloride (47c)171
Table 2	Atomic coordinates [$x \ 10^4$] and equivalent isotropic
	displacement parameters $[Å^2 \times 10^3]$ for 1-(4'-sec-butoxy-
	phenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride (47c). U(eq) is defined as one third of the
	trace of the orthogonalized U_{ij} tensor
Table 3	Bond lengths [Å] and angles [°] for 1-(4'-sec-butoxyphenyl)-
	2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	hydrochloride174
Table 4	Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 1-(4'-
	sec-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-
	1,3,5-triazine hydrochloride (47c). The anisotropic
	displacement factor exponent takes the form:
	$-2\pi^2$ [(ha [*]) $^2U_{11}$ + + 2hka [*] b [*] U_{12}] hydrochloride (47c)

Table 5	Crystal data and structure refinement for 1-benzyl-2-
	phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	trifluoroacetate (52b)180
Table 6	Atomic coordinates [x 10 ⁴] and equivalent isotropic
	displacement parameters $[Å^2 \times 10^3]$ for 1-benzyl-
	2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	trifluoroacetate (52b). U(eq) is defined as one third of
	the trace of the orthogonalized U_{ij} tensor
Table 7	Bond lengths [Å] and angles [°] for 1-benzyl-2-phenyl-4,6-
	diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate(52b)182
Table 8	Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 1-benzyl-
	2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoro-
	acetate (52b). The anisotropic displacement factor exponent
	takes the form: $-2\pi^2$ [(ha [*]) $^2U_{11}$ + + 2hka [*] b [*] U_{12}]
Table 9	Crystal data and structure refinement for dihydrotriazine
	(54d)186
Table 10	Atomic coordinates [$x \ 10^4$] and equivalent isotropic
	displacement parameters $[Å^2 \times 10^3]$ for dihydrotriazine
	(54d). U(eq) is defined as one third of the trace of the
	orthogonalized U_{ij} tensor
Table 11	Bond lengths [Å] and angles [°] for dihydrotriazine (54d)189
Table 12	Anisotropic displacement parameters $[Å^2 \times 10^3]$ for
	dihydrotriazine (54d). The anisotropic displacement
	factor exponent takes the form: $-2\pi^2$ [(ha [*]) $^2U_{11}$
	+ + 2hka $b^{*}U_{12}$]
Table 13	Crystal data and structure refinement for 1RS-phenylethyl-
	2SR-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	picrate (55b)194

Table 14	Atomic coordinates [$x \ 10^4$] and equivalent isotropic
	displacement parameters $[Å^2 \times 10^3]$ for 1 <i>RS</i> -phenylethyl-
	2SR-phenyl-4,6- diamino-1,2-dihydro-1,3,5-triazine
	picrate (55b). U(eq) is defined as one third of the trace
	of the orthogonalized U_{ij} tensor
Table 15	Bond lengths [Å] and angles [°] for 1 <i>RS</i> -phenylethyl-
	2SR-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine
	picrate (54b)
Table 16	Anisotropic displacement parameters $[Å^2 \times 10^3]$ for
	1RS-phenylethyl-2SR-phenyl-4,6-diamino-1,2-dihydro-
	1,3,5-triazine picrate (54b). The anisotropic displacement
	factor exponent takes the form: $-2\pi^2$ [(ha [*]) 2 U ₁₁
	+ + 2hka $b^{*}U_{12}$]

LIST OF SCHEMES

Scheme 3.1	Synthesis of diasteroisomer (47c) starting from	
	racemic (2)-bromobutane	79
Scheme 3.2	Attempted synthesis of chiral amino compound (48b)	81

LIST OF ABBREVIATIONS

i) Nomenclature and abbreviations of nucleic acids,enzymes and other biochemical

DHFR	dihydrofolate resuctase
DHFR-TS	dihydrofolate resuctase-thymidylate synthase
FH ₄	tetrahydrofolate
GTP	guanosine triphosphate
pfDHFR	Plasmodium falciparum dihydrofolate reductase
А	Alanine
S	Serine
Т	Threonine
V	Valine

ii) Miscellaneous

abs.	absolute
Anal.	Analytical
br	broad
°C	degree celcius
Calcd.	calculated
CDCl ₃	deuterated chloroform
conc.	concentrated
Сус	cycloguanil
d	doublet
dd	doublet of doublet
dt	doublet of triplet
DIAD	diisopropylazodicarboxylate
DMF	N,N'-dimethylformamide
DMSO. _{d6}	deuterated dimethyl sulfoxide

D_2O	deuterium oxide
eq	equivalents
Et ₂ O	diethyl ether
g	gram
hr	hour
Hz	hertz
J	coupling constant
k	rate of reaction constant
Ki	inhibition constant
m	multiplet
MALDI-TOF	matrix-assisted laser desorption/ionization-time of flight
MHz	megahertz
mg	milligram
min	minute
mL	milliliter
mmol	millimole
mp.	Melting point
mut.	Mutant
m/z	mass pre charge ration
nM	nanomolar
NMR	muclear magnetic resonance
ppm	part per million
Pyr	pyrimethamine
q	quartet
S	singlet
t	triplet
TLC	thin layer chromatography
wt.	wild-type
δ	chemical shift