REFERENCES

- 1. Hall, R. P. XIII Malaria. Protozoology (1961): 597-623.
- Butler, D. Time to Put Malaria Control on the Global Agenda. *Nature* 386(1997): 535-536.
- 3. Lee, M. Malaria in Search of Solutions. Chemistry in Britain (1996): 28.
- Casteel, D. A. Antimalarial Agents. Burger's Medicinal Chemistry and Drug Discovery. 5th ed. New York: John wiley & Sons, 5(1997): 4-91.
- Pratt, W. B. Chapter 10 The Chemotherapy of Malaria. Chemotherapy of Infection. New York: Oxford University Press, (1977): 307-340.
- Bruce-Chwatt, L. J., Black, R. H., Canfield, C. J., Clyde, D. F., Peters, W., and Wernsdorfer, W. H. Pharmacology of Compounds in Current Use. *Chemotherapy of Malaria*. Bruce-Chwatt, L. J. Ed. Geneva: World Helth Organization, (1986): 56-88.
- Klayman, D. L. Qinghaosu (Artemisinin): An Antimalarial Drug from China. Science 228(1985): 1049-1055.
- Bai, D. Traditional Chinese Medicines and New Drug Development. *Pure & Appl. Chem.* 65(1993): 1103-1112.
- Olliaro, L. P., Yuthavong, Y. An Overview of Chemotherapeutic Targets for Antimalarial Drug Discovery. *Phamacol. Ther.* 81(1999): 91-110.
- Yuthavong, Y. The Malarial Folate Pathway and Molecular Targets for Antimalarial Development. J. Sci. Soc. Thailand 22(1996): 181-186.
- Krungkrai, J., Yuthavong, Y., and Webster, H. K. Guanosine Triphosphate Cyclohydrolase in *Plasmodium falciparum* and Other *Plasmodium* Species. *Mol. Biochem. Parasitol.* 17(1985): 265-276.
- Blaney, J. M., Hansch, C., Silipo, C., and Vittoria, A. Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors. *Chem. Rev.* 84(1984): 333-407.
- Stryer, L. Chapter 25 Biosynthesis of Nucleotides. *Biochemistry*. 3rd ed. New York: W. H. Freeman and company, (1988): 614.

- 14. Cowman, A. F., Morry, M. J., Biggs, B. A., Cross, G. A. M., and Foote, S. J. Amino Acid Changes Linked to Pyrimethamine Resistance in the Dihydrofolate Reductase-Thymidylate Synthase Gene of *Plasmodium falciparum*. Proc. Natl. Acad. Sci. U.S.A 85(1988): 9109-9113.
- Peterson, D. S., Walliker, D., and Wellems, T. E. Evidence that a Point Mutation in Dihydrofolate Reductase-Thymidylate Synthase Confers Resistance to Pyrimethamine in Falciparum Malaria. *Proc. Natl. Acad. Sci. U.S.A* 85(1988): 9114-9118.
- Snewin, B. A., England, S. M., Sims, P. F. C., and Hyde, J. E. Characterization of the Dihydrofolate Reductase-Thymidylate Synthase Gene from Human Malaria Parasites Highly Resistant to Pyrimethamine. *Gene* 76(1989): 41-52.
- 17. Zolg, J. W., Plitt, J. R., Chen, G. –X., and Palmer, S. Point Mutations in the Dihydrofolate Reductase-Thymidylate Synthase Gene as the Molecular Basis for Pyrimethamine Resistance in *Plasmodium falciparum*. *Mol. Biochem. Parasitol.* 36(1989): 253-262.
- Hyde, J. E. Point Mutations and Pyrimethamine Resistance in *Plasmodium falciparum*. *Parasitol. Today* 5(1989): 252-255.
- Foote, S. J., Galatis, D., and Cowman, A. F. Amino Acids in the Dihydrofolate Reductase-Thymidylate Synthase Gene of *Plasmodium falciparum* Involved in Cycloguanil Resistance Differ from those Involved in Pyrimethamine Resistance. *Proc. Natl. Acad. Sci. U.S.A* 87(1990): 3014-3017.
- Peterson, D. S., Milhous, W. K., and Wellems, T. E. Molecular Basis of Differential Resistance to Cycloguanil and Pyrimethamine in *Plasmodium falciparum* Malaria. *Proc. Natl. Acad. Sci. U.S.A* 87 (1990): 3018-3022.
- Thaithong, S., Chan, S. –W., Songsomboon, S., Wilairat, P., Seesod, N., Sueblinwong, T., Goman, M., Ridley, R., and Beale, C. Pyrimethamine Resistant Mutations in *Plasmodium falciparum*. *Mol. Biochem. Parasitol.* 52(1992): 149-158.

- 22. Sirawaraporn, W., Prapunwattana, P., Sirawaraporn, R., Yuthavong, Y., and Santi,
 D. V. The Dihydrofolate Reductase Domain of *Plasmodium falciparum* Thymidylate Synthase-Dihydrofolate Reductase. J. Biol. Chem. 268(1993): 21637-21644.
- 23. Basco, L. K., De Pecoulas, P. E., Wilson, C. M., and Le Bras, J. Point Mutations in the Dihydrofolate Reductase-Thymidylate Synthase Gene and Pyrimethamine and Cycloguanil Resistance in *Plasmodium falciparum. Mol. Biochem. Parasitol.* 69(1995): 135-138.
- 24. Rastelli, G., Sirawaraporn, W., Sompornpisut, P., Vilaivan, T.,

Kamchonwongpaisan, S., Quarrell, R., Lowe, G., Thebtaranonth, Y., and Yuthavong, Y. Interaction of Pyrimethamine, Cycloguanil, WR99210 and their Analogues with *Plasmodium falciparum* Dihydrofolate Reductase: Structural Basis of Antifolate Resistance. *Bioorg. & Med. Chem.* 8(2000): 1117-1128.

- 25. Secor, R. M. Resolution of Optical Isomers by Crystallization Procedures. *Chem Rev.* **297**(1962): 297-308.
- 26. Boyle, H. P. Methods of Optical Resolution. Quart. Rev. 25(1971): 323-341.
- 27. Cervinla, O. Resolution of Racemates to Enantiomers. *Enantioselective Reactions* Organic Chemistry. New York: Ellis Horwood, (1995): 5-14.
- Wilen, S. H., Collet, A., and Jacques, J. Strategies in Optical Resolutions. *Tetrahedron* 33(1977): 2725-2736.
- Zingg, S. P., Arnett, E. M., McPhail, A. T., Bothner-By, A. A., and Gilkerson, W.
 R. Chiral Discrimination in the Structrues and Energetics of Mandelic Acid with α-Phenethylamine, Ephedrine, and Pseudoephedrine. J. Am. Chem. Soc. 110(1988): 1565-1580.
- Vries, T., Wynberg, H., van Echten, E., Koek, J., Hoeve, T. W., Kellogg, M. R., Broxterman, Q. B., Minnaard, A., Kaptein, B., van der Sluis, S., Hulshof, L., and Kooistra, J. The Family Approach to the Resolution of Racemates. *Angew. Chem. Int. Ed.* 37(1998): 2349-2354.
- 31. Carrington, H. C., Crowther, A. F., and Stacey, C. J. Synthetic Antimalarials. Part XLIX. The Structure and Synthesis of the Dihydrotriazine Metabolite of Proguanil. J. Chem. Soc. (1954): 1017-1031.

- 32. Pascale, C., Serge, T., Herve, M., Pierre, R. B., and Marie-Claude, F. -Z. Optimal Recognition of Neutral Endopeptidase and Angiotensin-Converting Enzyme Active Sites by Mercaptocyldipeptides as a Means to Design Potent Dual Inhibitors. J. Med. Chem. (1996): 1210-1219.
- 33. Segal, I. H. Behavior and Analysis of Steady-State and Rapid Equilibrium Enzyme Systems. In Enzyme Kinetics. Segal, I. H. Ed. New York: Wiley-Interscience, (1975): 100-160.
- 34. Jacques, J., Fouquey, C., and Viterbo, R. Enantiomeric Cyclic Binaphthyl Phosphoric Acids as Resolving Agent. *Tetrahedron Lett.* (1971): 4617-4620.
- 35. Pappo, R., Collins, P., and Jung, C. Resolution and Configurational Assignments of Methyl-3-hydroxy-5-oxo-cyclopent-1-ene heptanoate, an Important Prostaglandin Intermediate. *Tetrahedron Lett.* (1973): 943-944.
- 36. Addadi, L., Mil, J. V., and Lahav, M. Useful Impurities for Optical Resolution. 2. Generality and Mechanism of the Rule of Reversal. J. Am. Chem. Soc. 103(1981): 1249-1251.
- 37. Hassan, A. N., Bayer, E., and Jochems, C. J. Synthesis of Optically Active α-Amino nitriles by Asymmetric Transformation of the Second Kind Using a Principle of O. Dimroth. J. Chem. Soc., Perkin Trans. 1. (1998): 3747-3757.
- Modest, E. J., and Levine, P. Chemical and Biological Studies on 1,2-Dihydros-triazines. III. Two-Component Synthesis. J. Org. Chem. 26(1956): 14-20.
- 39. Vilaivan, T., and Saesaengseerung, N., unpublished results.
- Modest, E. J. Chemical and Biological Studies on 1,2-Dihydro-s-triazines. II. Three-Component Synthesis. J. Org. Chem. 26(1956): 1-13.
- 41. Newman, H., and Moon, E. L. The Reaction of Schiff Bases with Dicyanodiamide. A New Synthesis of 4,6-Diamino-1,2-dihydro-symtriazines. J. Org. Chem. 29(1964): 2061-2063.
- 42. Green, J., McHale, D., and Mamalis, P. Improvements in or Relating to Triazine Derivatives. Patent Specification 831,252 (March 23, 1960).

- 43. Mamalis, P., Green, J., Outred, D. J., and Rix, M. Amino-oxy-derivatives. Part III. Dihydrotriazines and Related Heterocycles. J. Chem. Soc. (1962): 3915-3926.
- 44. Frost, A. A., and Pearson, R. G. Empirical Treatment of Reaction Rate. *Kinetics and Mechanism.* 2nd ed. New York: John Wiley & Sons, (1952): 8-14.

APPENDICES

Figure 1 ¹H NMR spectrum (D₂O) of 1-(4'-chlorophenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (1)

Figure 2¹H NMR spectrum (D₂O) of 1-(4'-chlorophenyl)-2-methyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (2)

Figure 3 ¹H NMR spectrum (D₂O) of 1-(4'-chlorophenyl)-2-ethyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (3)

Figure 4¹H NMR spectrum (D₂O) of 1-(4'-bromophenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (4)

Figure 5¹H NMR spectrum (D₂O) of 1-(4'-methylphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (5)

Figure 6¹H NMR spectrum (D₂O) of 1-(3'-chlorophenyl)-2-propyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (6)

Figure 7¹H NMR spectrum (D₂O) of 1-(3',4'-dichlorophenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (7)

Figure 8¹H NMR spectrum (D₂O) of 1-(3',4'-dichlorophenyl)-2-methyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (8)

Figure 9¹H NMR spectrum (D₂O) of 1-(3',4'-dichlorophenyl)-2-propyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (9)

Figure 10¹H NMR spectrum (CDCl₃) of 4-(2'S-isopropyl-5'R-methyl-1'S-cyclohexyloxy)benzaldehyde (46a)

•

Figure 11 ¹H NMR spectrum (DMSO) of 1-(4'-chlorophenyl)-2-[4'-(2''*S*-isopropyl-5*R*''-methyl-1''*S*-cyclohexyloxy)phenyl]4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (46c)

Figure 12¹H NMR spectrum (DMSO) of 1-(4'-sec-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (47c)

Figure 13 ¹H NMR spectrum (CDCl₃) of 4-nitrobenzoic acid (-)-menthyl ester (49a)

Figure 14 ¹H NMR spectrum (DMSO) of 4-(2'*S*-isopropyl-5'*R*-methyl-1'*R*-cyclohexyloxycarbonyl)phenylbiguanide hydrochloride (49c)

Figure 15 ¹H NMR spectrum (DMSO) of 1-[4'-(2''S-isopropyl-5''R-methyl-1''R-cyclohexyloxycarbonyl)phenyl]-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (49d)

Figure 16¹H NMR spectrum (CDCl₃) of 3-nitrobenzoic acid (-)-menthyl ester (50a)

Figure 17 ¹H NMR spectrum (CDCl₃) of (\pm)-*N*-(α -methylbenzyl)-4-aminobenzamide (51b)

Figure 18 ¹H NMR spectrum (CDCl₃) of *N*-benzylidenebenzylamine (52a)

Figure 19¹H NMR spectrum (DMSO) of 1-benzyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (52b)

Figure 20¹H NMR spectrum (CDCl₃) of *N*-benzylidene-*R*-phenylglycine methyl ester (53b)

Figure 21 ¹H NMR spectrum (CDCl₃) of *N*-benzylidene-*S*-phenylalanine methyl ester (54a)

Figure 22 ¹H NMR spectrum (DMSO) of dihydrotriazine (54d)

Figure 23 ¹H NMR spectrum (CDCl₃) of racemic *N*-benzylidene-2-methylbenzylamine(55a)

Figure 24 ¹H NMR spectrum (DMSO) of racemic 1-(1'*RS*-phenylethyl)-2*SR*-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate **(55b)**

Figure 25 ¹H NMR spectrum (CDCl₃) of (R)-N-benzylidene-2-methylbenzylamine (55a')

Figure 26¹H NMR spectrum (DMSO) of 1-(1'*R*-phenylethyl)-2*S*-phenyl-4,6-diamino-1,2-dihydro-1,3,5- triazine trifluoroacetate (55b')

Figure 27¹H NMR spectrum (CDCl₃) of (S)-N-benzylidene-2-methylbenzylamine (55a'')

Figure 28¹H NMR spectrum (DMSO) of 1-(1'S-phenylethyl)-2*R*-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (55b'')

Figure 29 ¹H NMR spectrum (D₂O) of (*RS*)- α -methylbenzylbiguanide hydrochloride (56a)

Figure 30 ¹H NMR spectrum (DMSO) of rearrangement product (57b)

Figure 31 ¹H NMR spectrum (CDCl₃) of R- α -bromophenylacetic acid (61a)

Figure 32 ¹H NMR spectrum (CDCl₃) of (R)- α -methanesulfonyloxyphenylacetic acid methyl ester (62b)

stock solution (µL)	Volume (mL)	C (mg/mL)	A(254)
5	3005	0.003	0.074
10	3010	0.006	0.149
15	3015	0.009	0.222
20	3020	0.012	0.296
30	3030	0.018	0.446
40	3040	0.024	0.595
50	3050	0.030	0.743
60	3060	0.035	0.891
70	3070	0.041	1.040

Dihydrotriazine (4) 1.8 mg / mL (MeOH)

Figure 33 Calibration curve of 1-(4'-bromophenyl)-2-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine hydrochloride (4)

Stock solution (µL)	Volume (mg/mL)	C (mg/mL)	A(254)
5	3005	0.004	0.102
10	3010	0.008	0.206
15	3015	0.012	0.311
20	3020	0.017	0.414
30	3030	0.025	0.624
40	3040	0.033	0.830
50	3050	0.0410	1.039

Dihydrotriazine (5) 2.5 mg / mL (MeOH)

Figure 34 Calibration curve of 1-(4'-methylphenyl)-2-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine hydrochloride (5)

C (mg/mL)	C (mg/1000ml)	A (254)
0.003	3.0	0.101
0.006	6.0	0.172
0.010	10.0	0.244
0.014	14.0	0.332
0.018	18.0	0.418
0.024	24.0	0.561
0.030	30.0	0.701
0.034	34.0	0.791
0.040	40.0	0.941

Dihydrotriazine (55b") 2.0 mg in MeCN 10 mL

Figure 35 Calibration curve of 1-(1'S-phenylethyl)-2*R*-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine trifluoroacetate (55b'')

Time (hr)	% Deuterium incorperation
0.0	0.0
0.1	11.8
0.3	29.3
1.3	52.0
2.0	62.4
2.3	65.9
3.3	73.5
4.0	76.7
5.0	80.1
6.2	82.8
8.4	86.4
9.3	88.7
10.3	88.8
12.3	89.2
14.2	91.1
15.2	89.9
16.1	100.0

Figure 36 Measurement the racemization of the rate of deuterium exchange of (54d)

Time (hr)	(55b'')	Racemization	Rearrangement
0.0	0.20	0.00	0.00
0.4	0.23	0.06	0.05
1.3	0.20	0.05	0.17
2.0	0.16	0.05	0.24
2.3	0.13	0.04	0.24
3.2	0.07	0.02	0.33
3.4	0.03	0.01	0.22
4.0	0.00	0.00	0.23

a = starting material (55b'')
b = racemization product
d = rearrangement product

(1)

For first order reaction⁴⁴

R.R. =
$$-\underline{d}[A] = -k[A]$$

 dt
 $-\underline{d}[A] = -kdt$
integrate
 $\ln [A] = -kt + \ln [A]_{o}$

R.R = rate of reaction k = spcific rate constant [A] = the reactant concentration [A]₀ = the reactant concentration at the begining

Half-life for a reaction, $t_{1/2}$, was the time taken for the reactant concentration falling to half their initial concentration. From derived the equation

$$t_{1/2} = \frac{\ln 2}{k}$$
(2)

Time (hr)	% Rearrangement
0.0	0.0
5.2	11.0
12.0	26.2
21.4	42.8
33.5	63.9
44.5	79.5
57.0	85.2
74.5	90.4
92.0	95.4
103.4	96.7

Figure 38 Rate of rearrangement of 1-(4'-chlorophenyl)-2-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine hydrochloride (1)

Time (hr)	% Rearrangement
0.0	0.0
4.4	10.4
7.0	15.3
15.3	32.8
20.4	42.4
33.3	64.4
37.4	71.8
56.4	90.9
67.2	95.1
79.4	100.0

rate of rearrangement

Figure 39 Rate of rearrangement of 1-benzyloxy-2-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine (63)

Time (hr)	%Rearrangement
0.0	0.0
2.3	25.3
9.1	27.0
16.0	26.3
44.0	26.4
56.5	30.3
67.3	35.9

Figure 40 Rate of rearrangement of 1-benzyl-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (64)

Time (hr)	% Rearrangement
0.0	0.0
1.5	66.9
2.1	81.3
3.0	87.5
4.2	98.4
4.5	98.4
6.5	98.5
10.0	99.3
12.5	100.0

Figure 41 Rate of rearrangement of 1-benzyl-2-phenyl-4,6-diamino-1,2dihydro-1,3,5-triazine trifluororacetate (65)

Time (hr)	% Rearrangement
0.0	0.0
4.2	7.6
9.15	18.7
21.1	35.2
33.5	47.3
38.0	51.5
57.0	71.8
67.4	74.4

rate of rearrangement

Figure 42 Rate of rearrangement of 1-benzyl-2-(4'-nitrophenyl)-4,6-diamino-1,2dihydro-1,3,5-triazine trifluoroacetate (66)

Time (hr)	% Rearrangement
0.0	0
1.0	25.4
2.3	73.7
3.3	90.0
6.4	98.5
7.1	100.0

rate of rearrangement

Figure 43 Rate of rearrangement of 1-benzyl-2-(4'-chlorophenyl)-4,6-diamino-1,2dihydro-1,3,5-triazine trifluoroacetate (67)

Time (hr)	% Rearrangement
0.0	0.0
1.0	60.5
2.1	95.3
2.2	96.1
2.4	97.4
3.0	97.5
3.4	98.7

rate of rearrangement

Figure 44 Rate of rearrangement of 1-benzyl-2-(4'-methoxyphenyl)-4,6diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (68)

170

Identification code	tv899x
Empirical formula	C ₁₉ H ₂₄ ClN ₅ O
Formula weight	373.88
Temperature	293 (2) K
Wavelength	0.70930 Å
Crystal system	Triclinic
Space group	p-1
Unit cell dimensions	<i>a</i> = 68.8660 (10) Å alpha = 77.582 (11) °
	$b = 12.559 (2) \text{ Å} \text{ beta} = 77.863 (9) ^{\circ}$
	c = 18.943 (2) Å gama = 82.338 (11) °
Volume, Z	2005.3 (4) Å ³ , 4
Density (calculated)	1.238 Mg/m ³
Absorption coefficient	0.208 mm ⁻¹
F (000)	790
Crystal size	0.2 x 0.2 x 0.2 mm
θ range for data collection	2.18 to 25.93°
Limiting indices	$-10 \le h \le 10, -15 \le k \le 15, -23 \le 1 \le 23$
Reflections collected	15724
Independent reflections	$7862 (R_{int} = 0.1190)$
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7862 / 0 / 450
Goodness-of-fit on F ²	1.068
Final R indices [I>2 σ (I)]	R1 = 01047, wR2 = 0.2364
R indices (all data)	R1 = 0.3100, wR2 = 0.3076
Largest diff. peak and hole	0.740 and -0.505 eÅ ⁻³

Table 2 Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for 1-(4'-sec-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (47c). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	У	Z	U(eq)
N(4)	6581 (7)	8224 (5)	-37 (3)	52 (2)
O(6)	3494 (9)	4958 (6)	2301 (4)	97 (2)
N(9)	8549 (8)	9375 (5)	-703 (4)	61 (2)
N(11)	8139 (8)	10562 (5)	-1774 (3)	58 (2)
N(12)	4170 (8)	8512 (6)	-390 (4)	74 (2)
N(14)	6081 (8)	9630 (5)	-1044 (4)	57 (2)
C(16)	9339 (9)	7754 (7)	130 (4)	50 (2)
C(17)	7589 (10)	9847 (7)	-1172 (5)	55 (2)
C(20)	5647 (10)	8807 (7)	-491 (4)	55 (2)
C(23)	8031 (9)	8661 (7)	-7 (4)	57 (2)
C(26)	6060 (10)	6323 (7)	493 (5)	60 (2)
C(27)	11780 (12)	6186 (9)	340 (7)	89 (3)
C(29)	5448 (10)	7655 (7)	1270 (5)	60 (2)
C(30)	5501 (11)	5538 (7)	1093 (5)	69 (3)
C(32)	9953 (12)	7624 (7)	736 (4)	73 (3)
C(34)	6002 (9)	7396 (7)	585 (4)	57 (2)
C(36)	4956 (11)	5787 (9)	1749 (5)	70 (5)
C(38)	4916 (11)	6842 (9)	1865 (5)	77 (3)
C(40)	9906 (11)	7101 (8)	-369 (5)	72 (3)
C(41)	11228 (13)	6837 (10)	848 (6)	97 (4)
C(45)	11108 (12)	6309 (8)	-260 (6)	93 (3)
C(46)	3670 (2)	5148 (12)	3031 (5)	137 (6)
C(47)	4720 (2)	3397 (15)	3494 (8)	169 (7)
C(49)	1964 (19)	5739 (14)	3077 (9)	161 (6)
C(50)	3320 (2)	4174 (18)	3506 (8)	187 (7)
O(3)	11541 (7)	3403 (5)	5502 (3)	78 (2)
	<u> </u>			

X	У	Z	U(eq)
8233 (7)	1443 (5)	3995 (3)	49 (2)
6150 (7)	387 (5)	4066 (3)	56 (2)
7756 (8)	1005 (6)	2911 (3)	66 (2)
5578 (8)	146 (6)	2971 (3)	64 (2)
6493 (7)	890 (5)	5100 (3)	55 (2)
6988 (9)	898 (6)	4380 (4)	49 (2)
6489 (10)	499 (6)	3329 (4)	54 (2)
9942 (10)	2039 (7)	2786 (4)	55 (2)
9140 (10)	1928 (7)	4370 (4)	53 (2)
8638 (10)	2982 (7)	4528 (4)	62 (2)
10803 (11)	1860 (7)	5123 (4)	59 (2)
10483 (10)	1361 (6)	4579 (5)	59 (2)
8994 (9)	1156 (7)	3268 (5)	60 (2)
9478 (11)	3414 (7)	4906 (5)	65 (2)
11327 (10)	1839 (7)	4951 (5)	62 (2)
9267 (12)	3040 (9)	2534 (5)	76 (3)
11737 (16)	3590 (11)	1881 (5)	101 (4)
11525 (11)	1808 (8)	2584 (4)	70 (3)
10142 (16)	3805 (9)	2090 (6)	97 (4)
12393 (13)	2564 (12)	2127 (6)	99 (4)
8089 (3)	136 (2)	1451 (1)	65 (1)
2673 (3)	8752 (2)	3411 (1)	80 (1)
12691 (15)	2754 (10)	5951 (9)	127 (5)
13800 (13)	3565 (19)	5898 (13)	259 (10)
11770 (3)	2413 (19)	6724 (14)	266 (11)
	x 8233 (7) 6150 (7) 7756 (8) 5578 (8) 6493 (7) 6988 (9) 6489 (10) 9942 (10) 9140 (10) 8638 (10) 10803 (11) 10483 (10) 8994 (9) 9478 (11) 11327 (10) 9267 (12) 11737 (16) 11525 (11) 10142 (16) 12393 (13) 8089 (3) 2673 (3) 12691 (15) 13800 (13) 11770 (3)	x y 8233 (7) 1443 (5) 6150 (7) 387 (5) 7756 (8) 1005 (6) 5578 (8) 146 (6) 6493 (7) 890 (5) 6988 (9) 898 (6) 6489 (10) 499 (6) 9942 (10) 2039 (7) 9140 (10) 1928 (7) 8638 (10) 2982 (7) 10803 (11) 1860 (7) 10803 (11) 1860 (7) 10483 (10) 1361 (6) 8994 (9) 1156 (7) 9478 (11) 3414 (7) 11327 (10) 1839 (7) 9267 (12) 3040 (9) 11737 (16) 3590 (11) 11525 (11) 1808 (8) 10142 (16) 3805 (9) 12393 (13) 2564 (12) 8089 (3) 136 (2) 2673 (3) 8752 (2) 12691 (15) 2754 (10) 13800 (13) 3565 (19) 11770 (3) 2413 (19)	xyz 8233 (7)1443 (5)3995 (3)6150 (7)387 (5)4066 (3)7756 (8)1005 (6)2911 (3)5578 (8)146 (6)2971 (3)6493 (7)890 (5)5100 (3)6988 (9)898 (6)4380 (4)6489 (10)499 (6)3329 (4)9942 (10)2039 (7)2786 (4)9942 (10)2039 (7)2786 (4)9942 (10)2982 (7)4528 (4)10803 (11)1860 (7)5123 (4)10483 (10)1361 (6)4579 (5)8994 (9)1156 (7)3268 (5)9478 (11)3414 (7)4906 (5)11327 (10)1839 (7)4951 (5)9267 (12)3040 (9)2534 (5)11525 (11)1808 (8)2584 (4)10142 (16)3805 (9)2090 (6)12393 (13)2564 (12)2127 (6)8089 (3)136 (2)1451 (1)12691 (15)2754 (10)5951 (9)13800 (13)3565 (19)5898 (13)11770 (3)2413 (19)6724 (14)

N(4)-C(20)	1.353 (9)	N(4)-C(34)	1.447 (9)
N(4)-C(23)	1.479 (9)	O(6)-C(36)	1.369 (10)
O(6)-C(46)	1.453 (12)	N(9)-C(17)	1.351 (9)
N(9)-C(23)	1.449 (9)	N(11)-C(17)	1.335 (9)
N(12)-C(20)	1.372 (10)	N(14)-C(20)	1.335 (9)
N(14)-C(17)	1.362 (9)	C(16)-C(32)	1.342 (10)
C(16)-C(40)	1.358 (11)	C(16)-C(23)	1.536 (11)
С(23)-Н(23)	1.0016	C(26)-C(30)	1.386 (11)
C(26)-C(34)	1.389 (10)	C(26)-H(26)	0.9851
C(27)-C(45)	1.363 (13)	C(27)-C(41)	1.367 (14)
С(27)-Н(27)	0.9981	C(29)-C(34)	1.378 (10)
C(29)-C(38)	1.396 (11)	C(29)-H(29)	1.0468
C(30)-C(36)	1.324 (12)	С(30)-Н(30)	0.9805
C(32)-C(41)	1.419 (12)	C(32)-H(32)	0.9804
C(36)-C(38)	1.384 (12)	C(38)-H(38)	0.9491
C(40)-C(45)	1.375 (12)	С(40)-Н(40)	1.0051
C(41)-H(41)	0.9803	C(45)-H(45)	1.0464
C(46)-C(50)	1.34 (2)	C(46)-C(49)	1.58 (2)
C(46)-H(46)	1.0150	C(47)-C(50)	1.47 (2)
C(47)-H(47A)	0.9668	C(47)-H(47B)	0.9763
C(47)-H(47C)	0.9984	C(49)-H(49A)	1.0693
C(49)-H(49B)	1.0011	C(49)-H(49C)	0.9405
C(50)-H(50A)	0.9271	C(50)-H(50B)	1.0591
O(3)-C(24)	1.392 (9)	O(3)-C(51)	1.508 (12)
N(5)-C(15)	1.367 (9)	N(5)-C(21)	1.441 (9)
N(5)-C(28)	1.497 (9)	N(7)-C(15)	1.340 (9)
N(7)-C(18)	1.346 (9)	N(8)-C(18)	1.375 (9)
N(8)-C(28)	1.456 (9)	N(55)-C(18)	1.328 (9)
N(13)-C(15)	1.339 (9)	C(19)-C(35)	1.352 (11)

Table 3 Bond lengths [Å] and angles [°] for 1-(4'-sec-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (47c).

C(19)-C(39)	1.384 (11)	C(19)-C(28)	1.503 (10)
C(21)-C(25)	1.390 (11)	C(21)-C(22)	1.413 (11)
C(22)-C(31)	1.364 (10)	C(22)-H(22)	0.9926
C(24)-C(31)	1.376 (11)	C(24)-C(33)	1.386 (11)
C(25)-C(33)	1.393 (10)	C(25)-H(25)	0.9828
С(28)-Н(28)	1.0052	С(31)-Н(31)	1.0058
С(33)-Н(33)	1.0090	C(35)-C(42)	1.345 (13)
C(35)-H(35)	1.0077	C(37)-C(43)	1.37 (2)
C(37)-C(42)	1.39 (2)	С(37)-Н(37)	0.9976
C(39)-C(43)	1.343 (13)	С(39)-Н(39)	0.9753
C(42)-H(42)	0.9879	C(43)-H(43)	0.9931
C(51)-C(52)	1.52 (2)	C(51)-C(54)	1.48 (2)
C(51)-H(51)	0.9947	C(54)-H(54A)	1.3296
C(54)-H(54B)	1.4074	C(53)-H(54C)	1.3149
C(52)-H(52A)	1.3651	C(52)-H(52B)	1.1014
C(52)-H(52C)	1.0887		

C(20)-N(4)-C(34)	121.4 (7)	C(20)-N(4)-C(23)	119.3 (7)
C(34)-N(4)-C(23)	116.1 (6)	C(36)-O(6)-C(46)	121.8 (8)
C(17)-N(9)-C(23)	122.8 (7)	C(20)-N(14)-C(17)	116.9 (7)
C(32)-C(16)-C(40)	119.8 (8)	C(32)-C(16)-C(23)	119.9 (8)
C(40)-C(16)-C(23)	120.3 (7)	N(11)-C(17)-N(9)	118.6 (7)
N(11)-C(17)-N(14)	119.4 (7)	N(9)-C(17)-N(14)	121.9 (7)
N(14)-C(20)-N(4)	124.3 (8)	N(14)-C(20)-N(12)	117.9 (7)
N(4)-C(20)-N(12)	117.7 (8)	N(9)-C(23)-N(4)	109.1 (6)
N(9)-C(23)-C(16)	107.9 (6)	N(4)-C(23)-C(16)	112.5 (6)
N(9)-C(23)J-H(23)	108.4	N(4)-C(23)-H(23)	107.5
С(16)-С(23)-Н(23)	111.3	C(30)-C(26)-C(34)	118.8 (8)
С(30)-С(26)-Н(26)	121.2	С(34)-С(26)-Н(26)	120.0
C(45)-C(27)-C(41)	119.7 (9)	С(45)-С(27)-СН(27)	118.6
С(41)-С(27)-Н(27)	121.6	C(34)-C(29)-C(38)	119.9 (8)
С(34)-С(29)-Н(29)	121.7	C(38)-C(29)-H(29)	118.4

C(36)-C(30)-C(26)	121.4 (9)	C(36)-C(30)-H(30)	120.1
C(26)-C(36)-H(30)	118.5	C(16)-C(32)-C(41)	120.7 (9)
C(16)-C(32)-H(32)	120.9	C(41)-C(32)-H(32)	118.4
C(29)-C(34)-C(26)	119.9 (8)	C(29)-C(34)-N(4)	120.7 (8)
C(26)-C(34)-N(4)	119.3 (7)	C(30)-C(36)-O(6)	116.7 (9)
C(30)-C(36)-C(38)	121.4 (9)	O(6)-C(36)-C(38)	121.8 (9)
C(36)-C(38)-C(29)	118.6 (8)	C(36)-C(38)-H(38)	119.2
C(29)-C(38)-H(38)	122.2	C(16)-C(40)-C(45)	120.5 (8)
C(16)-C(40)-H(40)	118.5	C(45)-C(40)-H(40)	121.0
C(27)-C(41)-C(32)	118.6 (9)	C(27)-C(41)-H(41)	119.6
C(32)-C(41)-H(41)	121.7	C(27)-C(45)-C(40)	120.6 (9)
C(27)-C(45)-H(45)	119.1	C(40)-C(45)-H(45)	120.2
C(50)-C(46)-O(6)	110.9 (13)	C(50)-C(46)-C(49)	99 (2)
O(6)-C(46)-C(49)	114.0 (11)	C(50)-C(46)-H(46)	109.3
O(6)-C(46)-H(46)	112.5	C(49)-C(46)-H(46)	110.7
C(50)-C(47)-H(47A)	117.9	C(50)-C(47)-H(47B)	109.2
H(47A)-C(47)-H(47B)	107.4	C(50)-C(47)-H(47C)	110.7
H(47A)-C(47)-H(47C)	105.9	H(47B)-C(47)-H(47C)	105.1
C(46)-C(49)-H(49A)	111.5	C(46)-C(49)-H(49B)	118.3
H(49A)-C(49)-H(49B)	98.3	C(46)-C(49)-H(49C)	116.4
H(49A)-C(49)-H(49C)	102.2	H(49B)-C(49)-H(49C)	107.5
C(46)-C(50)-C(47)	110 (2)	C(46)-C(50)-H(50A)	120.9
C(47)-C(50)-H(50A)	106.6	C(46)-C(50)-H(50B)	111.3
C(47)-C(50)-H(50B)	102.7	H(50A)-C(50)-H(50B)	104.0
C(24)-O(3)-C(51)	118.9 (7)	C(15)-N(5)-C(21)	120.5 (6)
C(15)-N(5)-C(28)	117.4 (6)	C(21)-N(5)-C(28)	117.8 (6)
C(15)-N(7)-C(18)	117.6 (7)	C(18)-N(8)-C(28)	119.2 (6)
N(13)-C(15)-N(7)	116.0 (7)	N(13)-C(15)-N(5)	120.9 (7)
N(7)-C(15)-N(5)	123.0 (7)	N(55)-C(18)-N(7)	120.8 (7)
N(55)-C(18)-N(8)	117.1 (7)	N(7)-C(18)-N(8)	122.1 (7)
C(35)-C(19)-C(39)	119.8 (8)	C(35)-C(19)-C(28)	121.1 (8)
C(39)-C(19)-C(28)	119.1 (8)	C(25)-C(21)-(22)	120.5 (7)

C(25)-C(21)-N(5)	120.4 (7)	C(22)-C(21)-N(5)	119.2 (8)
C(31)-C(22)-C(21)	118.5 (8)	C(31)-C(22)-H(22)	121.4
С(21)-С(22)-Н(22)	120.1	C(31)-C(24)-C(33)	120.1 (8)
C(31)-C(24)-O(3)	115.4 (8)	C(33)-C(24)-O(3)	124.6 (8)
C(21)-C(25)-C(33)	119.3 (7)	С(21)-С(25)-Н(25)	119.6
С(33)-С(25)-Н(25)	121.0	N(8)-C(28)-C(19)	109.6 (7)
N(8)-C(28)-N(5)	106.7 (6)	C(19)-C(28)-N(5)	112.2 (7)
N(8)-C(28)-H(28)	113.8	C(19)-C(28)-H(28)	107.5
N(5)-C(28)-H(28)	107.1	C(24)-C(31)-C(22)	121.8 (8)
С(24)-С(31)-Н(31)	118.5	С(22)-С(31)-Н(31)	119.7
C(24)-C(33)-C(25)	119.8 (8)	С(24)-С(33)-Н(33)	120.3
С(25)-С(33)-Н(33)	119.8	C(19)-C(35)-C(42)	119.7 (10)
С(19)-С(35)-Н(35)	121.8	С(42)-С(35)-Н(35)	118.4
C(43)-C(37)-C(42)	118.1 (10)	С(43)-С(37)-Н(37)	118.7
С(42)-С(37)-Н(37)	123.2	C(43)-C(39)-C(19)	120.5 (10)
С(43)-С(39)-Н(39)	121.3	С(19)-С(39)-Н(39)	118.1
C(35)-C(42)-C(37)	121.4 (11)	C(35)-C(42)-H(42)	123.1
С(37)-С(42)-Н(42)	115.5	C(37)-C(43)-C(39)	120.5 (11)
C(37)-C(43)-H(43)	118.4	C(39)-C(43)-H(43)	121.1
O(3)-C(51)-C(52)	106.0 (13)	O(3)-C(51)-C(54)	102.3 (13)
C(52)-C(51)-C(54)	114 (2)	O(3)-C(51)-H(51)	112.5
C952)-C(51)-H(51)	122.5	С(54)-С(51)-Н(51)	98.3
C(51)-C(54)-H(54A)	156.1	C(51)-C(54)-H(54B)	88.1
H(54A)-C(54)-H(54B)	69.7	С(51)-С(54)-Н(54С)	91.8
H(54A)-C(54)-H(54C)	72.7	H(54B)-C(54)-H(54C)	70.3
C(51)-C(52)-H(52A)	114.8	С(51)-С(52)-Н(52В)	129.8
H(52A)-C(52)-H(52B)	78.1	С(51)-С(52)-Н(52С)	137.7
H(52A)-C(52)-H(52C)	78.5	H(52B)-C(52)-H(52C)	91.4

Table 4 Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 1-(4'-*sec*-butoxyphenyl)-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine hydrochloride (47c). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}]$

	U11	U22	U33	U23	U13	U12
N(4)	44 (4)	71 (5)	42 (4)	2 (3)	-21 (3)	-6 (4)
O(6)	124 (4)	102 (5)	62 (4)	2 (4)	-11 (4)	-41 (5)
N(9)	54 (4)	72 (5)	54 (4)	9 (4)	-20 (4)	-10 (4)
N(11)	63 (5)	54 (4)	51 (4)	6 (3)	-10 (4)	-11 (4)
N(12)	44 (5)	89 (6)	91 (6)	-10(5)	-22 (4)	-10 (4)
N(14)	60 (5)	53 (4)	54 (4)	10 (4)	-22 (4)	-13 (4)
C(16)	42 (5)	57 (6)	51 (5)	-5 (4)	-18 (4)	-4 (4)
C(17)	50 (6)	56 (6)	61 (6)	-11 (5)	-16 (5)	-7 (5)
C(20)	62 (6)	57 (6)	50 (5)	-10 (4)	-24 (5)	2 (5)
C(23)	49 (5)	70 (6)	52 (5)	-11 (5)	-13 (4)	-3 (5)
C(26)	58 (6)	62 (6)	61 (6)	-15 (5)	-13 (5)	-3 (5)
C(27)	63 (7)	82 (8)	127 (10)	-20 (7)	-42 (7)	8 (6)
C(29)	64 (6)	60 (60	60 (6)	-26 (5)	-13 (5)	5 (5)
C(30)	85 (7)	56 (6)	56 (6)	-2 (5)	-1 (5)	-10 (5)
C(32)	104 (8)	71 (6)	46 (5)	-6 (5)	-29 (5)	-4 (6)
C(34)	58 (6)	55 (6)	52 (5)	-4 (4)	-14 (4)	10 (5)
C(36)	80 (7)	74 (7)	51 (6)	7 (5)	-7 (5)	-25 (6)
C(38)	75 (7)	102 (9)	50 (6)	-3 (6)	-7 (5)	-25 (6)
C(40)	70 (7)	81 (7)	72 (6)	-24 (6)	-28 (5)	11 (6)
C(41)	91 (9)	102 (9)	91 (8)	18 (7)	-56 (7)	16 (7)
C(45)	81 (8)	95 (8)	121 (9)	-62 (7)	-34 (7)	16 (7)
C(46)	233 (19)	141 (11)	34 (6)	14 (6)	-9 (8)	-86 (13)
C(47)	158 (16)	195 (18)	124 (13)	7 (11)	-8 (12)	-5 (13)
C(49)	129 (13)	198 (16)	166 (15)	-82 (13)	19 (11)	-48 (12)
C(50)	210 (2)	250 (2)	90 (11)	-37 (14)	-1 (13)	-25 (19)
O(3)	88 (5)	76 (4)	87 (4)	-22 (4)	-45 (4)	-18 (4)
N(5)	48 (4)	62 (4)	46 (4)	-26 (3)	-3 (3)	-17 (3)
	· · · · ·					

	U11	U22	U33	U23	U13	U12
N(7)	57 (4)	74 (5)	35 (4)	-11 (3)	7 (3)	-31 (4)
N(8)	59 (5)	93 (6)	52 (4)	-11 (4)	-3 (4)	-42 (4)
N(55)	58 (5)	103 (6)	45 (4)	-32 (4)	-9 (3)	-28 (4)
N(13)	62 (5)	73 (5)	37 (4)	-20 (3)	-6 (3)	-18 (4)
C(15)	42 (5)	55 (5)	54 (5)	-14 (4)	-10 (4)	-12 (4)
C(18)	63 (6)	58 (6)	43 (5)	-17 (4)	-6 (4)	-2 (5)
C(19)	53 (6)	68 (6)	46 (5)	-9 (5)	3 (4)	-37 (5)
C(21)	58 (6)	61 (6)	47 (5)	-16 (4)	-8 (4)	-22 (5)
C(22)	62 (6)	67 (6)	59 (5)	-8 (5)	-19 (5)	-12 (5)
C(24)	69 (6)	52 (6)	62 (6)	-3 (5)	-26 (5)	-16 (5)
C(25)	68 (6)	42 950	74 (6)	-15 (4)	-27 (5)	-3 (5)
C(28)	46 (50	67 (6)	69 (6)	-16 (5)	-1 (5)	-18 (5)
C(31)	82 (7)	56 (6)	69 (6)	-27 (5)	-29 (5)	-6 (5)
C(33)	59 (6)	57 (6)	72 (6)	6 (5)	-34 (5)	-9 (5)
C(35)	88 (8)	70 (7)	65 (6)	-2 (5)	-12 (6)	-5 (6)
C(37)	134 (11)	135 (10)	45 (6)	-6 (6)	-2 (6)	-99 (10)
C(39)	74 (7)	96 (7)	46 (50	-10 (5)	-8 (5)	-35 (6)
C(42)	129 (11)	76 (8)	88 (8)	-4 (6)	-20 (8)	-40 (8)
C(43)	89 (8)	149 (11)	64 (8)	-13 (8)	3 (6)	-63 (9)
Cl(1)	59 (1)	91 (2)	52 (1)	-23 (1)	-12 (1)	-10(1)
Cl(2)	93 (2)	101 (2)	55 (1)	1 (1)	-24 (1)	-45 (1)
C(51)	107 (9)	107 (9)	205 (16)	-85 (10)	-85 (11)	30 (8)

Table 5 Crystal data and structure refinement for 1-benzyl-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (52b).

Identification code	Shelxl
Empirical formula	$C_{18}H_{18}F_{3}N_{5}O_{2}$
Formula weight	393.37
Temperature	293 (2) K
Wavelength	0.70930 Å
Crystal system	Triclinic
Space group	p-1
Unit cell dimensions	a = 6.30 (5) Å alpha = 100.7 (2) °
	$b = 10.13 (5) \text{ Å} \text{ beta} = 96.5 (2) ^{\circ}$
	$c = 15.20 (5) \text{ Å} \text{ gama} = 94.5 (2) ^{\circ}$
Volume, Z	942 (9) Å ³ , 2
Density (calculated)	1.387 Mg/m ³
Absorption coefficient	0.114 mm ⁻¹
F (000)	408
Crystal size	0.2 x 0.2 x 0.2 mm
θ range for data collection	2.05 to 21.42°
Limiting indices	$0 \le h \le 6, -9 \le k \le 10, -15 \le 1 \le 14$
Reflections collected	2086
Independent reflections	1896 ($R_{int} = 0.0000$)
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1896 / 0 / 246
Goodness-of-fit on F ²	2.854
Final R indices [I>2 σ (I)]	R1 = 0.976, wR2 = 0.2922
R indices (all data)	R1 = 0.1106, wR2 = 0.3173
Largest diff. peak and hole	1.231 and -0.442 eÅ ⁻³

Table 6 Atomic coordinates $[x \ 10^4]$ and equivalent isotropic displacement parameters $[\text{\AA}^2 x \ 10^3]$ for 1-benzyl.-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoro-acetate (52b). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

.

	X	У	Z	U (eq)
N (1)	-150 (7)	3115 (4)	4603 (3)	35 (1)
N (6)	-2611 (7)	14487 (4)	4845 (3)	38 (1)
N (7)	2202 (8)	4715 (5)	4297 (3)	45 (1)
N (9)	-176 (7)	867 (5)	3890 (3)	36 (1)
N (11)	2306 (6)	2520 (4)	3565 (3)	32 91)
C (10)	1821 (8)	1059 (5)	3526 (4)	31 (1)
C (12)	1482 (8)	3427 (5)	4146 (4)	33 92)
C (13)	4195 (8)	2873 (5)	3119 (4)	38 (2)
C (14)	1618 (8)	248 (5)	2579 (4)	33 (2)
C (15)	-944 (8)	1825 (5)	4448 (3)	28 (1)
C (17)	3656 (9)	3215 (6)	2205 (4)	41 (2)
C (19)	3129 (11)	-612 (7)	2349 (5)	61 (2)
C (20)	-65 (11)	295 (7)	1951(5)	62 (2)
C (21)	2017 (13)	3958 (8)	2003 (5)	70 (2)
C (22)	2966 (16)	-1400 (9)	1503 (6)	94 (3)
C (23)	4924 (12)	2881 (10)	1556 (6)	85 (4)
C (24)	-244 (15)	-483 (11)	1094 (5)	92 (30
C (25)	1316 (19)	-1317 (10)	887 (6)	100 (3)
C (26)	2906 (18)	3952 (11)	545 (6)	98 (3)
C (27)	1665 (16)	4312 (10)	1179 (7)	97 (3)
C (28)	4519 (19)	3236 (14)	727 (7)	125 (4)
F (2)	9821 (6)	7251 (5)	3194 (3)	87 (1)
F (3)	7893 (6)	5446 (4)	3134 (3)	84 (2)
F (8)	6933 (6)	6747 (6)	2278 (3)	106 (2)
O (4)	7021 (6)	8673 (4)	4067 (3)	49 (1)
O (5)	5074 (6)	6743 (4)	4018 (3)	56 (1)
C (16)	6477 (9)	7446 (6)	3802 (4)	38 (1)

	Х	У	Z	U (eq)
C (18)	7789 (10)	6743 (6)	3109 (4)	47 (2)

Table 7 Bond lengths [Å] and angles [°] for 1-benzyl-2-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine trifluoroacetate (52b).

N (1)-C (15)	1.330 (9)	N (1)-C(12)	1.353 (10)
N(6)-C(15)	1.321 (10)	N(6)-H(6A)	0.9027
N(6)-H(6B)	0.9761	N(7)-C(12)	1.317 (9)
N(7)-H(7A)	0.8598	N(7)-H(7B)	0.8597
N(9)-C(15)	1.326 (8)	N(9)-C(10)	1.44 (10)
N(9)-H(9)	0.9819	N(11)-C(12)	1.332 (8)
N(11)-C(13)	1.486 (10)	N(11)-C(10)	1.476 (10)
C(10)-C(14)	1.505 (9)	С(10)-Н(10)	0.9594
C(13)-C(17)	1.501 (9)	С(13)-Н(13А)	0.9647
C(13)-H(13B)	0.9597	C(14)-C(19)	1.371 (11)
C(14)-C(20)	1.354 (11)	C(17)-C(23)	1.350 (11)
C(17)-C(21)	1.364 (11)	C(19)-C(22)	1.371 (12)
C(19)-H(19)	0.9973	C(20)-C(24)	1.381 (12)
С(20)-Н(20)	1.0029	C(21)-C(27)	1.366 (12)
С(21)-Н(21)	0.9555	C(22)-C(25)	1.336 (14)
C(22)-H(22)	0.9759	C(23)-C(28)	1.376 (14)
C(23)-H(23)	1.0214	C(24)-C(25)	1.371 (14)
C(24)-H(24)	0.9696	C(25)-H(25)	0.9609
C(26)-C(28)	1.33 (2)	C(26)-C(27)	1.33 (2)
C(26)-H(26)	0.9819	С(27)-Н(27)	0.9432
C(28)-H(28)	0.9549	F(2)-C(18)	1.324 (12)
F(3)-C(18)	1.328 (10)	F(8)-C(18)	1.317 (9)
O(4)-C(16)	1.241 (9)	O(5)-C(16)	1.204 (9)
C(16)-C(18)	1.520 (11)		

C(15)-N(1)-C(12)	116.8 (5)	C(15)-N(6)-H(6A)	117.9
C(15)-N(6)-H(6B)	122.9	H(6A)-N(6)-H(6B)	119.2
C(12)-N(7)-H(7A)	119.8	C(12)-N(7)-H(7B)	120.2
H(7A)-N(7)-H(7B)	120.0	C(15)-N(9)-C(10)	123.6 (5)
C(15)-N(9)-H(9)	118.2	C(10)-N(9)-H(9)	117.6
C(12)-N(11)-C(13)	122.4 (5)	C(12)-N(11)-C(10)	121.1 (5)
C(13)-N(11)-C(10)	114.3	N(9)-C(10)-N(11)	107.7 (4)
N(9)-C(10)-C(14)	109.5 (5)	N(11)-C(10)-C(14)	112.5 (5)
N(9)-C(10)-H(10)	109.4	N(11)-C(10)-H(10)	109.1
С(14)-С(10)-Н(10)	108.7	N(11)-C(12)-N(7)	121.0 (5)
N(11)-C(12)-N(1)	123.5 (5)	N(7)-C(12)-N(1)	115.5 (5)
N(11)-C(13)-C(17)	114.8 (5)	N(11)-C(13)-H(13A)	106.4
С(17)-С(13)-Н(13А)	109.7	N(11)-C(13)-H(13B)	106.7
С(17)-С(13)-Н(13В)	109.9	H(13A)-C(13)-H(13B)	109.1
C(19)-C(14)-C(20)	118.4 (7)	C(19)-C(14)-C(10)	119.5 (6)
C(2)-C(14)-C(10)	122.1 (6)	N(6)-C(15)-N(1)	118.8 (5)
N(6)-C(15)-N(9)	118.4 (5)	N(1)-C(15)-N(9)	122.8 (5)
C(23)-C(17)-C(21)	116.4 (7)	C(23)-C(17)-C(13)	120.1 (6)
C(21)-C(17)-C(13)	123.3 (5)	C(14)-C(19)-C(22)	121.3 (7)
С(14)-С(19)-Н(19)	118.4	С(22)-С(19)-Н(19)	120.2
C(24)-C(20)-C(14)	121. (8)	С(24)-С(20)-Н(20)	119.7
С(14)-С(20)-Н(20)	119.3	C(21)-C(21)-C(17)	121.3 (7)
С(27)-С(21)-Н(21)	120.1	С(17)-С(21)-Н(21)	118.5
C(25)-C(22)-C(19)	119.4 (8)	С(25)-С(22)-Н(22)	116.6
С(19)-С(22)-Н(22)	123.8	C(17)-C(23)-C(28)	121.2 (8)
С(17)-С(23)-Н(23)	121.5	С(28)-С(23)-Н(23)	117.3
C(20)-C(24)-C(25)	118.7 (8)	С(20)-С(24)-Н(24)	121.2
C(25)-C(24)-H(24)	120.1	C(22)-C(25)-C(24)	121.1 (8)
С(22)-С(25)-Н(25)	117.4	С(24)-С(25)-Н(25)	121.4
C(28)-C(26)-C(27)	118.5 (9)	С(28)-С(26)-Н(26)	122.1
С(27)-С(26)-Н(26)	119.4	C(26)-C(27)-C(21)	121.3 (9)
С(26)-С(27)-Н(27)	120.1	С(21)-С(27)-Н(27)	118.5
	I		

, ,

C(26)-C(28)-C(23)	121.3 (8)	C(26)-C(28)-H(28)	116.1
С(23)-С(28)-Н(28)	122.6	O(4)-C(16)-O(5)	129.2 (6)
O(4)-C(16)-C(18)	114.7 (6)	O(5)-C(16)-C(18)	116.0 (6)
F(8)-C(18)-F(2)	107.3 (6)	F(8)-C(18)-F(3)	104.5 (6)
F(2)-C(18)-F(3)	104.4 (6)	F(8)-C(18)-C(16)	111.7 (6)
F(2)-C(18)-C(16)	115.0 (6)	F(3)-C(18)-C(16)	113.1 (5)

Symmetry transformations used to generate equivalent atoms

Table 8 Anisotropic displacement parameters $[\text{Å}^2 \times 10^3]$ for 1-benzyl-2-phenyl-4,6diamino-1,2-dihydro-1,3,5-triazine trifluoro-acetate (52b). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(\text{ha}^*)^2 U_{11} + ... + 2\text{hka}^* b^* U_{12}]$.

	U11	U22	U33	U23	U13	U12
N(1)	46 (3)	16 (3)	41 (3)	2 (2)	16 (2)	-7 (2)
N(6)	40 (3)	21 (3)	51 (3)	2 (2)	17 (2)	-5 (2)
N(7)	58 (3)	24 (3)	55 (3)	5 (2)	27 (3)	-10 (2)
N(9)	34 (3)	25 (3)	46 (3)	-1 (2)	19 (2)	-11 (2)
N(11)	35 (2)	21 (3)	42 (3)	3 (2)	20 (2)	-3 (2)
C(10)	33 (3)	21 (3)	42 (4)	12(3)	7 (2)	4 (2)
C(12)	34 (3)	26 (4)	39 (3)	10 (3)	7 (3)	-12 (3)
C(13)	30 (3)	31 (3)	54 (4)	21 (3)	18 (3)	-3 (2)
C(14)	40 (3)	26 (3)	33 (3)	0 (3)	13 (3)	2 (3)
C(15)	32 (3)	25 (3)	26 (3)	5 (3)	7 (2)	-5 (3)
C(17)	45 (4)	36 (3)	43 (4)	7 (3)	19 (3)	-6 (3)
C(19)	64 (4)	64 (5)	58 (5)	7 (4)	17 (4)	12 (4)
C(20)	68 (5)	68 (5)	44 (4)	3 (4)	0 (4)	8 (4)
C(21)	90 (6)	79 (5)	52 (5)	25 (4)	22 (4)	34 (5)
C(22)	122 (7)	82 (6)	75 (7)	-14 (5)	26 (6)	37 (5)
C(23)	71 (5)	133 (8)	65 (6)	29 (5)	36 (4)	43 (5)
C(24)	99 (6)	126 (8)	46 (5)	18 (5)	-9 (4)	4 (6)
C(25)	135 (8)	101 (7)	50 (6)	-298 (5)	21 (6)	11 (6)
C(26)	108 (7)	132 (8)	62 (6)	48 (6)	5 (6)	3 (6)

C(27)	112 (7)	109 (7)	82 (7)	43 (6)	9 (6)	34 (6)
C(28)	119 (8)	210 (12)	69 (7)	43 (7)	62 (6)	48 (8)
F(2)	50	89 (3)	113 (4)	-8 (3)	44 (2)	-22 (2)
F(3)	50	55 (3)	144 (4)	-5 (3)	41 (2)	6 (2)
F(8)	50	192 (5)	70 (3)	5 (3)	11 (2)	24 (3)
O(4)	50	22 (2)	71 (3)	-1 (2)	20 (2)	-14 (2)
O(5)	50	27 (2)	94 (3)	8 (2)	39 (2)	-15 (2)
C(16)	50	25 (4)	39 (3)	5 (3)	10 (3)	-3 (3)
C(18)	50	36 (4)	50 (4)	4 (3)	7 (3)	-8 (3)

Identification code	tvgala
Empirical formula	C ₂₃ H ₂₀ N ₁₂ O ₄
Formula weight	528.51
Temperature	293 (2) K
Wavelength	0.70930 Å
Crystal system	Monoclinic
Space group	P2 ₁ /C
Unit cell dimensions	A = 25.03 (5) Å alpha = 90.0 (2) °
	$b = 6.06 (5) \text{ Å} \text{ beta} = 149.4 (2) ^{\circ}$
	$c = 32.09 (5) \text{ Å} \text{ gamma} = 90.0 (2) ^{\circ}$
Volume, Z	2478 (21) Å ³ , 4
Density (calculated)	1.416 Mg/m ³
Absorption coefficient	0.104 mm ⁻¹
F (000)	1096
Crystal size	0.2 x 0.2 x 0.2 mm
θ range for data collection	2.49 to 22.85°
Limiting indices	$0 \le h \le 27, 0 \le k \le 6, -34 \le 1 \le 17$
Reflections collected	4045
Independent reflections	3295
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3295 / 0 / 361
Goodness-of-fit on F ²	1.049
Final R indices [I>2 σ (I)]	R1 = 0.0671, wR2 = 0.1574
R indices (all data)	R1 = 0.1736, wR2 = 0.2139
Largest diff. peak and hole	0.266 and -0.304 eÅ ⁻³

 Table 9 Crystal data and structure refinement for dihydrotriazine (54d).

) 7

Table 10 Atomic coordinates [$x \ 10^4$] and equivalent isotropic displacement parameters [Å² $x \ 10^3$] for dihydrotriazine (54d). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

-1-

	x	У	Z	U(eq)
N(20)	296 (3)	7326 (7)	4863 (2)	43 (1)
N(22)	998 (3)	4012 (7)	5045 (3)	44(1)
N(17)	1994 (3)	6044 (8)	6188 (3(51 (1)
N(19)	1333 (3)	9223 (8)	6015 (3)	52 (1)
O(30)	1173 (3)	744 (6)	4804 (3)	64 (1)
N(33)	-581 (3)	5057 (7)	3792 (3)	52 (1)
C(24)	2876 (4)	4583 (9)	6153 (3)	42 (1)
C(21)	226 (4)	5599 (9)	4567 (3)	44 (1)
C(23)	2046 (4)	4227 (8)	5924 (3)	43 (1)
C(18)	1214 (4)	7506 (9)	5689 (3)	42 (1)
C(26)	3596 (5)	2972 (10)	6558 (4)	62 (2)
C(35)	100 (5)	4634 (10)	3330 (3)	51 (2)
C(31)	665 (4)	2338 (10)	4553 (3)	48 (1)
C(32)	-426 (4)	2966 (9)	3680 (3)	52 (2)
C(25)	2889 (5)	6496 (10)	5937 (4)	59 (2)
C(34)	-580 (4)	3021 (10)	3107 (3)	58 (2)
C(28)	4346 (5)	5210 (16)	6527 (5)	81 (2)
C(40)	-332 (6)	6576 (12)	2885 (4)	74 (2)
C(36)	1134 (5)	4219 (13)	3940 (4)	79 (2)
C(27)	4348 (5)	3306 (14)	6749 (4)	78 (2)
C(37)	1735 (6)	5638 (19)	4114 (5)	102 (3)
C(29)	3619 (6)	6816 (13)	6121 (5)	82 (2)
C(39)	288 (10)	8030 (13)	3073 (7)	106 (3)
C(38)	1306 (10)	7520 (2)	3674 (8)	118 (4)
O(11)	4359 (4)	4953 (8)	8145 (3)	86 (2)
N(7)	5063 (5)	5610 (10)	8841 (4)	71 (2)
C(2)	3995 (4)	10858 (10)	8584 (3)	57 (2)

	x	у	Z	U(eq)
C(4)	5708 (5)	10191 (12)	9978 (4)	65 (2)
O(12)	3264 (4)	8441 (9)	7598 (3)	113 (2)
C(6)	4940 (4)	7683 (11)	8996 (3)	57 (2)
C(1)	3990 (5)	8914 (11)	8318 (4)	61 (2)
C(5)	5767 (4)	8278 (11)	9793 (3)	60 (2)
O(15)	6565 (4)	12699 (12)	10970 (3)	138 (3)
O(13)	2283 (4)	11781 (9)	7278 (3)	118 (2)
N(8)	3072 (4)	12298 (10)	7985 (4)	73 (2)
O(16)	7359 (4)	9659 (11)	11362 (3)	126 (2)
O(14)	3134 (4)	14022 (10)	8209 (3)	124 (2)
O(10)	5886 (4)	4610 (10)	9432 (3)	116 (2)
N(9)	6620 (5)	10909 (14)	10832 (4)	94 (2)
C(3)	4834 (5)	11495 (11)	9383 (4)	63 (2)

Table 11 Bond lengths [Å] and angles [°] for dihydrotriazine (54d).

17.

N(20)-C(21)	1.318 (10)	N(20)-C(18)	1.356 (10)
N(22)-C(21)	1.382 (11)	N(22)-C(31)	1.397 (10)
N(22)-C(23)	1.456 (11)	N(17)-C(18)	1.333 (11)
N(17)-C(23)	1.462 (10)	N(17)-H(17)	0.8597
N(19)-C(18)	1.314 (10)	N(19)-H(19A)	0.8595
N(19)-H(19B)	0.8597	O(30)-C(31)	1.198 (10)
N(33)-C(21)	1.351 (10)	N(33)-C(32)	1.457 (11)
N(33)-H(33)	0.8600	C(24)-C(26)	1.363 (11)
C(24)-C(25)	1.366 (11)	C(24)-C(23)	1.506 (8)
С(23)-Н(23)	0.9838	C(26)-C(27)	1.404 (10)
С(26)-Н(26)	0.9778	C(35)-C(36)	1.368 (11)
C(35)-C(40)	1.390 (13)	C(35)-C(34)	1.506 (11)
C(31)-C(32)	1.511 (12)	C(32)-C(34)	1.522 (8)
С(32)-Н(32)	0.9766	C(25)-C(29)	1.365 (10)
C(25)-H(25)	0.9535	C(34)-H(34A)	0.9679
C(34)-H(34B)	0.9588	C(28)-C(27)	1.353 (13)
C(28)-C(29)	1.369 (13)	C(28)-H(28)	1.0058
C(40)-C(39)	1.393 (13)	C(40)-H(40)	0.9791
C(36)-C(37)	1.366 (12)	С(36)-Н(36)	1.0223
С(27)-Н(27)	1.0352	C(37)-C(38)	1.36 (2)
С(37)-Н(37)	0.9601	C(29)-H(29)	1.0096
C(39)-C(38)	1.36 (2)	C(39)-H(39)	0.9758
C(38)-H(38)	0.9321	O(11)-N(7)	1.215 (9)
N(7)-O(10)	1.218 (10)	N(7)-C(6)	1.476 (12)
C(2)-C(3)	1.366 (11)	C(2)-C(1)	1.450 (12)
C(2)-N(8)	1.466 (12)	C(4)-C(5)	1.366 (12)
C(4)-C(3)	1.366 (12)	C(4)-N(9)	1.465 (12)
O(12)-C(1)	1.222 (10)	C(6)-C(5)	1.359 (11)
C(6)-C(1)	1.428 (12)	C(5)-H(5)	0.9837
O(15)-N(9)	1.222 (11)	O(13)-N(8)	1.198 (10)

C(21)-N(20)-C(18)	115.1 (6)	C(21)-N(22)-C(31)	110.2 (6)
C(21)-N(22)-C(23)	123.8 (6)	C(21)-N(22)-C(23)	125.6 (6)
C(18)-N(17)-C(23)	125.0 (6)	C(18)-N(17)-H(17)	117.6
C(23)-N(17)-H(17)	117.4	C(18)-N(19)-H(19A)	120.1
C(18)-N(19)-H(19B)	119.8	H(19A)-N(19)-H(19B)	120.1
C(21)-N(33)-C(32)	112.4 (6)	C(21)-N(33)-H(33)	123.7
C(32)-N(33)-H(33)	123.9	C(26)-C(24)-C(25)	120.2 (7)
C(26)-C(24)-(23)	120.0 (6)	C(25)-C(24)-C(23)	119.9 (6)
N(33)-C(21)-N(20)	126.6 (6)	N(33)-C(21)-N(22)	109.3 (7)
N(20)-C(21)-N(22)	124.0 (6)	N(22)-C(23)-N(17)	106.2 (6)
N(22)-C(23)-C(24)	112.8 (5)	N(17)-C(23)-C(24)	112.5 (6)
N(22)-C(23)-H(23)	108.8	N(17)-C(23)-H(23)	108.7
С(24)-С(23)-Н(23)	107.7	N(19)-C(18)-N(17)	118.4 (6)
N(19)-C(18)-N(20)	117.5 (6)	N(17)-C(18)-N(20)	124.0 (6)
C(24)-C(26)-C(27)	119.3 (7)	С(24)-С(26)-Н(26)	120.8
С(27)-С(26)-Н(26)	119.8	C(36)-C(35)-C(40)	117.9 (8)
C(36)-C(35)-C(34)	122.2 (7)	C(40)-C(35)-C(34)	119.9 (7)
O(32)-C(31)-N(22)	124.7 (7)	O(30)-C(31)-C(32)	129.0 (7)
N(22)-C(31)-C(32)	106.4 (7)	N(33)-C(32)-C(31)	101.7 (6)
N(33)-C(32)-C(34)	115.7 (6)	C(31)-C(32)-C(34)	114.8 (5)
N(33)-C(32)-H(32)	108.5	С(31)-С(32)-Н(32)	109.8
C(334)-C(32)-H(32)	106.2	C(29)-C(25)-C(24)	120.6 (7)
С(29)-С(25)-Н(25)	121.1	С(24)-С(25)-Н(25)	118.3
C(35)-C(34)-C(32)	115.7 (6)	C(35)-C(34)-H(34A)	106.3
C(32)-C(34)-H(34A)	109.2	C(35)-C(34)-H(34B)	106.6
C(32)-C(34)-H(34B)	109.8	H(34A)-C(34)-H(34B)	108.9
C(27)-C(28)-C(29)	120.4 (7)	C(27)-C(28)-H(28)	118.9
С(29)-С(28)-Н(28)	120.7	C(39)-C(40)-C(35)	119.9 (8)
С(39)-С(40)-Н(40)	118.3	С(35)-С(40)-Н(40)	121.

N(8)-O(14)	1.200 (10)	O(16)-N(9)	1.213 (11)
C(3)-H(3)	1.0125		

C(37)-C(36)-C(35)	122.0 (8)	С(37)-С(36)-Н(36)	118.7
C(35)-C(36)-H(36)	119.3	C(28)-C(27)-C(26)	119.7 (7)
С(28)-С(27)-Н(27)	119.3	С(26)-С(27)-Н(27)	121.0
C(38)-C(37)-C(36)	119.9 (9)	C(38)-C(37)-H(37)	112.0
С(36)-С(37)-Н(37)	128.1	C(25)-C(29)-C(28)	119.9 (7)
С(25)-С(29)-Н(29)	117.8	С(28)-С(29)-Н(29)	122.3
C(38)-C(39)-C(40)	120.0 (9)	С(38)-С(39)-Н(39)	124.1
С(40)-С(39)-Н(39)	115.4	C(39)-C(38)-C(37)	120.4 (9)
C(39)-C(38)-H(38)	117.8	С(37)-С(38)-Н(38)	121.6
O(11)-N(7)-O(10)	122.2 (7)	O(11)-N(7)-C(6)	120.3 (7)
O(10)-N(7)-C(6)	117.5 (7)	C(3)-C(2)-C(1)	123.7 (7)
C(3)-C(2)-N(8)	115.9 (7)	C(1)-C(2)-N(8)	120.3 (7)
C(5)-C(4)-C(3)	121.7 (7)	C(5)-C(4)-N(9)	119.2 (8)
C(3)-C(4)-N(9)	119.1 (8)	C(5)-C(6)-C(1)	124.8 (7)
C(5)-C(6)-N(7)	116.0 (7)	C(1)-C(6)-CN(7)	119.2 (7)
O(12)-C(1)-C(6)	125.1 (7)	O(12)-C(1)-C(2)	123.3 (7)
C(6)-C(1)-C(2)	111.6 (7)	C(6)-C(5)-C(4)	118.9 (7)
C(6)-C(5)-H(5)	119.6	С(4)-С(5)-Н(5)	121.4
O(14)-N(8)-O(13)	121.0 (7)	O(14)-N(8)-C(2)	119.0 (7)
O(13)-N(8)-C(2)	119.9 (7)	O(16)-N(9)-O(15)	123.8 (8)
O(16)-N(9)-C(4)	118.6 (9)	O(15)-N(9)-C(4)	117.5 (9)
C(2)-C(3)-C(4)	119.1 (7)	С92)-С93)-Н(3)	124.7
C(4)-C(3)-H(3)	116.1		

Symmetry transformations used to generate equivalent atoms:
Table 12 Anisotropic displacement parameters $[\text{Å}^2 \times 10^3]$ for dihydrotriazine (54d). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(\text{ha}^*)^2 U_{11} + ... + 2\text{hka}^*b^*U_{12}]$

	U11	U22	U33	U23	U13	U12
N(20)	40 (3)	40 (3)	43 (3)	-9 (2)	35 (30	0 (2)
N(22)	46 (3)	38 (3)	49 (3)	-6 (2)	41 (3)	-3 (2)
N(17)	52 (3)	57 (3)	47 (3)	1 (3)	43 (3)	9 (3)
N(19)	52 (3)	52 (3)	43 (3)	-6 (2)	39 (3)	2 (2)
O(30)	84 (3)	36 (2)	79 (3)	-2 (2)	71 (3)	5 (2)
N(33)	41 (3)	58 (3)	43 (3)	-8 (2)	34 (3)	1(2)
C(24)	41 (3)	37 (3)	43 (3)	-2 (3)	36 (3)	0 (3)
C(21)	44 (3)	43 (3)	53 (3)	0 (3)	43 (3)	-3 (3)
C(23)	45 (3)	35 (3)	41 (3)	5 (3)	36 (3)	7 (3)
C(18)	45 (3)	44 (3)	52 (4)	-7 (3)	44 (3)	-7 (3)
C(26)	53 (4)	57 (4)	61 (4)	5 93)	47 (4)	13 (3)
C(35)	60 (4)	56 (4)	46 (3)	-1 (3)	47 (3)	8 (3)
C(31)	57 (4)	40 (3)	65 (4)	-1 (3)	56 (4)	-2 (3)
C(32)	49 (3)	54 (4)	62 (4)	-19 (3)	49 (3)	-15 (3)
C(25)	58 (4)	57 (4)	68 (4)	11 (3)	55 (4)	11 (3)
C(34)	49 (3)	66 (4)	50 (3)	-17 (3)	42 (3)	-5 (3)
C(28)	67 (5)	115 (7)	79 (5)	-32 (5)	66 (5)	-27 (5)
C(40)	96 (5)	73 (5)	89 (5)	12 (4)	85 (5)	19 (4)
C(36)	67 (5)	108 (6)	66 (4)	21 (4)	57 (4)	17 (5)
C(27)	50 (4)	98 (6)	69 (5)	0 (4)	48 (4)	16 (4)
C(37)	83 (6)	155 (9)	81 (6)	-1 (6)	73 (5)	-18 (6)
C(29)	93 (5)	73 (5)	104 (6)	-9 (5)	88 (5)	-18 (5)
C(39)	202 (10)	61 (5)	162 (9)	21 (6)	173 (9)	25 (7)
C(38)	167 (10)	126 (9)	159 (10)	-47 (8)	155 (10)	-54 (8)
O(11)	89 (4)	83 (4)	79 (3)	-16 (3)	71 (3)	3 (3)
N(7)	81 (4)	82 (4)	73 (4)	4 (4)	70 (4)	8 (4)
C(2)	50 (4)	64 (4)	44 (3)	-3 (3)	38 (3)	3 (3)
	•					

	U11	U22	U33	U23	U13	U12
C(4)	51 (4)	79 (5)	50 (4)	-14 (4)	41 (4)	-8 (4)
O(12)	80 (3)	119 (4)	43 (3)	-8 (3)	39 (3)	42 (3)
C(6)	54 (4)	73 (4)	50 (4)	3 (3)	45 (3)	12 (3)
C(1)	48 (4)	71 (4)	44 (4)	-7 (3)	36 (4)	6 (3)
C(5)	51 (4)	76 (5)	49 (4)	5 (3)	42 (4)	5 (3)
O(15)	89 (4)	158 (6)	72 (4)	-56 (4)	55 (4)	-14 (4)
O(13)	61 (3)	114 (4)	50 (3)	-17 (3)	28 (3)	31 (3)
N(8)	57 (4)	74 (4)	61 (4)	-14 (3)	47 (3)	-1 (3)
O(16)	68 (40	156 (6)	52 (3)	-7 (4)	36 (3)	14 (4)
O(14)	95 (4)	102 (4)	95 (4)	-28 (4)	70 (4)	18 (3)
O(10)	97 (4)	124 (5)	81 (4)	20 (4)	70 (4)	52 (4)
N(9)	60 (4)	126 (6)	57 (4)	-29 (4)	45 (4)	-15 (4)
C(3)	59 (4)	67 (4)	56 (4)	-19 (4)	49 (4)	-8 (4)

Table 13 Crystal data and structure refinement for 1*RS*-phenylethyl-2*SR*-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine picrate (55b).

Identification code	Tvka4a
Empirical formula	C ₂₉ H ₂₅ N ₁₁ O ₁₄
Formula weight	751.60
Temperature	293 (2) K
Wavelength	0.70930 Å
Crystal system	Monoclinic
Space group	P2 ₁ /C
Unit cell dimensions	$A = 14.83 (5) \text{ Å} alpha = 90.0 (2) ^{\circ}$
	$b = 15.19 (5) \text{ Å} \text{ beta} = 105.2 (2) ^{\circ}$
	$c = 15.48 (5) \text{ Å} \text{ gama} = 90.0 (2)^{\circ}$
Volume, Z	3365 (19) Å ³ , 4
Density (calculated)	1.484 Mg/m ³
Absorption coefficient	0.121 mm ⁻¹
F (000)	1552
Crystal size	0.2 x 0.2 x 0.2 mm
θ range for data collection	2.15 to 19.86°
Limiting indices	$0 \le h \le 14, 0 \le k \le 13, -14 \le 1 \le 14$
Reflections collected	3271
Independent reflections	2857
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2857/0/487
Goodness-of-fit on F ²	1.142
Final R indices [I>2 σ (I)]	R1 = 0.0690, wR2 = 0.1682
R indices (all data)	R1 = 0.1477, wR2 = 0.2065
Largest diff. peak and hole	0.439 and -0.296 eÅ ⁻³

Table 14 Atomic coordinates $[x \ 10^4]$ and equivalent isotropic displacement parameters $[\text{\AA}^2 x \ 10^3]$ for 1*RS*-phenylethyl-2*SR*-phenyl-4,6- diamino-1,2-dihydro-1,3,5-triazine picrate (55b). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	У	Z	U(eq)
O(1)	3343 (4)	1716 (4)	2226 (4)	64 (2)
N(2)	2888 (5)	3 (4)	2298 (4)	49 (2)
N(3)	2501 (4)	-1505 (4)	2034 (4)	45 (2)
N(4)	3775 (4)	-1086 (5)	3158 (4)	46 (2)
N(5)	3608 (4)	-2544 (4)	2771 (4)	54 (2)
N(6)	1582 (5)	2217 (6)	1018 (5)	63 (2)
O(7)	4815 (4)	2850 (4)	983 (4)	82 (2)
O(8)	985 (5)	2520 (4)	387 (5)	90 (2)
O(9)	1739 (5)	5469 (4)	1239 (5)	94 (2)
O(10)	1634 (4)	1441 (5)	1210 (4)	85 (2)
N(11)	4339 (5)	364 (4)	3196 (4)	57 (2)
O(12)	4779 (5)	2263 (5)	3531 (5)	91 (2)
N(13)	3615 (6)	4201 (6)	31 (5)	67 (2)
O(14)	1041 (5)	2561 (5)	-1978 (5)	95 (2)
O(15)	3116 (6)	5783 (4)	2083 (5)	111 (3)
N(16)	4641 (5)	2979 (6)	3206 (5)	64 (2)
O(17)	5237 (5)	3555 (4)	3339 (5)	102 (3)
O(18)	4369 (6)	4451 (4)	457 (5)	122 (3)
O(19)	3022 (50	4733 (5)	-290 (5)	115 (3)
C(20)	2121 (6)	-626 (5)	2106 (5)	47 (2)
C(21)	3126 (6)	2509 (6)	2127 (5)	46 (2)
C(22)	1988 (6)	-2120 (5)	1308 (6)	57 (2)
C(23)	1868 (6)	-1662 (5)	412 (6)	57 (2)
N(24)	2502 (7)	5253 (6)	1721 (6)	70 (2)
N(25)	4325 (7)	1034 (6)	681 (6)	90 (3)
O(26)	5070 (5)	1128 (4)	1174 (5)	108 (3)

	x	y	Z	U(eq)
C(27)	2084 (6)	3718 (7)	1419 (5)	50 (2)
C(28)	3273 (6)	-1737 (6)	2634 (6)	47 (2)
C(29)	1558 (5)	-593 (6)	2812 (5)	47 (2)
C(30)	3543 (6)	4078 (6)	2459 (6)	55 (2)
C(31)	3739 (6)	3202 (6)	2576 (5)	48 (2)
C(32)	2268 (6)	2841 (6)	1535 (5)	46 (2)
C(33)	3675 (7)	-226 (7)	2897 (5)	51 (2)
C(34)	3435 (6)	3270 (6)	-116 (5)	44 (2)
N(35)	1511 (6)	1972 (7)	-1550 (5)	76 (2)
C(36)	2943 (7)	1531 (6)	-419 (6)	63 (3)
C(37)	2715 (7)	4330 (6)	1876 (6)	54 (2)
C(38)	2389 (5)	2190 (7)	-875 (5)	56 (2)
C(39)	3760 (6)	1757 (7)	187 (5)	56 (2)
O(40)	1294 (5)	1207 (6)	-1648 (5)	126 (3)
C(41)	1111 (7)	-2448 (6)	1491 (6)	76 (3)
C(42)	1047 (6)	149 (6)	2812 (6)	63 (3)
C(43)	2612 (6)	3059 (7)	-736 (6)	58 (2)
C(44)	4080 (7)	2635 (7)	404 (6)	58 (2)
C(45)	2628 (7)	-1541 (7)	89 (7)	80 (3)
C(46)	2555 (11)	-1159 (9)	-725 (10)	103 (4)
C(47)	1546 (7)	-1256 (6)	3397 (7)	75 (3)
C(48)	1034 (7)	-1362 (7)	-99 (8)	91 (3)
C(49)	488 (8)	-426 (11)	4000 (8)	96 (4)

332 (6)

251 (7)

-1166 (8)

-861 (9)

-953 (10)

639 (7)

3424 (9)

3996 (7)

-1202 (9)

-906 (9)

3964 (7)

513 (7)

1003 (10)

1720 (17)

962 (10)

O(50)

C(51)

C(52)

C(53)

C(54)

200 (6)

85 (3)

97 (4)

128 (6)

131 (5)

O(1)-C(21)	1.247 (10)	N(2)-C(33)	1.331 (10)
N(2)-C(20)	1.456 (10)	N(2)-H(2)	1.2288
N(3)-C(28)	1.3189(10)	N(3)-C(20)	1.466 (10)
N(3)-C(22)	1.505 (11)	N(4)-C(28)	1.368 (10)
N(4)-C(33)	1.363 (10)	N(4)-H(4)	1.1269
N(5)-C(28)	1.320 (10)	N(5)-H(5A)	1.2190
N(5)-H(5B)	1.0235	N(6)-O(10)	1.213 (9)
N(6)-O(8)	1.222 (9)	N(6)-C(32)	1.465 (11)
O(7)-C(44)	1.258 (10)	O(9)-N(24)	1.225 (9)
N(11)-C(33)	1.323 (10)	N(11)-H(11A)	1.1354
N(11)-H(11B)	1.0938	O(12)-H(16)	1.193 (9)
N(13)-O(18)	1.201 (9)	N(13)-O(19)	1.202 (9)
N(13)-C(34)	1.446 (11)	O(14)-C(35)	1.217 (9)
O(15)-N(24)	1.235 (9)	N(16)-O(17)	1.222 (9)
N(16)-C(31)	1.473 (11)	C(20)-C(29)	1.541 (11)
С(20)-Н(20)	0.9799	C(21)-C(31)	1.442 (11)
C(21)-C(32)	1.449 (11)	C(22)-C(41)	1.488 (12)
C(22)-C(23)	1.520 (12)	C(22)-H(22)	0.9929
C(23)J-C(48)	1.360 (13)	C(23)-C(45)	1.360 (13)
N(24)-C(37)	1.444 (12)	N(25)-O(26)	1.176 (10)
N(25)-O(50)	1.187 (11)	N(25)-C(39)	1.469 (12)
C(27)-C(32)	1.363 (11)	C(27)-C(37)	1.375 (11)
С(27)-Н(27)	1.0068	C(29)-C(42)	1.359 (11)
C(29)-C(47)	1.358 (12)	C(30)-C(31)	1.364 (11)
C(30)-C(37)	1.373 (12)	C(30)-H(30)	1.0050
C(34)-C(43)	1.378 (11)	C(34)-C(44)	1.446 (12)
N(35)-O(40)	1.205 (10)	N(35)-C(38)	1.477 (11)
C(36)-C(38)	1.369 (12)	C(36)-C(39)	1.366 (11)
С(36)-Н(36)	1.0100	C(38)-C(43)	1.364 (12)

Table 15 Bond lengths [Å] and angles [°] for 1*RS*-phenylethyl-2*SR*-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine picrate (54b).

C(33)-N(2)-C(20)	117.7 (7)	C(33)-N(2)-H(2)	127.3
C(20)-N(2)-H(2)	114.6	C(28)-N(3)-C(20)	118.0 (7)
C(28)-N(3)-C(22)	122.4 (7)	C(20)-N(3)-C(22)	119.5 (6)
C(28)-N(4)-C(33)	121.1 (7)	C(28)-N(4)-H(4)	111.0
C(33)-N(4)-H(4)	124.9	C(28)-N(5)-H(5A)	114.7
C(28)-N(5)-H(5B)	112.5	H(5A)-N(5)-H(5B)	128.8
O(10)-N(6)-O(8)	123.2 (8)	O(10)-N(6)-C(32)	120.2 (8)
O(8)-N(6)-C(32)	116.6 (8)	C(33)-N(11)-H(11A)	122.8
C(33)-N(11)-H(11B)	121.7	H(11A)-N(11)-H(11B)	112.6
O(18)-N(13)-O(19)	119.3 (9)	O(18)-N(13)-C(34)	120.1 (8)
O(19)-N(13)-C(34)	120.6 (8)	O(12)-N(16)-O(17)	123.0 (8)
O(12)-N(16)-C(31)	120.9 (8)	O(17)-N(16)-C(31)	115.9 (8)
N(2)-C(20)-N(3)	108.5 (6)	N(2)-C(20)-C(29)	112.0 (7)
N(3)-C(20)-C(29)	112.0 (7)	N(2)-C(20)-H(20)	109.0
N(3)-C(20)-H(20)	109.1	С(29)-С(20)-Н(20)	106.2
O(1)-C(21)-C(31)	122.5 (8)	O(1)-C(21)-C(32)	124.6 (8)
C(31)-C(21)-C(32)	112.9 (8)	N(3)-C(22)-C(41)	11.2 (8)
N(3)-C(22)-C(23)	108.2 (7)	C(41)-C(22)-C(23)	115.4 (7)
N(3)-C(22)-H(22)	107.2	С(41)-С(22)-Н(22)	106.1

C(39)-C(44)	1.426 (12)	C(41)-H(41A)	0.9773
C(41)-H(41B)	0.9580	C(41)-H(41C)	0.9973
C(42)-C(51)	1.394 (13)	C(42)-H(42)	1.0036
C(43)-H(43)	0.9388	C(45)-C(46)	1.36 (2)
C(45)-H(45)	1.0021	C(46)-C(53)	1.34 (2)
C(46)-H(46)	1.0302	C(47)-C(52)	1.385 (14)
С(47)-Н(47)	0.9981	C(48)-C(54)	1.37 (2)
C(48)-H(48)	0.9986	C(49)-C(52)	1.36 (2)
C(49)-C(51)	1.37 (2)	C(49)-H(49)	1.0141
C(51)-H(51)	1.0082	C(52)-H(52)	0.9956
C(53)-C(54)	1.33 (2)	C(53)-H(53)	0.9806
C(54)-H(54)	1.0114		

С(23)-С(22)-Н(22)	108.4	C(48)-C(23)-C(45)	117.2 (9)
C(48)-C(23)-C(22)	123.6 (9)	C(45)-C(23)-C(22)	119.2 (9)
O(9)-N(24)-O(15)	123.8 (8)	O(9)-N(24)-C(37)	119.2 (9)
O(15)-N(24)-C(37)	117.0 (9)	O(26)-N(25)-O(50)	118.6 (10)
O(26)-N(25)-C(39)	123.9 (9)	O(50)-N(25)-C(39)	117.1 (10)
C(32)-C(27)-C(37)	120.5 (8)	С(32)-С(27)-Н(27)	121.4
С(37)-С(27)-Н(27)	118.0	N(5)-C(28)-N(3)	125.5 (8)
N(5)-C(28)-N(4)	117.0 (8)	N(3)-C(28)-N(4)	117.5 (8)
C(42)-C(29)-C(47)	120.7 (8)	C(42)-C(29)-C(20)	115.7 (9)
C(47)-C(29)-C(20)	123.7 (8)	C(31)-C(30)-C(37)	118.8 (8)
С(31)-С(30)-Н(30)	123.5	С(37)-С(30)-Н(30)	117.7
C(30)-C(31)-C(21)	124.2 (8)	C(30)-C(31)-N(16)	11539 (8)
C(21)-C(31)-N(16)	119.9 (8)	C(27)-C(32)-C(21)	122.3 (8)
C(27)-C(32)-N(6)	118.3 (8)	C(21)-C(32)-N(6)	119.4 (8)
N(11)-C(33)-N(2)	120.1 (9)	N(11)-C(33)-N(4)	122.2 (8)
N(2)-C(33)J-N(4)	117.7 (8)	C(43)-C(43)-C(44)	124.6 (9)
C(43)-C(34)-N(13)	115.5 (9)	C(44)-C(34)-N(13)	119.8 (8)
O(40)-N(35)-O(14)	123.0 (9)	O(40)-N(35)-C(38)	117.5 (10)
O(14)-N(35)-C(38)	119.5 (9)	C(38)-C(36)-C(39)	118.3 (8)
C(38)-C(36)-H(36)	121.6	С(39)-С(36)-Н(36)	120.1
C(27)-C(37)-C(30)	121.3 (8)	C(27)-C(37)-N(24)	118.8 (9)
C(30)-C(37)-N(24)	119.9 (9)	C(36)-C(38)-C(43)	122.6 (8)
C(36)-C(38)-N(35)	120.0 (10)	C(43)-C(38)-N(35)	117.4 (9)
C(36)-C(39)-C(44)	125.3 (9)	(36)-C(39)-N(25)	116.8 (9)
C(44)-C(39)-N(25)	117.9 (8)	C(22)-C(41)-H(41A)	113.1
C(22)-C(41)-H(41B)	113.2	H(41A)-C(41)-H(41B)	108.2
C(22)-C(41)-H(41C)	110.1	H(41A)-C(41)-H(41C)	105.1
H(41B)-C(41)-H(41C)	106.6	C(29)-C(42)-C(51)	120.7 (9)
С(29)-С(42)-Н(42)	120.1	C(51)-C(42)-H(42)	119.1
C(38)-C(43)-C(34)	118.0 (8)	C(38)-C(43)-H(43)	119.4
C(34)-C(43)-H(43)	122.6	O(7)-C(44)-C(39)	125.7 (8)
O(7)-C(44)-C(34)	123.1 (9)	C(39)-C(44)-C(34)	111.2 (9)

C(46)-C(45)-C(23)	121.6 (10)	C(46)-C(45)-H(45)	119.5
C(23)-C(45)-H(45)	118.9	C(53)-C(46)-C(45)	119.3 (12)
C(53)-C(46)-H(46)	118.1	C(45)-C(46)-H(46)	122.6
C(29)-C(47)-C(52)	119.0 (9)	С(29)-С(47)-Н(47)	122.5
С(52)-С(47)-Н(47)	118.5	C(54)-C(48)-C(23)	121.4 (11)
C(54)-C(48)-H(48)	118.6	C(23)-C(48)-H(48)	120.0
C(52)-C(49)-C(51)	12.0.5 (10)	C(52)-C(49)-H(49)	121.6
C(51)-C(49)-H(49)	117.9	C(49)-C(51)-C(42)	118.4 (9)
С(49)-С(51)-Н(51)	121.0	C(42)-C(51)-H(51)	120.5
C(49)-C(52)-C(47)	120.8 (10)	C(49)-C(52)-H(52)	118.1
C(47)-C(52)-H(52)	121.2	C(54)-C(53)-C(46)	121.1 (13)
C(54)-C(53)-H(53)	123.8	C(46)-C(53)-H(53)	115.1
C(53)-C(54)-C(48)	119.4 (13)	C(53)-C(54)-H(54)	117.6
C(48)-C(54)-H(54)	123.0		

Symmetry transformations used to generate equivalent atoms:

Table 16 Anisotropic displacement parameters $[Å^2 \times 10^3]$ for 1*RS*-phenylethyl-2*SR*-phenyl-4,6-diamino-1,2-dihydro-1,3,5-triazine picrate (54b). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}]$

	U11	U22	U33	U23	U13	U12
O(1)	67 (4)	30 (4)	86 (4)	4 (3)	2 (3)	-2 (3)
N(2)	54 (5)	31 (4)	54 (4)	3 (4)	1 (4)	-3 (4)
N(3)	40 (4)	34 (5)	50 (4)	-1 (4)	-7 (4)	2 (4)
N(4)	58 (5)	18 (5)	57 (5)	14 (4)	6 (4)	9 (4)
N(5)	55 (4)	17 (4)	76 (5)	-5 (4)	-8 (4)	-4 (4)
N(6)	64 (6)	52 (6)	68 (6)	-2 (5)	10 (5)	-6 (6)
O(7)	70 (4)	56 (4)	95 (5)	1 (4)	-24 (4)	-15 (4)
O(8)	78 (5)	74 (5)	99 (5)	4 (4)	-14 (4)	-7 (4)
O(9)	100 (6)	49 (5)	121 (6)	-1 (4)	7 (5)	14 (4)
O (10)	90 (5)	38 (4)	112 (6)	6 (4)	3 (4)	-15 (4)
N(11)	64 (5)	35 (5)	59 (5)	1 (4)	-6 (4)	-12 (4)
O(12)	84 (5)	55 (5)	110 (6)	22 (4)	-14 (4)	-12 (4)
N(13)	62 (6)	64 (8)	66 (5)	6 (5)	3 (5)	-7 (6)
O(14)	72 (5)	102 (6)	89 (5)	9 (5)	-16 (4)	3 (4)
O(15)	132 (6)	26 (4)	147 (7)	-9 (4)	-16 (5)	-16 (4)
N(16)	52 (6)	43 (6)	97 (6)	-3 (5)	21 (5)	-6 (5)
O(17)	72 (5)	57 (5)	157 (7)	-5 (5)	-6 (4)	-18 (4)
O(18)	104 (6)	63 (5)	148 (7)	4 (5)	-55 (3)	-13 (5)
O(19)	102 (6)	60 (5)	150 (7)	13 (5)	-28 (5)	16 (5)
C(20)	56 (6)	28 (6)	48 (5)	4 (4)	-1 (4)	11 (5)
C(21)	61 (7)	31 (7)	52 (6)	-4 (5)	26 (5)	-10 (6)
C(22)	46 (6)	44 (6)	72 (7)	-2 (5)	2 (5)	-2 (5)
C(23)	57 (6)	51 (6)	56 (6)	-12 (5)	6 (6)	-20 (5)
N(24)	86 (7)	35 (7)	84 (6)	-2 (5)	14 (5)	-5 (6)
N(25)	99 (8)	45 (7)	105 (7)	-9 (6)	-13 (6)	-9 (7)
O(26)	87 (5)	65 (5)	138 (7)	0 (4)	-28 (5)	-4 (4)
C(27)	53 (6)	40 (7)	54 (6)	12 (5)	7 (4)	6 (6)

	U11	U22	U33	U23	U13	U12
C(28)	52 (6)	23 (6)	62 (6)	-19 (5)	11 (5)	-17 (6)
C(29)	49 (5)	37 (6)	51 (6)	-6 (5)	6 (4)	-1 (5)
C(30)	54 (6)	39 (7)	69 (6)	-10 (5)	13 (5)	-2 (5)
C(31)	47 (6)	30 (7)	64 (6)	-4 (5)	12 (5)	-3 (5)
C(32)	48 (6)	41 (7)	47 (6)	0 (5)	10 (5)	-3 (5)
C(33)	67 (7)	42 (8)	42 (5)	-16 (5)	8 (5)	-2 (6)
C(34)	43 (6)	48 (7)	43 (5)	-7 (5)	14 (5)	-9 (5)
N(35)	68 (7)	80 (8)	73 (6)	-5 (6)	6 (5)	-14 (6)
C(36)	68 (7)	61 (7)	57 (6)	-7 (6)	11 (6)	-21 (6)
C(37)	67 (7)	28 (7)	67 (6)	2 (5)	18 (6)	-6 (6)
C(38)	40 (6)	67 (8)	51 (6)	-3 (6)	-7 (5)	-7 (6)
C(39)	67 (7)	39 (7)	54 (6)	4 (6)	3 (5)	-3 (6)
O(40)	120 (7)	83 (6)	136 (7)	5 (5)	-35 (5)	-37 (5)
C(41)	79 (7)	64 (7)	76 (6)	1 (5)	4 (5)	-26 (6)
C(42)	53 (6)	52 (7)	78 (7)	5 (5)	9 (5)	10 (5)
C(43)	56 (6)	64 (8)	50 (6)	6 (5)	10 (5)	4 (6)
C(44)	63 (7)	51 (8)	58 (6)	10 (6)	15 (5)	9 (6)
C(45)	71 (8)	106 (9)	56 (7)	-12 (6)	7 (6)	-13 (6)
C(46)	131 (12)	118 (11)	78 (10)	-27 (8)	56 (9)	-33 (9)
C(47)	102 (8)	55 (7)	76 (7)	9 (6)	40 (6)	18 (6)
C(48)	56 (7)	121 (9)	82 (8)	17 (7)	-4 (6)	-5 (6)
C(49)	97 (9)	119 (11)	88 (9)	-33 (9)	53 (7)	-12 (9)
O(50)	192 (10)	65 (6)	254 (12)	24 (7)	-102 (9)	-6 (7)
C(51)	69 (7)	75 (8)	118 (9)	-19 (8)	38 (7)	16 (6)
C(52)	150 (11)	85 (9)	70 (8)	8 (7)	52 (8)	-9 (9)
C(53)	210 (12)	105 (11)	64 (9)	11 (8)	33 (12)	-51 (13)
C(54)	127 (12)	155 (13)	76 (11)	44 (9)	-36 (8)	1 (10)

.

VITA

Miss Wanida Wiriyawaree was born on May 17, 1975 in Nakornsrithammarad, Thailand. She received the Bachelor's Degree of Science in Chemistry from Chulalongkorn University in 1998. In the same year, she was admitted to the Master's degree program, organic chemistry, at Chulalongkorn University. She graduated with the Master Degree of Science in 2001.

