DEVELOPMENT OF A SENSOR FOR MONITORING HYDROGEN IN HUMID CHLORINE GAS: SELECTION OF SHEATHING MATERIALS

.

.

Ms. Kittima Khumsa-ang

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2001 ISBN 974-13-0687-3

119736039

Thesis Title:	Development of a Sensor for Monitoring Hydrogen in
	Humid Chlorine Gas
By:	Kittima Khumsa-ang
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Frank R. Steward
	Ass.Prof. Thirasak Rirksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Frank R Steward

(Prof. Frank R. Steward)

Thallow

(Ass.Prof. Thirasak Rirksomboon)

A. ben

(Prof. Somchai Osuwan)

ABSTRACT

1

4271009063: PETROCHEMICAL TECHNOLOGY PROGRAM Kittima Khumsa-ang: Development of a Sensor for Monitoring Hydrogen in Humid Chlorine Gas: Selection of Sheathing Materials. Thesis Advisors: Prof. Frank R. Steward, Ass.Prof. Thirasak Rirksomboon, 82 pp ISBN 974-13-0687-3

Keywords: Hydrogen Sensor/Hydrogen Permeation in Solids

The monitoring of hydrogen in the electrolysis cell gas is important in a chlor-alkali plant. An increase in hydrogen concentration in the chlorine gas indicates a lower efficiency in operation of the electrolytic cell. The explosion limit for hydrogen is 6% which can occur in the chlorine liquefaction section of the plant. It is undesirable to permit access of the chlorine to the sensor that catalyzes the reaction between hydrogen and chlorine. Such a reaction would clearly alter the detection of hydrogen gas mixture in dry chlorine gas to determine the permeability coefficients of hydrogen and chlorine. One of the criteria of the acceptable sheathing material is expected to have the ratio of the hydrogen to chlorine permeability coefficients of more than 10 000. In the present study, epoxy vinyl ester resin is currently a most acceptable sheathing material since it has no Breakthrough Time of chlorine in 160 hours.

บทคัดย่อ

กิตติมา ขำสอางค์: การศึกษาหาวัสดุที่มีคุณสมบัติที่เหมาะสมที่จะนำไปเคลือบลงบน เครื่องมือที่ใช้วัคความเข้มข้นของก๊าซไฮโครเจนในก๊าซคลอรีนอย่างชื้น (Development of a Sensor for Monitoring Hydrogen in Humid Chlorine Gas: Selection of Sheathing Materials) อ. ที่ปรึกษา : ศ.คร. แฟรงค์ อาร์ สจ๊วรค และ ผศ.คร. ธีรศักดิ์ ฤกษ์ สมบูรณ์ 82 หน้า ISBN 974-13-0687-3

้โรงงานคลอร์อัลคาไลมีความจำเป็นที่จะด้องทำการตรวจวัคปริมาณความเข้มข้นของก๊าซ ไฮโครเจน เนื่องจากอัตราการเพิ่มขึ้นของไฮโครเจนในก๊าซที่เป็นส่วนผสมระหว่างไฮโครเจนและ ้คลอรีน บ่งชี้ถึงประสิทธิภาพการทำงานที่ลคต่ำลงของอิเล็คโทรไลซิสเซลล์ ซึ่งมีผลต่อความ ปลอคภัยของโรงงาน ทั้งนี้หากความเข้มข้นของไฮโครเจนเพิ่มขึ้นเกินกว่า 6% ซึ่งเป็นค่าความเข้ม ข้นที่ต่ำที่สุดของไฮโครเจนในคลอรีน อาจก่อให้เกิดการระเบิดขึ้นในโรงงานได้ นอกจากนี้ก่อน ทำการตรวจวัคความเข้มข้นของไฮโครเจน จะด้องทำการแยกก๊าซไฮโครเจนออกจากคลอรีน เนื่อง จากก๊าซคลอรีนจะทำปฏิกิริยากับก๊าซไฮโครเจนในเครื่องวัค ซึ่งส่งผลให้เครื่องวัคแสคงค่าที่ผิค พลาดของก่ากวามเข้มข้นของไฮโครเจน จึงมีการศึกษาเพื่อก้นหาวัสดเพื่อนำมาเกลือบลงบนเกรื่อง ้วัคที่จะทำให้ไฮโครเจนแทรกผ่านแต่ในขณะเดียวกันก็สามารถป้องกันคลอรึนไม่ให้ผ่านเข้าไปยัง เครื่องวัดได้ โดยมีเกณฑ์ว่าวัสคุประเภทนี้จะด้องมีอัตราการให้ไฮโครเจนแทรกผ่านสูงกว่าคลอรีน ประมาณ 10 000 เท่า ในการศึกษานี้ได้ทำการทดลองวัสดุประเภทต่างๆ ได้แก่ สารละลายฟลูออโร ้คืน ฟลูออโรคืนกอล์ก อิพอกซี่ไวนิลเอสเทอร์เรซินและแผ่นฟลูออโรคืนสำเร็จรูปซึ่งมีกวามหนา 0.7 มิลลิเมตร โดยวัสคุสามชนิดแรกจะต้องทำการเคลือบลงบนแผ่นเทฟลอนหนา 0.15 มิลลิเมตร ้ก่อนที่งะนำวัสคุทั้งหมดไปทำการทดลองหาอัตราการแทรกผ่านของไฮโครเงนและคลอรีนที่ อุณหภูมิ 80 องศาเซลเซียส โคยใช้ก๊าซที่ประกอบด้วยไฮโครเงน 5%และก๊าซคลอรีนบริสุทธิ์ตาม ้ถำดับ จากผลการทคลอง สามารถสรุปได้ว่าวัสคุประเภทอิพอกซี่ไวนิลเอสเทอร์เรซินเป็นวัสคุที่มี ้คณสมบัติเหมาะสมที่จะนำไปเคลือบลงบนเครื่องตรวจวัดค่าความเข้มข้นของไฮโครเจนมากที่สุด เนื่องจากสามารถสกัดกั้นคลอรีนไม่ให้แทรกผ่านเนื้อวัสดุไว้ได้ภายในระยะเวลา 160 ชั่วโมง

ACKNOWLEDGEMENTS

First of all, I wish to express my deepest gratitude to Dr. Frank R. Steward who has given me an opportunity to study at the University of New Brunswick, Canada. I am grateful for his belief that I am capable of completing the work. The kindness and thoughtfulness of Dr. Steward and his family would never be forgotten.

I am also thankful for being the student under the supervisions of Dr. Somchai Osuwan and Dr. Thirasak Rirksomboon who have helped me made my way to the destination. Without them, I would not be proudly standing here at the first place. Moreover, I would like to thank all of my advisors, Dr. David R. Morris, Dr. Dongfang Yang and Ms. Josephine Bullerwell who have supervised me at Center for Nuclear Energy Research, Canada otherwise my accomplishment would not be completed.

Though I spent all of the time mostly in CNER laboratory, I have Chemical Engineering and Pulp and Paper Department to thank for supplying the equipment as well as a fume hood. My experiment would not have been completed without them.

I believe that the colleagues play an important role in order to create a good environment of working and that I have my CNER friends to thank for making my work here a lot easier. Their greetings wake me up in the early morning and their conversation lighten me up during the day. I have no doubt about their genuineness.

The most precious memories from this journey is to be one of the Little Thailand members in Fredericton. They have been taken the best care of me since I have made my first footstep in Fredericton. Getting through all the year with them is one of the most valuable times of my life. They have reminded me that I will never be away from home because they are all a family to me. To Toei, Joey, Pond, Nui, May, Pan, Leong, David and

everyone in Fredericton, it is my honor to spend time with all of you. And because of you, I have experienced that friendships can be everywhere, no matter how differences in the way of living we are. I will treasure our friendships and you will always be in my memories.

And above all, I would like to thank all of my friends and family in Thailand for your unconditional love and support, and for being there for me. I feel I am truly blessed to have all of you standing by me. Even though your name has not been announced here, I hope you know who you are. All I want you to know is I could not make it without you and I love you.

.

1

4

TABLE OF CONTENTS

i -

i
iii
iv
v
vii
xi
xii
xvi
xvii

PAGE

CHAPTER

Ι	INTRODUCTION	1
	1.1 Background	1
	1.2 Importance of Measuring Hydrogen	
	Concentration	3
	1.3 Reactions and Energy Consumption	4
	1.4 Manufacturer of Chlorine and Caustic Soda	6
	1.4.1 Stationary Electrode with Diaphragm Cell	6
	1.4.2 Movable Electrode cells or Mercury Cell	8
	1.4.3 Membrane Cell	9
II	LITERATURE SURVEY	14
	2.1 Membrane Separation Processes	14
	2.1.1 Definition of Membrane	14
	2.1.2 Types of Membranes	14

III

2

	2.1.3	The Basic Membrane Process For	
		Gas Separation	15
2.2	Gas I	Diffusion in Solids	17
	2.2.1	Determination of Diffusivity	
		and Permeability Coefficients	17
	2.2.2	The Relation between Diffusion	
		and Permeability Coefficients	18
	2.2.3	Factors Affecting Diffusion of Gases	
		in Polymers	19
2.3	Hydr	ogen Permeation in Solids	22
	2.3.1	Diffusivity and Permeability of	
		Hydrogen through Palladium	22
•	2.3.2	Diffusivity or Permeability of Hydrogen	
		through Alloys of Palladium	26
	2.3.3	Diffusivity or Permeability of Hydrogen	
		through Teflon	30
2.4	Senso	ors for Monitoring the Hydrogen	
	Conce	entration	31
	2.4.1	The Pd/H Electrical Resistance Sensor	31
	2.4.2	The Electrochemical Potentiometric Sensor	34
	2.4.3	The Electrochemical Amperometric Sensor	36
EX	PERI	MENTAL	40
3.1	Test	Materials and Coating Procedure	40
	3.1.1	Test Materials	40
	3.1.2	Coating Procedure	40

viii

IV

,

3.1.3 Coated Material Thickness	
Determination	41
3.2 Terminology	41
3.2.1 Permeation	41
3.2.2 Steady State Permeation	41
3.2.3 Challenge Gas	42
3.2.4 Collection Medium	42
3.2.5 Elapsed Time	42
3.2.6 Breakthrough Time	42
3.3 Apparatus for Hydrogen and Chlorine	
Permeability Study	42
3.4 Methodology	43
3.4.1 Determination of Hydrogen Permeability	43
3.4.2 Determination of Chlorine Permeability	43
3.5 Calculation Based on Experimental Data	46
3.5.1 Determination of Hydrogen Permeation Rat	e 46
3.5.2 Determination of Chlorine Permeation Rate	47
3.5.3 Determination of Permeation Coefficient	49
RESULTS AND DISCUSSIONS	50
4.1 Determination of Hydrogen Permeability	50
4.1.1 Teflon Test	50
4.1.2 Material Coatings Test	52
4.2 Determination of Chlorine Permeability	56
4.2.1 Teflon Test	57
4.2.2 Material Coatings Test	57

PAGE

CHAPTER		PAGE
	4.3 Sample Analysis Using Scanning Electron Microscope	61
V	CONCLUSIONS AND RECOMMENDATIONS	64
	REFERENCES	66
	APPENDICES	69
	Appendix A	69
	Appendix B	69
	Appendix C	70
	Appendix D	78
	CURRICULUM VITAE	82

÷

.

LIST OF TABLES

.

,

TABLEPAGE

1.1	Physical constants of chlorine	12
1.2	Physical constants of pure sodium hydroxide	12
1.3	Comparison of the electrolytic cells	13
2.1	Molecular weight and kinetic diameter of interesting	
	feed gases	20
3.1	The density of test materials used in the present work	41
4.1	Permeability coefficient of hydrogen through	
	0.15 mm thick Teflon at ambient temperature	51
4.2	Hydrogen permeability coefficient at 80°C of	
	Fluorodyn solution at various thickness of the coating	52
4.3	Hydrogen permeability coefficient of epoxy vinyl	
	ester resin at various thickness of the coating at 80°C	55
4.4	Effect of an individual property and the thickness	
	of the test materials on the permeability coefficient	
	of hydrogen (P _{H2}) at 80°C	56
4.5	Effect of an individual property and the thickness	
	of the test materials on the Breakthrough Time	
	(B/T) and the permeability coefficient of chlorine	
	(P _{Cl2}) at 80°C	60
C.1	The Breakthrough Time (B/T) of hydrogen	
	concentration of Teflon-water system in an	
	amperometric sensor under unsteady state condition	78

LIST OF FIGURES

FIGURE PAGE

1.1	Ordinary asbestos-diaphragm cell	6
1.2	Flow diagram of diaphragm chlor-alkali process	7
1.3	Mercury cell	8
1.4	Flow diagram of mercury chlor-alkali process	9
1.5	Perfluorosulfonic acid resin membrane	10
1.6	Flow diagram of membrane chlor-alkali process	11
2.1	Structures of separating layer of membrane	16
2.2	Variation of gas pressure through a material	17
2.3	Schematic comparison of solubility of hydrogen in	
	metals at a pressure of 1 atm as a function of temperature	23
2.4	Examples of permeability of a palladium tube when	
	hydrogen at the high pressure (upstream) side is kept	
	either static or in circulation by bleeding away some of	
	the gas	25
2.5	Phase diagram for the Pd/H system: Isothermal pressure	
	-composition	26
2.6	Comparison of solubilities of hydrogen under a pressure	
	of 1 atm in series of palladium alloys-from measurements	
	of Sieverts	28
2.7	Comparison of P-C (absorption) relations for palladium	
	silver alloys at 50°C	29
2.8	Cross section of the Pd/H electric resistance sensor	31
2.9	The structure of the original potentiometric sensor using	
	proton conductor	34
2.10	Cross section of the potentiometric sensor	35

...

PAGE

2.11	Schematic diagram of an amperometric sensor for	
	monitoring hydrogen concentration	37
2.12	An example of the response signal for electrochemical	
	amperometric sensor for H_2 in dry gas mixtures with	
	dry chlorine	39
3.1	The apparatus for the determination of the hydrogen	
	permeability	44
3.2	The apparatus for the determination of the chlorine	
	permeability	46
3.3	Example of the set-up for continuous flow of the	
	collection gas	46
3.4	Permeability of neoprene to methanol is an example	
	of the relationship between the permeation (in $\frac{mg}{m^2}$)	
	versus time	48
4.1	Amount of hydrogen permeated through 0.15 mm	
	thick Teflon under steady state condition at ambient	
	temperature (25°C) and evaluated temperature (80°C)	51
4.2	Amount of hydrogen permeated through 0.1 mm thick	
	Fluorodyn solution coated on 0.15 mm thick Teflon as	
	a function of time under steady state experiment	53
4.3	Amount of hydrogen permeated through 0.7 mm thick	
	Fluorodyn sheet as a function of time	54
4.4	Amount of hydrogen permeated through various thickness	
	of epoxy vinyl ester resin coated on 0.15 mm Teflon as	
	a function of time under steady state experiment	55

3.

.

4.5	The permeation of chlorine to 0.15 mm thick Teflon	
	under steady state condition at 80°C	57
4.6	The permeation of chlorine to 0.41 mm thick Fluorodyn	
	solution coated on 0.15 mm thick Teflon under steady	
	state condition at 80°C	58
4.7	The permeation of chlorine to 0.7 mm thick Fluorodyn	
	sheet under steady state condition at 80°C	59
4.8	The permeation of chlorine to 0.59 mm thick Fluorodyn	
	caulk coated on 0.15 mm thick Teflon under steady state	
	condition at 80°C	60
4.9	An example of the pinhole occurred on Fluorodyn	
	solution coated surface from the electron microscope scanner	62
4.10	An example of Teflon surface from the electron	
	microscope scanner	63
4.11	An example of a suitable surface of a supported material	
	after being coated that should be used in the gas	
	permeability study	63
C.1	Two dimensional Teflon-water system in an	
	amperometric sensor.	70
C.2	The relationship between current and thickness of water	
	layer under steady state condition when Teflon thickness	
	is 100 μm	72
C.3	The relationship between current and Teflon thickness	
	under steady state condition when thickness of water layer	
	is 2 mm	73

FIGURE

PAGE

C.4	Two-region of Teflon-water slab	73
C.5	The relationship between the response current of	
	Teflon-water system of an amperometric sensor under	
	unsteady state as a function of time when the Teflon	
	thickness is constant at 100 µm	77
C.6	The relationship between the response current of	
	Teflon-water system of an amperometric sensor under	
	unsteady state as a function of time when the thickness	
	of water layer is constant at 2 mm	77
D.1	The concentration distribution at various thickness of	
	epoxy vinyl ester resin at $t = 10$ minute	79
D.2	The concentration distribution at various thickness of	
	Fluorodyn solution at $t = 10$ minute	80
D.3	The center concentration at various thickness of epoxy	
	vinyl ester resin slab as a function of time	80
D.4	The center concentration oat various thickness of	
	Fluorodyn solution slab as a function of time	81

,

ABBREVIATIONS

- ASTM American Standard Test Method
- B/T Breakthrough Time
- GC Gas Chromatograph
- Gr Graphite disc

. .

- Pd Palladium
- PFSA Perfluorosulfonic acid
- Pt Platinum black
- SS Stainless steel

,

,

LIST OF SYMBOLS

φ	Permeability coefficient, mol m ⁻¹ Pa ⁻¹ s ⁻¹
ρ	Electrical resistivity of the single phase Pd/H solid solution
ΔH	Enthalpy change of reaction
$\alpha_{\rm H}$	Empirical deviation from ideality as $x_H \rightarrow 0$, $a_H \rightarrow x_H$ according
	to Sievert's law
$ ho_{ m H}$	Resistivity due to hydrogen atoms
ф _{Н2}	Permeability coefficient of hydrogen in membrane material
фi	Permeability coefficient of permeant i in the material, <u>mol</u> m Pa sec
β _{jn}	Eigen value
ρι	Resistivity due to lattice vibration
Δp_i	Partial pressure difference of permeant i on either side of
φ _T	Total permeability coefficient in multi-layer materials
A	Cross sectional area to flow, m ²
a	Activity of the indicated species
a _H	Activity at the atom ratio x_H in the single phase Pd/H solution
a _{H3O+}	Activity of water in the polymer electrolyte
a _i A _T	Activity of the indicated species i Test cell exposed area
C_1, C_2	Concentrations of hydrogen dissolved in membrane at each
	side of interfaces
C _{A1}	Hydrogen concentration in Teflon
C _{A2}	Hydrogen concentration in water
C _b	Tube calibration concentrations as scale unit on the tube, ppm
C _{Hi}	Concentration of hydrogen at time t_i , $\mu g m^{-3}$
Ci	Gas concentrations on interface i, mol m ⁻³
D	Diffusion coefficient, $m^2 s^{-1}$

1

 D_0 Pre-exponential factor

x

- Diffusion coefficient of hydrogen in Teflon at 25°C D_1
- Diffusion coefficient of hydrogen in water at 25°C D_2
- E Theoretical decomposition voltage
- E⁰ Half-cell potential, given by Nernst equation
- EA Activation energy
- F Faraday's constant
- Flow rate of fresh argon through the test cell, m³ min⁻¹ F_{Ar}
- $F_i(x)$ Expanded function in an infinite series of eigenfunctions at t=0
- Η Henry's Constant of hydrogen dissolved in water at 25°C
- J Electrical equivalent of heat
- Κ Constant equals to S multiplied by H
- k Linear function of reciprocal absolute temperature
- Equilibrium constant of chemical reaction involving hydrogen $K_{g}(T)$ gas and palladium metal
- L Thickness of material, m
- Thickness of layer i in multi-layer materials Li
- Total thickness of material LT
- Μ Net chemical changes
- Number of equivalents involved n
- Ν Rate of gas diffusion through solids
- Gas partial pressure on either side of interfaces, Pa p_1, p_2
- Rate of hydrogen permeation P_{H2}
- Pressure of hydrogen in gas, atm p_{H2}
- Gas partial pressures on interface i, Pa p_i
- Permeation rate of permeant i through material, mol Pi

Permeation rate, $\mu g m^{-2} min^{-1}$ $P_i(t_i)$

- P_M Absolute amount of permeant at any one time, mg
- Q Molar flow rate of permeant, mol s⁻¹
- Q_C Total charge passed through the electrode during the experiment
- R Gas constant

 $\overline{R}(T, x_H)$ Resistance ratio of a palladium wire

- R_i Resistance to the gas transfer for layer i
- S Solubility constant
- S_{H2} Solubility of H₂ in Teflon at 25°C
- T Absolute temperature, K
- T_C Critical temperature

ī.

- t_i Time at which concentration of hydrogen in collection gas was C_{Hi}, min
- V_a Volume of gas that is used to generate the calibrations
- w(x) Sturm-Liouville weighting function for the cartesian coordinate system
- W_j Discontinuous-weighting function
- x_H Atom ratio of hydrogen in palladium
- X_{jn} Eigenfunction in cartesian co-ordinate system
- z Number of moles of electrons involved in electrochemical reaction