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CHAPTER I

GENERALIZED BILINEAR FORM GRAPHS

Graphs arising from bilinear forms have been variously studied. The most

favorite such graphs are symplectic graphs and orthogonal graphs which have

been famously explored in several directions. In this chapter, we present a new

class of graphs arising from bilinear forms which will be called Generalized bilinear

form graphs over finite commutative rings. In order to understand the background

of becoming these graphs and their characters deeply, we first introduce all ter-

minologies regarding our graphs. The literature review and the definition of our

graphs are presented in the end of this chapter.

As we have known, a graph basically consists of vertices and edges acquired by

an adjacency condition. As well, our graphs are studied on free modules over finite

commutative rings. The properties of finite commutative rings and free modules

are introduced in Sections 1.1 and 1.2, respectively. Next, we exhibit the concept

of unimodular vectors in Section 1.3. Indeed, unimodular vectors are concerned in

both symplectic graphs and orthogonal graphs. After that, Section 1.4 reveals the

notion of rank of matrices over commutative rings which is the key for defining

the adjacency condition of our graphs. By design, the vertices of our graphs are

made up of certain free submodules. The basic features of free submodules are

studied in Section 1.5. Afterwards, Section 1.6 is devoted to bilinear forms which

play outstanding roles in our graphs. We introduce the concept of bilinear forms

over commutative rings and illustrate some kinds of bilinear forms. Necessarily,

Section 1.7 is aimed at writing down the general definitions of graphs. After all

things discussed, we give the history of graphs arising from bilinear forms running

from the start toward becoming generalized bilinear form graphs in the final section

of this chapter.
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1.1 Finite Commutative Rings

In this section, we review the information of finite commutative rings. For basic

definition, notation and properties, the reader is referred to [1], [8] and [12].

Throughout this dissertation, our rings always contain the identity 1 ̸= 0.

Let R be a ring. An element a in R is a unit if there exists an element b ∈ R

such that ab = 1 = ba, a is a zero divisor if a is non-zero and there exists an

element 0 ̸= b ∈ R such that ab = 0 = ba, and, a is nilpotent if there exists a

positive integer n such that an = 0. It is easy to see that the set of units of R form

a group under multiplication, called the group of units of R and denoted by R×.

An ideal I of a ring R is a nonempty subset of R such that a − b, ra and ar

are in I for all a, b ∈ I and r ∈ R. An ideal M of a ring R is maximal if M ̸= R

and for every ideal J of R, if M ⊆ J ⊆ R, then J = M or J = R. Actually, a ring

may own many maximal ideals. However, rings owning a unique maximal ideal

are the core of studying finite commutative rings.

A local ring R is a commutative ring which has a unique maximal ideal, its

unique maximal ideal M is R r R×, and we call the field R/M the residue field

of R. This local ring is also equipped with the canonical map π : R → R/M given

by π(r) = r +M for all r ∈ R.

Example 1.1.1. 1. Every field is a local ring with maximal ideal {0}.

2. Zpt is a local ring with maximal ideal pZpt and residue field k = Zpt/pZpt
∼= Zp

for every prime p and t ∈ N.

3. Z is not a local ring since it has infinitely many maximal ideals of the form pZ

where p is a prime.

Proposition 1.1.2. [1] In a finite local ring, every element is either a unit or a

nilpotent element.

This implies that if M is a maximal ideal of a finite local ring R, then M t = {0}

for some t ∈ N.
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Next, let R be a finite commutative ring. It is well known that R is isomorphic

to a product of finite local rings. More precisely,

R ∼= R1 ×R2 × · · · ×Rℓ

where R1, R2, . . . , Rℓ are finite local rings with maximal ideals M1,M2, . . . ,Mℓ,

respectively. We also have the projection map ρj : r = (s1, s2, . . . , sℓ) 7→ sj for all

j ∈ {1, 2, . . . , ℓ}.

It follows immediately that

R× ∼= R×
1 ×R×

2 × · · · ×R×
ℓ .

Moreover, if I is an ideal of R, then I ∼= ρ1(I)× ρ2(I)× · · · × ρℓ(I) where ρj(I) is

an associate ideal of Rj for all j ∈ {1, 2, . . . , ℓ}.

Proposition 1.1.3. [1] In a finite commutative ring, every nonzero element is either

a unit or a zero divisor.

Example 1.1.4. Let n = pt11 p
t2
2 . . . ptℓℓ where pj is a prime and tj ∈ N for all

j ∈ {1, 2, . . . , ℓ}. Then

Zn
∼= Z

p
t1
1
× Z

p
t2
2
× · · · × Z

p
tℓ
ℓ
,

where Z
p
tj
j

is a finite local ring with unique maximal ideal pjZp
tj
j

and residue field

kj = Zpj for all j ∈ {1, 2, . . . , ℓ}.

1.2 Free Modules

The concept of modules is known as a generalization of vector spaces. The def-

inition of modules is similar to that of vector spaces. Unlike vector spaces, the

scalars of modules are in rings.

Let R be a ring with identity 1R. An R-module or a module over R is an

abelian group (V,+) with a scalar multiplication R× V → V , denoted by rx⃗, the

image of (r, x⃗), which satisfies for all r, s ∈ R and x⃗, y⃗ ∈ V ,
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1. r(x⃗+ y⃗) = rx⃗+ ry⃗,

2. (r + s)x⃗ = rx⃗+ sx⃗,

3. r(sx⃗) = (rs)x⃗ and

4. 1Rx⃗ = x⃗.

Example 1.2.1. 1. For a field F , an F -module is just a vector space over F .

2. Every abelian group is a Z-module.

3. Every ring R is a module over itself where the addition and the scalar mul-

tiplication are given by ring operations of R.

4. Let R be a ring. Then V = Rn, a direct product of n copies of R, is an

R-module under pointwise addition and scalar multiplication.

We provide some basic terminologies regarding modules in the following defi-

nitions.

Let R be a ring and V an R-module. A subset X of V is called a submodule

of V if X is an additive subgroup of V and rx⃗ ∈ X for any r ∈ R and x⃗ ∈ X.

Example 1.2.2. 1. For a field F , all submodules of an F -module which is a

vector space over F are the subspaces.

2. Since every abelian group V is a Z-module, all subgroups of V are equivalent

to submodules of the Z-module V .

3. For an R-module V , it is easy to see that Rx⃗ is a submodule of V where

x⃗ ∈ V .

Next, let V be an R module. We say V is generated by a subset {x⃗1, x⃗2, . . . , x⃗n}

if it is the set

{r1x⃗1 + r2x⃗2 + · · ·+ rnx⃗n : r1, r2, . . . , rn ∈ R}
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and we write

V = Rx⃗1 +Rx⃗2 + · · ·+Rx⃗n.

A set {x⃗1, x⃗2, . . . , x⃗n} is said to be linearly independent if it is provided that

for any r1, r2, . . . rn ∈ R, if r1x⃗1+r2x⃗2+· · ·+rnx⃗n = 0⃗, then r1 = r2 = · · · = rn = 0.

A set that is not linearly independent is said to be linear dependent.

If an R-module V is generated by a linearly independent set B, we say that V

is a free R-module and that B is a basis of V .

Let V be a free R-module with basis {⃗b1, b⃗2, . . . , b⃗n}. It is easy to see that

V = Rb⃗1 ⊕Rb⃗2 ⊕ · · · ⊕Rb⃗n, sometimes written as V =
⊕n

i=1Rb⃗i. Besides, every

element x⃗ in V can be written uniquely as a linear combination: x⃗ = r1⃗b1+ r2⃗b2+

· · ·+ rn⃗bn where ri ∈ R.

In case that R is a commutative ring, every free R-module owns a nice property

on its bases.

Lemma 1.2.3. [8] Let R be a commutative ring. Then every basis of a free R-module

has the same cardinality.

Thus, we call the cardinality of a basis of a free R-module V over a commutative

ring R, the rank of V .

Example 1.2.4. Let R be a commutative ring. Then V = Rn is a free R-module

of rank n with a basis {e⃗1, e⃗2, . . . , e⃗n} where e⃗i = (0, 0, . . . , 1, . . . , 0) (the 1 occurs

only in the i-coordinate), for all i.

Additionally, Proposition 2.9 of [8] says that any two free R-modules over

a commutative ring R with the same rank are isomorphic. Thus, V is a free

R-module over a commutative ring R of rank n if and only if V ∼= Rn. Therefore,

we may assume V = Rn for convenience to study free R-modules of rank n.

1.3 Unimodular Vectors

Unimodular vectors are importantly considered in symplectic graphs and orthog-

onal graphs over finite commutative rings, see [10], [13], [14], [15], and [17]. We
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show in this section that unimodular vectors over finite commutative rings are

exactly linearly independent vectors.

Let R be a commutative ring. Let V be a free R-module of rank n with basis

{⃗b1, b⃗2, . . . , b⃗n}. A vector x⃗ in V is unimodular if x⃗ = r1⃗b1 + r2⃗b2 + · · ·+ rn⃗bn and

the ideal generated by r1, r2, . . . , rn is equal to R.

Example 1.3.1. 1. If R is a field, then every nonzero vector in V is unimodular.

2. Let R = Z4 and V = Z4
4. Then (1, 2, 0, 3) ∈ V is unimodular since the ideal

⟨1, 2, 0, 3⟩ = Z4, but (2, 0, 2, 0) ∈ V is not unimodular since ⟨0, 2⟩ ̸= Z4.

The unimodularity of a vector is required in the graphs because of a nice

relationship between a local ring and its residue field. In fact, for a local ring R

with maximal ideal M and the canonical map π : R → R/M , if x⃗ is a unimodular

vector in an R-module Rn, then π(x) is linearly independent over R/M . We next

show that a unimodular vector is itself linearly independent.

Proposition 1.3.2. Let R be a finite local ring with maximal ideal M . Let V be a

free R-module of rank n with basis {⃗b1, b⃗2, . . . , b⃗n} and x⃗ = r1⃗b1 + r2⃗b2 + · · ·+ rn⃗bn

in V for some r1, r2, . . . , rn ∈ R. Then the following statements are equivalent.

(i) x⃗ is a unimodular vector.

(ii) ri is a unit for some i ∈ {1, 2, . . . , n}.

(iii) {x⃗} is a linearly independent set.

Proof. (i) ⇒ (ii). Assume that ri is not a unit for all i ∈ {1, 2, . . . , n}. Since R is

a local ring, ri ∈ M for all i ∈ {1, 2, . . . , n}. Thus, (r1, r2, . . . , rn) ⊆ M and so x⃗

is not a unimodular vector.

(ii) ⇒ (iii). Assume that ri is a unit for some i ∈ {1, 2, . . . , n}. Let c ∈ R be

such that cx⃗ = 0⃗. Then cri = 0. Since ri is a unit, c must be 0 and so {x⃗} is

linearly independent.

(iii) ⇒ (i). Assume that x⃗ is not a unimodular vector. Then the ideal

(r1, r2, . . . , rn) ̸= R. Since R is local, (r1, r2, . . . , rn) ⊆ M . If M = {0}, then R is
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a field and so x⃗ = 0⃗ and {x⃗} is linearly dependent. Assume that M ̸= {0} and

let t ∈ N be such that M t ̸= {0} and M t+1 = {0}. This t exists because every

element of a finite local ring is either a unit or a nilpotent element. Choose a

nonzero element c in M t. Then cri ∈ M t+1 = {0} for all i. Hence, cx⃗ = 0⃗ and so

{x⃗} is linearly dependent.

Next, let R be a finite commutative ring decomposed as R ∼= R1×R2×· · ·×Rℓ

where Rj is a finite local ring with maximal ideal Mj and residue field kj = Rj/Mj

for all j ∈ {1, 2, . . . , ℓ}. Recall the projection map ρj : R → Rj given by ρj : r =

(s1, s2, . . . , sℓ) 7→ sj for all j ∈ {1, 2, . . . , ℓ}.

Let V be a free R-module of rank n. For convenience, we may take V = Rn

and for each x⃗ = (r1, r2, . . . , rn) in V , we write

ρj(x⃗) =
(
ρj(r1), ρj(r2), . . . , ρj(rn)

)
for all j ∈ {1, 2, . . . , ℓ}.

Observe that for each j ∈ {1, 2, . . . , ℓ},

R1 × · · · ×Rj−1 ×Mj ×Rj+1 × · · · ×Rℓ

is a maximal ideal of R and a maximal ideal of R is in this form. If x⃗ ∈ Rn and

I(x⃗) is the ideal of R generated by the components of x⃗, then I(x⃗) is not equal

to R

⇔ there is a j ∈ {1, 2 . . . , ℓ} such that

I(x⃗) ⊆ R1 × · · · ×Rj−1 ×Mj ×Rj+1 × · · · ×Rℓ

⇔ there is a j ∈ {1, 2 . . . , ℓ} such that ρj
(
I(x⃗)

)
⊆ Mj.

Therefore, we have shown the next proposition.

Proposition 1.3.3. For x⃗ ∈ Rn, we have x⃗ is unimodular if and only if ρj(x⃗) is

unimodular in Rn
j for all j ∈ {1, 2, . . . , ℓ}.

To conclude the desired result on unimodular vectors and linearly independent

vectors, we require the following property.
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Proposition 1.3.4. For x⃗1, x⃗2, . . . , x⃗s ∈ Rn, we have {x⃗1, x⃗2, . . . , x⃗s} is linearly in-

dependent over R if and only if {ρj(x⃗1), ρj(x⃗2), . . . , ρj(x⃗s)} is linearly independent

over Rj for all j ∈ {1, 2, . . . , ℓ}.

Proof. Assume that {x⃗1, x⃗2, . . . , x⃗s} is linearly independent over R. Let j ∈

{1, 2, . . . , ℓ} and aj1, aj2, . . . , ajs ∈ Rj be such that aj1ρj(x⃗1) + aj2ρj(x⃗2) + · · · +

ajsρj(x⃗s) = 0⃗. For each t ∈ {1, 2, . . . , s}, we set at = (a1t, . . . , ajt, . . . , aℓt)

where akt = 0 ∈ Rk for all k ∈ {1, 2, . . . , ℓ} r {j}, and so at ∈ R. Then

a1x⃗1+ a2x⃗2+ · · ·+ asx⃗s = 0⃗. Since {x⃗1, x⃗2, . . . , x⃗s} is linearly independent over R,

it follows that a1 = a2 = · · · = as = 0. Therefore, aj1 = aj2 = · · · = ajs = 0 and

so {ρj(x⃗1), ρj(x⃗2), . . . , ρj(x⃗s)} is linearly independent over Rj.

Conversely, assume that {ρj(x⃗1), ρj(x⃗2), . . . , ρj(x⃗s)} is linearly independent

over Rj for all j ∈ {1, 2, . . . , ℓ}. Let at = (a1t, a2t, . . . , aℓt) ∈ R for t ∈ {1, 2, . . . , s}

be such that a1x⃗1 + a2x⃗2 + · · · + asx⃗s = 0⃗. Then for each j ∈ {1, 2, . . . , ℓ}, we

obtain aj1ρj(x⃗1)+ aj2ρj(x⃗2)+ · · ·+ ajsρj(x⃗s) = 0⃗. By the assumption, aj1 = aj2 =

· · · = ajs = 0 for all j ∈ {1, 2, . . . , ℓ}. Thus, a1 = a2 = · · · = as = 0, and so

{x⃗1, x⃗2, . . . , x⃗s} is linearly independent.

Combining Propositions 1.3.2–1.3.4 implies that for x⃗ ∈ Rn, x⃗ is unimodular

if and only if {x⃗} is linearly independent. We record this important observation

in:

Corollary 1.3.5. Let R be a finite commutative ring and x⃗ ∈ Rn. Then x⃗ is

unimodular if and only if {x⃗} is linearly independent.

1.4 Rank of Matrices over Commutative Rings

McCoy [12] introduced the concept of rank of matrices over commutative rings.

It generalizes the usual rank of matrices over fields. This rank is defined by the

annihilators of ideals.

For an ideal I of a commutative ring R, the annihilator of I is given by

AnnR I = {r ∈ R : ra = 0 for all a ∈ I}.
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It is easy to see that AnnR I is an ideal of R. Moreover, if I and J are ideals of R

such that I ⊆ J , then AnnR J ⊆ AnnR I.

Let R be a commutative ring and A an m × n matrix over R. We define

I0(A) = R and It(A) to be the ideal of R generated by the t × t minors of A for

1 ≤ t ≤ min{m,n}. Note that

R = I0(A) ⊇ I1(A) ⊇ · · · ⊇ Imin{m,n}(A)

and so

{0} = AnnR I0(A) ⊆ AnnR I1(A) ⊆ · · · ⊆ AnnR Imin{m,n}(A).

The rank of A, rkA, is the largest integer r such that AnnR Ir(A) = {0}. If R is

a field, it follows that A has t linearly independent columns if and only if there

exists a t × t submatrix B of A such that detB ̸= 0, if and only if It(A) = R,

if and only if AnnR It(A) = {0} where t ≤ min{m,n}. Therefore, rkA coincides

with the maximal number of linearly independent columns of A, so it is the usual

rank of A when R is a field.

Example 1.4.1. Let R = Z4 and A =


3 2 3 0

2 1 2 1

1 2 3 2

 be an 3 × 4 matrix over R.

Then I0(A) = R, I1(A) = R, I2(A) = R and I3(A) = ⟨2⟩, the ideal generated by

2. It follows that AnnR I0(A) = {0},AnnR I1(A) = {0},AnnR I2(A) = {0} and

AnnR I3(A) = ⟨2⟩. Therefore, the rank of A is 2.

Some properties of the rank of matrices are presented as follows.

Proposition 1.4.2. [4] Let R be a commutative ring and A an m×n matrix over R.

Then

(1) 0 ≤ rkA ≤ min{m,n}.

(2) rkA = rkAT.

(3) rkA = rkPAQ for all P ∈ GLm(R) and Q ∈ GLn(R).
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(4) rkA = 0 if and only if AnnR I1(A) ̸= {0}.

(5) If m = n, then rkA < n if and only if detA is the zero or a zero divisor of R.

(6) The homogeneous system of equations x⃗A = 0⃗ has a non trivial solution if and

only if rkA < m.

(7) If m ≤ n, then A has rank m if and only if the rows of A are linearly

independent.

Lemma 1.4.3. [5] Let R be a commutative ring and A an m × n matrix over R

with m ≤ n.

(1) If b⃗ ∈ Rn and the system of equations x⃗A = b⃗ has a solution, then the solution

is unique if and only if rkA = m.

(2) If R is finite, then the system of equations x⃗A = b⃗ has a solution for every

b⃗ ∈ Rn if and only if rkA = n.

For matrices over finite local rings, Brawley and Carlitz [3] showed an impor-

tant relation between the rank of matrices over a finite local ring and that over

its residue field.

Lemma 1.4.4. [3] Let R be a finite local ring with unique maximal ideal M and the

canonical map π : R → R/M . Then for any matrix A = (aij) of R, the rank of A

is r if and only if π(A) = (π(aij)) has rank r over k = R/M .

Hence, the rank of a matrix over a finite local ring is obtained from computing

the rank of its reduction which can be done in an elementary way.

Example 1.4.5. According to a matrix A =


3 2 3 0

2 1 2 1

1 2 3 2

 over Z4 from Exam-

ple 1.4.1, we can alternatively obtain the rank of matrix A by considering the

matrix π(A) =


1 0 1 0

0 1 0 1

1 0 1 0

 over the residue field Z2. It is obvious that the

rank of π(A) is 2. By Lemma 1.4.4, the rank of A is 2.
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For any finite commutative ring, Bollman and Ramirez [2] showed a nice rela-

tionship between the rank of matrices over finite commutative rings and that over

finite local rings.

Lemma 1.4.6. [2] Let R be a finite commutative ring decomposed as R ∼= R1 ×

R2 × · · · × Rℓ where Rj is a finite local ring with the projection map ρj : r =

(s1, s2, . . . , sℓ) 7→ sj for all j ∈ {1, 2, . . . , ℓ}. If A = (aij) is an m× n matrix over

R, then

rkA = min
1≤j≤ℓ

{rk ρj(A)},

where ρj(A) :=
(
ρj(aij)

)
is a matrix over Rj.

Example 1.4.7. Consider the commutative ring Z12 decomposed as Z4 × Z3. The

isomorphism is given by ρ : a 7→ (a + 4Z, a + 3Z) for all a ∈ Z. Let A =
3 10 7 0

6 5 2 1

1 6 11 10

 be a matrix over Z12. Then ρ1(A) =


3 2 3 0

2 1 2 1

1 2 3 2

 is a matrix

over Z4 and ρ2(A) =


0 1 1 0

0 2 2 1

1 0 2 1

 is a matrix over Z3. By Example 1.4.1,

we obtain that rk ρ1(A) = 2. As well as, we can see that rk ρ2(A) = 3. By

Lemma 1.4.6, rk(A) = min{rk ρ1(A), rk ρ2(A)} = 2.

1.5 Free Submodules

For vector spaces over the finite field of order q, there is a well known formula [19]

for the number of subspaces of dimension s in a vector space of dimension n given

by n
s


q

=
(qn − 1)(qn − q) · · · (qn − qs−1)

(qs − 1)(qs − q) · · · (qs − qs−1)
.

Dougherty and Salturk [6] determined the number of free submodules (they call

them “free codes”) of Rn of rank s when R is a finite Frobenius commutative ring.

They obtained this number by counting the set of s linearly independent vectors.
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Let R be a finite commutative ring. Following Meemark and Sriwongsa’s lifting

idea [17], we can count the number of free submodules of Rn of rank s.

Let X be a free submodule of Rn of rank s with basis {x⃗1, x⃗2, . . . , x⃗s}. Then

we have X = Rx⃗1 ⊕ Rx⃗2 ⊕ · · · ⊕ Rx⃗s and we use the same letter X to denote an

s× n matrix whose its ith row is x⃗i for all i, that is,

X =


x⃗1

...

x⃗s

 .

Moreover, if Y is another free submodule of Rn of rank s with basis {y⃗1, y⃗2, . . . , y⃗s},

we adopt the notation

X

Y

 to denote the augmented 2s× n matrix whose rows

are obtained from the matrices X and Y , respectively. Observe that the rank ofX

Y

 does not depend on the choice of bases for X and Y by Proposition 1.4.2 (3).

In particular, if X and Y are subspaces over fields, it is clear that rk

X

Y

 =

dim(X + Y ), so dim(X ∩ Y ) = s − t if and only if rk

X

Y

 = s + t where

t ∈ {0, 1, . . . , s}.

As well, to count the number of free submodules over a finite commutative

ring, we first establish properties and the number of free submodules over a finite

local ring by lifting them from its residue field.

Theorem 1.5.1. Let R be a finite local ring with maximal ideal M , residue field

k = R/M with q elements and the canonical map π : R → R/M .

(1) If X = Rx⃗1 ⊕ Rx⃗2 ⊕ · · · ⊕ Rx⃗s is a free submodule of Rn of rank s, then

π(X) := kπ(x⃗1)⊕kπ(x⃗2)⊕· · ·⊕kπ(x⃗s) is a subspace of knover k of dimension s.

(2) Let x⃗1, x⃗2, . . . , x⃗s ∈ Rn. If kπ(x⃗1)⊕ kπ(x⃗2)⊕ · · · ⊕ kπ(x⃗s) is a subspace of kn

over k of dimension s, then

R(x⃗1 + m⃗1)⊕R(x⃗2 + m⃗2)⊕ · · · ⊕R(x⃗s + m⃗s)
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is a free submodule of Rn of rank s where m⃗i ∈ Mn for all i ∈ {1, 2, . . . , s}.

Moreover, for m⃗i, n⃗i ∈ Mn where i ∈ {1, 2, . . . , s}, R(x⃗1+ m⃗1)⊕R(x⃗2+ m⃗2)⊕

· · · ⊕R(x⃗s + m⃗s) = R(x⃗1 + n⃗1)⊕R(x⃗2 + n⃗2)⊕ · · · ⊕R(x⃗s + n⃗s) if and only if
x⃗1 + m⃗1

...

x⃗s + m⃗s

 = (Is +N)


x⃗1 + n⃗1

...

x⃗s + n⃗s


for some s× s matrix N whose all entries are in M .

(3) The number of free submodules of Rn of rank s is

|M |ns−s2

n
s


q

.

Proof. (1) Assume that X = Rx⃗1 ⊕ Rx⃗2 ⊕ · · · ⊕ Rx⃗s is a free submodule of Rn

of rank s. We show that {π(x⃗1), π(x⃗2), . . . , π(x⃗s)} is linearly independent over k.

Let α1, α2, . . . , αs ∈ k be such that α1π(x⃗1) + α2π(x⃗2) + · · ·+ αsπ(x⃗s) = 0⃗. Then

α⃗π(X) = 0⃗ where α⃗ = (α1, α2, . . . , αs). Since rkX = s, we have rk π(X) = s.

Thus, the homogeneous system of equations α⃗π(X) = 0⃗ has the trivial solution,

that is, α⃗ = 0⃗, and so α1 = α2 = · · · = αs = 0. Hence, π(X) := kπ(x⃗1)⊕ kπ(x⃗2)⊕

· · · ⊕ kπ(x⃗s) is a subspace of knover k of dimension s.

(2) Assume that X := kπ(x⃗1) ⊕ kπ(x⃗2) ⊕ · · · ⊕ kπ(x⃗s) is a subspace of kn

over k of dimension s. Let m⃗1, m⃗2, . . . , m⃗s ∈ Mn. We show that {x⃗1 + m⃗1, x⃗2 +

m⃗2, . . . , x⃗s + m⃗s} is linearly independent over R. Let a1, a2, . . . , as ∈ R be such

that a1(x⃗1 + m⃗1) + a2(x⃗2 + m⃗2) + · · ·+ as(x⃗s + m⃗s) = 0⃗. Then a⃗X ′ = 0⃗ where

a⃗ = (a1, a2, . . . , as) and X ′ is an s × n matrix whose ith row is x⃗i + m⃗i for all

i ∈ {1, 2, . . . , s}. Since rkπ(X ′) = rkX = s, it follows that rkX ′ = s. By

Proposition 1.4.2 (6), the homogeneous system of equations a⃗X ′ = 0⃗ has the

trivial solution, that is a⃗ = 0⃗, and so a1 = a2 = · · · = as = 0. Thus, R(x⃗1 + m⃗1)⊕

R(x⃗2 + m⃗2)⊕ · · · ⊕R(x⃗s + m⃗s) is a free submodule of Rn of rank s.

Next, let m⃗i, n⃗i ∈ Mn for all i ∈ {1, 2, . . . , s}, X1 = R(x⃗1+m⃗1)⊕R(x⃗2+m⃗2)⊕

· · · ⊕R(x⃗s + m⃗s) and X2 = R(x⃗1 + n⃗1)⊕R(x⃗2 + n⃗2)⊕ · · · ⊕R(x⃗s + n⃗s). Suppose
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that X1 = X2. We may assume without loss of generality that X =
(
Is C

)
where C is an s× (n− s) matrix over k. Then we can write X1 =

(
Is +N1 C1

)
and X2 =

(
Is +N2 C2

)
where N1 and N2 are s×s matrices whose all entries are

in M and C1, C2 are s×(n−s) matrices over R. Since free submodules X1 and X2

are equal, X1 = UX2 for some U ∈ GLs(R). It follows that Is +N1 = U(Is +N2),

and so U = Is + (N1 − UN2).

Conversely, assume that X1 = (Is +N)X2 for some s× s matrix N whose all

entries are in M . Since Is + N ∈ GLs(R), we have that X1 and X2 generate the

same free submodule.

(3) We have seen that a free submodule of Rn of rank s is of the form

R(x⃗1 + m⃗1)⊕R(x⃗2 + m⃗2)⊕ · · · ⊕R(x⃗s + m⃗s) where kπ(x⃗1)⊕kπ(x⃗2)⊕· · ·⊕kπ(x⃗s)

is a subspace of kn over k of dimension s and m⃗i ∈ Mn. Hence, each subspace

of kn over k of dimension s can be lifted to |M |ns/|M |s2 free submodules of Rn of

rank s. Thus, the number of free submodules of Rn of rank s is

|M |ns

|M |s2

n
s


q

= |M |ns−s2

n
s


q

where

n
s


q

is the number of subspaces of dimension s in a vector space kn.

Finally, we let R be a finite commutative ring decomposed as R1×R2×· · ·×Rℓ

where Rj is a finite local ring with maximal ideal Mj and residue field Rj/Mj

with qj elements for all j ∈ {1, 2, . . . , ℓ}. The ring R is equipped with the pro-

jection map ρj : r = (s1, s2, . . . , sℓ) 7→ sj for all j ∈ {1, 2, . . . , ℓ}. Observe that

for each j and a submodule X of Rn generated by x⃗1, x⃗2, . . . , x⃗s, the submod-

ule ρj(X) of Rn
j is generated by ρj(x⃗1), ρj(x⃗2), . . . , ρj(x⃗s). We also have from

Proposition 1.3.4 that {x⃗1, x⃗2, . . . , x⃗s} is linearly independent over R if and only if

{ρj(x⃗1), ρj(x⃗2), . . . , ρj(x⃗s)} is linearly independent over Rj for all j ∈ {1, 2, . . . , ℓ}.

Thus, we have shown:

Lemma 1.5.2. X is a free submodule of Rn of rank s if and only if ρj(X) is a free

submodule of Rn
j of rank s for all j ∈ {1, 2, . . . , ℓ}.
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Together with the number of free submodules over a finite local ring computed

in Theorem 1.5.1, we obtain the next corollary.

Corollary 1.5.3. The number of free submodules of Rn of rank s is

ℓ∏
j=1

|Mj|ns−s2

n
s


qj

.

We end this section with showing examples of free submodules and pointing

out that the intersection of two free submodules may not be free.

Example 1.5.4. Let R = Z4 and V = R4 be a free R-module of rank 4. Let X be

the submodule generated by BX := {(1, 0, 0, 0), (0, 1, 0, 0)} and Y the submodule

generated by BY := {(1, 0, 2, 0), (0, 0, 0, 1)}. It is easy to see that X and Y are

two free submodules of V with bases BX and BY , respectively. Suppose x⃗ ∈

X ∩ Y . Then x1(1, 0, 0, 0) + x2(0, 1, 0, 0) = x⃗ = y1(1, 0, 2, 0) + y2(0, 0, 0, 1). So

x1 = y1, 2y1 = 0 and x2 = y2 = 0. It follows that x⃗ is either (0, 0, 0, 0) or (2, 0, 0, 0).

Therefore, X ∩ Y = {(0, 0, 0, 0), (2, 0, 0, 0)} which is not a free submodule over R.

1.6 Bilinear Forms

Let R be a commutative ring. Let V be a free R-module of rank n. A bilinear

form β on V is a two-variable function β : V × V → R which is linear in each

variable, namely,

β(x⃗+ y⃗, z⃗) = β(x⃗, z⃗) + β(y⃗, z⃗) and β(rx⃗, z⃗) = rβ(x⃗, z⃗)

and

β(x⃗, z⃗ + w⃗) = β(x⃗, z⃗) + β(x⃗, w⃗) and β(x⃗, sz⃗) = sβ(x⃗, z⃗)

for all x⃗, y⃗, z⃗, w⃗ ∈ V and r, s ∈ R.

Next, we classify certain bilinear forms. Let β be a bilinear form on V . We

say that β is non-degenerate if (1) x⃗ ∈ V and β(x⃗, y⃗) = 0 for all y⃗ ∈ V implies

x⃗ = 0, similarly, if y⃗ ∈ V and β(x⃗, y⃗) = 0 for all x⃗ ∈ V , then y⃗ = 0, and (2) for

any R-linear map f : V → R, there exist x⃗0, y⃗0 ∈ V such that f(x⃗) = β(x⃗0, x⃗)
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and f(x⃗) = β(x⃗, y⃗0) for all x⃗ ∈ V , β is alternating if β(x⃗, x⃗) = 0 for all x⃗ ∈ V ,

β is symmetric if β(x⃗, y⃗) = β(y⃗, x⃗) for all x⃗, y⃗ ∈ V , and β is skew-symmetric if

β(x⃗, y⃗) = −β(y⃗, x⃗) for all x⃗, y⃗ ∈ V .

If β is an alternating bilinear form on V , then

0 = β(x⃗+ y⃗, x⃗+ y⃗) = β(x⃗, x⃗) + β(x⃗, y⃗) + β(y⃗, x⃗) + β(y⃗, y⃗) = β(x⃗, y⃗) + β(y⃗, x⃗)

for all x⃗, y⃗ ∈ V . Thus, every alternating bilinear form is skew-symmetric.

Example 1.6.1. 1. Let p be a prime number and let R be the ring of integer

modulo pn, Zpn , or the field of order pn, Fpn , where n ∈ N. For ν ≥ 1, let

V = R2ν . Define β : V × V → R by

β(x⃗, y⃗) = (x1, x2, . . . , x2ν)

 0 Iν

−Iν 0

 (y1, y2, . . . , y2ν)
T

where Iν is the ν × ν identity matrix, for all x⃗ = (x1, x2, . . . , x2ν) and

y⃗ = (y1, y2, . . . , y2ν) in V . Then β is a non-degenerate alternating bilinear

form on V .

2. Let p be an odd prime number and let R be the ring of integers modulo pn,

Zpn , or the field of order pn, Fpn , where n ∈ N. For ν ≥ 1 and δ ∈ {0, 1, 2},

let V = R2ν+δ. Define β : V × V → R by

β(x⃗, y⃗) = (x1, x2, . . . , x2ν+δ)


0 Iν

Iν 0

∆

 (y1, y2, . . . , y2ν+δ)
T

where

∆ =


∅(disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,

and z is a fixed non-square unit in R, for all x⃗ = (x1, x2, . . . , x2ν+δ) and

y⃗ = (y1, y2, . . . , y2ν+δ) in V . Then β is a non-degenerate symmetric bilinear

form on V .
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An R-module automorphism σ on V is an isometry with respect to β if

β(σ(x⃗), σ(y⃗)) = β(x⃗, y⃗) for all x⃗, y⃗ ∈ V . It is clear that the set of isometries on V

with respect to β forms a group under composition. It is called the group of

isometries on (V, β).

If β is non-degenerate and alternating, then we call the pair (V, β) a symplectic

space and we call its group of isometries a symplectic group. If R is of odd

characteristic and β is non-degenerate and symmetric, then the pair (V, β) is called

an orthogonal space and its group of isometries is called an orthogonal group.

1.7 Graphs

In this section, we focus on all notions of graphs which will be regarded in this

dissertation.

A graph G = (V,E) consists of a nonempty set V of vertices and a set E of

edges formed by pairs of vertices. A graph is regular if each vertex has the same

number of neighbors which is called the degree of a regular graph. A complete

graph is a graph in which any two distinct vertices are adjacent. Equivalently, a

complete graph with n vertices is a regular graph of degree n− 1.

Let G and H be graphs. A function σ from G to H is a homomorphism

from G to H if g1 is adjacent to g2 in G implies σ(g1) is adjacent to σ(g2). A

homomorphism from G to H is called an isomorphism if it is a bijection and σ−1

is a homomorphism from H to G. An isomorphism on G is called an automor-

phism. The set of automorphisms of G is denoted by Aut(G). It is a group under

composition, called the automorphism group of G.

A graph G is vertex transitive if its automorphism group acts transitively

on the vertex set. That is, for any two vertices of G, there is an automorphism

carrying one to the other. An arc in G is an ordered pair of adjacent vertices

and G is arc transitive if its automorphism group acts transitively on its arcs. It

follows that an arc transitive graph is always vertex transitive and regular.

Example 1.7.1. 1. The complete graph is arc transitive.
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2. The following Petersen graph is an arc transitive graph.
b

b

b

b b

b b

b

bb

For two graphs G and H with vertex sets V (G), V (H), respectively, the ten-

sor product of G and H, denoted by G ⊗ H, is the graph whose vertex set is

V (G)× V (H) and (v1, v2) is adjacent to (v′1, v
′
2) if v1 is adjacent to v′1 in G and v2

is adjacent to v′2 in H.

Example 1.7.2. The following graph shows the tensor product of the graphs G

and H.

G⊗HG

H b b b b

b

b

b

b

b

bbbb

b b b

bbb

A useful property of an automorphism of tensor product of graphs is proved

in Theorem 2.11 of [17]. We record it in the following lemma.

Lemma 1.7.3. Let G and H be graphs. Then Aut(G)× Aut(H) ⊆ Aut(G⊗H).

For the end of this section, we introduce a decomposition of a graph which will

play an important role in our graphs over finite commutative rings.
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A decomposition of a graph G is a family of edge-disjoint subgraphs of G such

that any edge of G belongs to exactly one subgraph.

Example 1.7.4. Consider the following complete graph with five vertices.
b

bb

b b

It can be decomposed into a family of two following graphs.
b

bb

b b

b

bb

b b

1.8 Generalized Bilinear Form Graphs

Let R be a finite commutative ring, V a free R-module of rank n and β a bilinear

form on V .

For any two free submodules X and Y of V of rank s with bases {x⃗1, . . . , x⃗s}

and {y⃗1, . . . , y⃗s}, we have the associate s× s matrix for β given by(
β(x⃗i, y⃗j)

)
where i, j ∈ {1, . . . , s}.

By Proposition 1.4.2 (3), the rank of this matrix is independent of choices of bases

for X and Y . Thus, we may denote this rank by rk β(X,Y ).
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We finally introduce the last terminology before revealing the definition of gen-

eralized bilinear form graphs, namely the notion of totally isotropic submodules.

A submodule X of V is totally isotropic if β(x⃗, y⃗) = 0 for all x⃗, y⃗ ∈ X. If X is

a free submodule of V with basis {x⃗1, . . . , x⃗s}, then X is totally isotropic if and

only if β(x⃗i, x⃗j) = 0 for all i, j ∈ {1, . . . , s}.

Example 1.8.1. Let R be a finite local ring. For ν ≥ 1, let V = R2ν be a free

R-module with a bilinear form β : V × V → R by

β(x⃗, y⃗) = (x1, x2, . . . , x2ν)

 0 Iν

−Iν 0

 (y1, y2, . . . , y2ν)
T.

for all x⃗ = (x1, x2, . . . , x2ν) and y⃗ = (y1, y2, . . . , y2ν) in V . If s ≤ ν, then a

free submodule generated by {e⃗1, e⃗1, . . . , e⃗s} is totally isotropic. More generally,

if i1, i2, . . . , is are s indices such that 1 ≤ i1 < i2 < · · · < is ≤ ν, then a free

submodule generated by {ei1 , ei2 , . . . , eis} is a totally isotropic submodule.

There are many graphs defined on totally isotropic free submodules. In 2006,

Tang and Wan [18] defined graphs over symplectic spaces over finite fields. The

vertex of this symplectic graph is the set of subspaces of dimension one and its

adjacency condition is given by for two subspaces with bases {x⃗} and {y⃗}, respec-

tively, they are adjacent if β(x⃗, y⃗) ̸= 0. Note that any subspace of dimension one

of a symplectic space is clearly totally isotropic. Two years later, Gu and Wan [7]

introduced graphs over orthogonal spaces over finite fields of odd characteristic.

These orthogonal graphs are defined analogously to symplectic graphs but the

vertex set is not the set of subspaces of dimension one. The vertex set is the set

of totally isotropic subspaces of dimension one. Note that the totally isotropic

condition is required to avoid loops in our graphs.

Meemark and Prinyasart [13] generalized the concept of symplectic graphs

over finite fields to symplectic graphs over finite commutative rings. They intro-

duced symplectic graphs over Zpn the ring of integers modulo pn where p is prime

and n ≥ 1. After that, symplectic graphs and orthogonal graphs over other fi-

nite commutative rings have been explored such as symplectic graphs modulo pq
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where p and q are primes [11] and over finite local rings [14], and orthogonal graphs

over Galois rings of odd characteristic [10]. Meemark and Puirod [15] completely

studied symplectic graphs over finite commutative rings. Recently, Meemark and

Sriwongsa [17] worked on orthogonal graphs over finite commutative rings of odd

characteristic. They used the lifting theorem which lifts results over a finite local

ring from the ones over its residue field. This approach is clean and is more effec-

tive in determining the number of common neighbors of adjacent and non-adjacent

vertices.

The vertex set of their graphs over finite commutative rings is the set of totally

isotropic submodules generated by a unimodular vector. However, we have shown

in Corollary 1.3.5 that unimodular vectors coincide with linearly independent vec-

tors in finite commutative rings. Thus, the vertex set of a symplectic graph or an

orthogonal graph is the set of totally isotropic free submodules of rank one. Two

submodules with bases {x⃗} and {y⃗}, respectively, are adjacent if β(x⃗, y⃗) is in R×.

Zeng et al. [21] gave another generalization of symplectic graphs over finite

fields called the generalized symplectic graphs. Its vertex set is the set of totally

isotropic s-dimensional subspaces of a symplectic space, where s ≥ 1, and two

vertices X and Y are adjacent if rk β(X,Y ) = 1 and dim(X ∩ Y ) = s− 1. When

s = 1, a generalized symplectic graph is a symplectic graph. Later, Huo and

Zhang [9] worked on an orthogonal graph of type (s, s−1, 0) over a finite field. It

is a graph whose vertex set is the set of totally isotropic subspaces of dimension

s ≥ 1 and two vertices X and Y are adjacent if and only if rk β(X,Y ) = 0

and dim(X ∩ Y ) = s − 1. Observe that dim(X ∩ Y ) = s − 1 is equivalent to

rk

X

Y

 = s + 1. This rank can be used in our generalization of the graphs

because, over a commutative ring, the intersection of two free submodules X

and Y may not be free but we can always compute the rank of

X

Y

.

Let R be a finite commutative ring, V a free R-module of rank n and β a

bilinear form on V . A generalized bilinear form graph of V of type (s, r, t) is the
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graph whose vertex set is the set of totally isotropic free submodules of V of rank s

and two vertices X and Y are adjacent if rk β(X,Y ) = r and rk

X

Y

 = s + t.

If (V, β) is a symplectic space, the graph is called a generalized symplectic graph

of V of type (s, r, t) and denoted by SR(n, s, r, t) and if (V, β) is an orthogonal

space, the graph is called a generalized orthogonal graph of V of type (s, r, t) and

denoted by OR(n, s, r, t).

Let {x⃗} and {y⃗} be two linearly independent sets over R. Clearly, β(x⃗, y⃗) ∈ R×

if and only if rk
(
β(x⃗, y⃗)

)
= 1. Moreover, if β(x⃗, y⃗) ∈ R×, then {x⃗, y⃗} is linearly

independent, and so the rank of

x⃗

y⃗

 is two by Proposition 1.4.2 (7). This

implies that the graph SR(n, 1, 1, 1) is a symplectic graph over R and the graph

OR(n, 1, 1, 1) is an orthogonal graph over R. The symplectic and orthogonal graphs

over finite commutative rings are completely studied in [15] and [17], respectively.

In what follows, we obtain results on generalized symplectic graphs and gen-

eralized orthogonal graphs over a finite commutative ring in Chapters 2 and 3,

respectively. The combinatorial approach is the lifting theorem similar to [17].

As usual, we divide the study into three cases: over finite fields, over finite local

rings and over finite commutative rings. We can determine the degree of each

vertex of these graphs. If R is a finite local ring, we show that these graphs are

arc transitive and obtain their automorphism groups. Finally, we can decompose

the graphs over a finite commutative ring into the tensor products of graphs over

finite local rings.



CHAPTER II

GENERALIZED SYMPLECTIC GRAPHS

This chapter is devoted to study generalized symplectic graphs over finite com-

mutative rings. We begin with the results of general symplectic graphs over finite

fields. After that, we carry on those results to the generalized symplectic graphs

over finite local rings by the lifting idea. Finally, the generalized symplectic graphs

over finite commutative rings are presented.

First of all, we discuss a nice result of symplectic spaces over finite local rings

which is convenient to study our graphs.

Let R be a finite local ring and (V, β) be a symplectic space over R of rank 2ν

where ν ≥ 1. Then (V, β) possesses a basis B = {⃗b1, b⃗2, . . . , b⃗2ν} such that

(
β

)
B
=

 0 Iν

−Iν 0

 .

We denote this matrix by K. Therefore, if x⃗ = x1⃗b1 + x2⃗b2 + · · · + x2ν b⃗2ν and

y⃗ = y1⃗b1 + y2⃗b2 + · · ·+ y2ν b⃗2ν in V , then

β(x⃗, y⃗) = (x1, x2, . . . , x2ν)K(y1, y2, . . . , y2ν)
T

= (x1yν+1 + x2yν+2 + · · ·+ xνy2ν)− (xν+1y1 + xν+2y2 + · · ·+ x2νyν).

This basis is useful in studying symplectic spaces over finite local rings, especially,

over finite fields.

2.1 Over Finite Fields

For generalized symplectic graphs over finite fields, the number of vertices is given

in [19]. We apply results in [20] to prove that the graph is arc transitive and

determine the degree of the graph in the end of this section.
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Let Fq be the finite field of order q and (V, β) be a symplectic space over Fq

of dimension 2ν where ν ≥ 1. The generalized symplectic graph of V of type

(s, r, t) has the set of totally isotropic subspaces of dimension s where 1 ≤ s ≤ ν

as the vertex set. Wan determined the number of totally isotropic subspaces of V

of dimension s in Corollary 3.19 of [19]. It equals to

nSFq
(2ν, s) =

∏ν
i=ν−s+1(q

2i − 1)∏s
i=1(q

i − 1)
.

For two vertices X and Y of SFq(2ν, s, r, t),

X is adjacent to Y ⇔ rk β(X,Y ) = r and rk

X

Y

 = s+ t.

To compute the degree of our graphs, we first show that the generalized symplectic

graphs are arc transitive by applying the following lemma.

Lemma 2.1.1. [20] Let Fq be the finite field of order q, (V, β) a symplectic space

over Fq of dimension 2ν where ν ≥ 1 and X,X ′, Y, Y ′ totally isotropic subspaces

of dimension s.

(1) If X ̸= Y with rk(XKY T) = r and dim(X∩Y ) = s−t, then max{0, s+t−ν} ≤

r ≤ t and 1 ≤ t ≤ s.

(2) rk(XKY T) = rk(X ′KY ′T) and dim(X ∩ Y ) = dim(X ′ ∩ Y ′) if and only if

there exists a 2ν × 2ν matrix U with UKUT = K such that X ′ = XU and

Y ′ = Y U .

Remark 2.1.2. Let R be a finite local ring. Let X and Y be two free submodules

of V of rank s and 1 ≤ t. Suppose rk(XKY T) = r and rk

X

Y

 = s + t.

Since

X

Y

 is an 2s × 2ν matrix, we have t ≤ s. Then rk(π(X)Kπ(Y )T) = r

and rk

π(X)

π(Y )

 = s + t, so dim
(
π(X) ∩ π(Y )

)
= s − t. Since t ̸= 0, we have

π(X) ̸= π(Y ), so X ̸= Y . By Lemma 2.1.1 (1), max{0, s+ t− ν} ≤ r ≤ t. Thus,
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we may study generalized symplectic graphs of type (s, r, t) over finite local rings

only when 1 ≤ s ≤ ν and r, t satisfy max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s.

Next, we let R be a a finite commutative ring decomposed as R1 ×R2 × · · · ×Rℓ

where Rj is a finite local ring. Let X =
(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
and Y =(

ρ1(Y ), ρ2(Y ), . . . , ρℓ(Y )
)

be two free submodules of V of rank s and 1 ≤ t.

Suppose that rk β(X,Y ) = r and rk

X

Y

 = s + t. By Lemma 1.4.6, we ob-

tain min1≤j≤ℓ rk(ρj(X)Kρj(Y )T) = r and min1≤j≤ℓ rk

ρj(X)

ρj(Y )

 = s + t. It fol-

lows that there are r1, r2, . . . , rℓ and t1, t2, . . . , tℓ with r = min{r1, r2, . . . , rℓ} and

t = min{t1, t2, . . . , tℓ} such that rk(ρj(X)Kρj(Y )T) = rj and rk

ρj(X)

ρj(Y )

 =

s + tj for all j ∈ {1, 2, . . . , ℓ}. Since 1 ≤ t ≤ tj, we have 1 ≤ tj ≤ s and

max{0, s + tj − ν} ≤ rj ≤ tj for all j ∈ {1, 2, . . . , ℓ}. Assume that r = rj1 and

t = tj2 for some j1, j2 ∈ {1, 2, . . . , ℓ}. The minimality of r and of t implies that

max{0, s + t − ν} ≤ max{0, s + tj1 − ν} ≤ rj1 = r and r ≤ rj2 ≤ tj2 = t. Thus,

max{0, s+ t−ν} ≤ r ≤ t. Therefore, we may study generalized symplectic graphs

of type (s, r, t) over finite commutative rings only when 1 ≤ s ≤ ν and r, t satisfy

max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s. This concludes the remark.

Let 1 ≤ s ≤ ν. All generalized symplectic graphs of V of type (s, r, t) have the

same vertex set. Theorem 2.1 of [20] implies that{{
(X,Y ) : rk(XKY T) = r and dim(X ∩ Y ) = s− t

}
:

max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s

}

is a partition of the set of order pairs of distinct totally isotropic subspaces of V of

dimension s. Therefore, the complete graph of nSFq
(2ν, s) vertices is decomposed

into generalized symplectic graphs of V of type (s, r, t) where 1 ≤ t ≤ s and

max{0, s+ t− ν} ≤ r ≤ t.

Now, we show that our graphs are arc transitive.



26

Theorem 2.1.3. A generalized symplectic graph over a finite field is arc transitive.

Proof. Let X1, X2, Y1, Y2 be four vertices in a generalized symplectic graph such

that X1 is adjacent to Y1 and X2 is adjacent to Y2. Then dim(X1 ∩ Y1) =

dim(X2 ∩ Y2) and rk(X1KY T
1 ) = rk(X2KY T

2 ). By Lemma 2.1.1 (2), there exists

an 2ν×2ν matrix U with UKUT = K such that X2 = X1U and Y2 = Y1U . Hence,

the map Z 7→ ZU for all vertices Z in SFq(2ν, s, r, t) is a graph automorphism

mapping X1 to X2 and Y1 to Y2.

Since our graph is arc transitive, it is regular. Then, we let P be a fixed

vertex in SFq(2ν, s, r, t) and count the degree of P . A vertex X adjacent to P is

a totally isotropic subspace of V of dimension s satisfying rk(PKXT) = r and

dim(P ∩ X) = s − t. Wei and Wang gave the number of these subspaces in

Theorem 2.7 of [20]. We denote this number by dSFq
(r, t). We record the above

discussion in the next theorem.

Theorem 2.1.4. Let Fq be the finite field of order q, (V, β) a symplectic space over Fq

of dimension 2ν where ν ≥ 1, 1 ≤ s ≤ ν and r, t satisfy max{0, s+ t− ν} ≤ r ≤ t

and 1 ≤ t ≤ s. Then the generalized symplectic graph of V of type (s, r, t) has

nSFq
(2ν, s) =

∏ν
i=ν−s+1(q

2i − 1)∏s
i=1(q

i − 1)

vertices and it is regular of degree

dSFq
(r, t) = q2r(ν−s)+(t−r)2+

r(r+1)
2

 s

s− t


q

t
r


q

nSFq
(2(ν − s), t− r).

2.2 Over Finite Local Rings

In this section, we give the generalized symplectic graphs over local rings by apply-

ing the results over finite fields and using the lifting idea. Relationships between

symplectic spaces over finite local rings and symplectic spaces over finite fields are

firstly studied. Next, we determine the number of vertices which is the number

of totally isotropic free submodules. After that, we present the lifting theorem of
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our graphs which is effective in showing that the graphs are regular, computing

their degrees and presenting that they are arc transitive.

Let R be a finite local ring with maximal ideal M and residue field k = R/M ,

and let (V, β) be a symplectic space over R of rank 2ν where ν ≥ 1. A symplectic

space (V, β) over R induces the symplectic space (V ′, β′) over k of dimension 2ν

where β′ is given via the canonical map π : R → k by

β′(π(x⃗), π(y⃗)) = π(β(x⃗, y⃗))

for all x⃗, y⃗ ∈ V . Hence, if X is a totally isotropic submodule of (V, β), then π(X)

is a totally isotropic subspace of (V ′, β′). Moreover, if X is a totally isotropic

free submodule of (V, β) of rank s, then π(X) is a totally isotropic subspace of

(V ′, β′) of dimension s by Theorem 1.5.1 (1). We first count the number of totally

isotropic free submodules of V .

Theorem 2.2.1. Let R be a finite local ring with maximal ideal M and residue field

k = R/M , (V, β) a symplectic space over R of rank 2ν where ν ≥ 1 and X a totally

isotropic subspace of the induced symplectic space (V ′, β′) of dimension s. Then

the number of totally isotropic free submodules of V of rank s whose reduction

is X is |M |2νs−(
s
2)−s2. Hence, the number of totally isotropic free submodules of V

of rank s equals

|M |2νs−(
s
2)−s2nSk

(2ν, s).

Proof. By elementary row operations and permuting the coordinates of X, we may

write X =
(
Is A

)
where A is an s × (2ν − s) matrix over k. Then we assume

that x⃗1, x⃗2, . . . , x⃗s ∈ V are such that X = kπ(x⃗1)⊕ kπ(x⃗2)⊕ · · · ⊕ kπ(x⃗s), where

for each a ∈ {1, 2, . . . , s},

x⃗a = (xa1, . . . , xaν , xa(ν+1), . . . , xa(2ν)) with xaa = 1

and xab = 0 for all b ∈ {1, . . . , s}r {a}.

Thus, R(x⃗1 + m⃗1) ⊕ R(x⃗2 + m⃗2) ⊕ · · · ⊕ R(x⃗s + m⃗s) where m⃗a ∈ M2ν for all

a ∈ {1, 2 . . . , s} is a free submodule of V of rank s whose reduction is X. Among
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these free submodules, we determine the number of totally isotropic free sub-

modules by counting the choices of m⃗a ∈ M2ν for all a ∈ {1, 2, . . . , s} such

that β(x⃗i + m⃗i, x⃗j + m⃗j) = 0 for all i, j ∈ {1, 2, . . . , s}. Since (V, β) is symplectic,

β(x⃗i+m⃗i, x⃗i+m⃗i) = 0 and if β(x⃗i+m⃗i, x⃗j+m⃗j) = 0, then β(x⃗j+m⃗j, x⃗i+m⃗i) = 0

for all i, j ∈ {1, 2, . . . , s}. Hence, we choose m⃗a ∈ M2ν for all a ∈ {1, 2, . . . , s}

satisfying the system of
(
s
2

)
equations

β(x⃗i + m⃗i, x⃗j + m⃗j) = 0 for all i, j ∈ {1, 2, . . . , s} with i < j.

We rearrange the equations by running the (i, j) as

(1, 2), (1, 3), . . . , (1, s), (2, 3), (2, 4), . . . , (2, s), (3, 4), (3, 5), . . . , (3, s), . . . , (s− 1, s).

For each a ∈ {1, 2, . . . , s}, let

m⃗a = (ma1,ma2, . . . ,maν ,ma(ν+1),ma(ν+2), . . . ,ma(2ν)),

where mab ∈ M for all b ∈ {1, 2, . . . , 2ν}. We first arbitrarily choose mab ∈ M for

a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν} and ma(ν+b) for a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν}

with a ≤ b. Then we show that there are unique ma(v+b) for all a ∈ {1, 2, . . . , s},

b ∈ {1, 2, . . . , ν} and a > b satisfying the above
(
s
2

)
equations. Now, we have the

system of
(
s
2

)
linear equations m⃗C = y⃗ where

m⃗ = (m2(ν+1),m3(ν+1), . . . ,ms(ν+1),m3(ν+2),m4(ν+2), . . . ,ms(ν+2), . . . ,ms(ν+s−1))

is an
(
s
2

)
-variable vector, y⃗ ∈ R(s2) and C is an

(
s
2

)
×

(
s
2

)
matrix over R. Consider

the equation β(x⃗i + m⃗i, x⃗j + m⃗j) = 0 where i < j. Note that

x⃗i + m⃗i

=(mi1, . . . ,mi(i−1), 1 +mii,mi(i+1), . . . ,mis, xi(s+1) +mi(s+1), . . . , xi(2ν) +mi(2ν))

and

x⃗j + m⃗j

=(mj1, . . . ,mj(j−1), 1 +mjj,mj(j+1), . . . ,mjs, xj(s+1) +mj(s+1), . . . , xj(2ν) +mj(2ν)).
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Then

β(x⃗i + m⃗i, x⃗j + m⃗j)

=
(
mi1(xj(ν+1) +mj(ν+1)) + · · ·+mi(i−1)(xj(ν+i−1) +mj(ν+i−1))

+ (1 +mii)(xj(ν+i) +mj(ν+i)) +mi(i+1)(xj(ν+i+1) +mj(ν+i+1))

+ · · ·+ (xiν +miν)(xj(2ν) +mj(2ν))
)

−
(
mj1(xi(ν+1) +mi(ν+1)) + · · ·+mj(j−1)(xi(ν+j−1) +mi(ν+j−1))

+ (1 +mjj)(xi(ν+j) +mi(ν+j)) +mj(j+1)(xi(ν+j+1) +mi(ν+j+1))

+ · · ·+ (xjν +mjν)(xi(2ν) +mi(2ν))
)
.

Thus, the coefficient of ma(ν+b) for a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν} with a > b

is 1 + mii ∈ R× if a = j and b = i, and is in M otherwise. Hence, C = (cij)

where cij ∈ R× if i = j and cij ∈ M , otherwise. Clearly, π(C) = I(s2)
. So

rkC = rk π(C) =
(
s
2

)
. By Lemma 1.4.3, the system of

(
s
2

)
equations has a unique

solution. Thus, there are unique ma(v+b) for all a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν}

and a > b such that the
(
s
2

)
equations hold. It follows that there are |M |2νs−(

s
2)

choices for m⃗a ∈ M2ν for all a ∈ {1, 2, . . . , s} such that β(x⃗i+ m⃗i, x⃗j + m⃗j) = 0 for

all i, j ∈ {1, 2, . . . , s}. By Theorem 1.5.1 (2), the number of free totally isotropic

submodules of V of rank s whose reduction is X is

|M |2νs−(
s
2)

|M |s2
= |M |2νs−(

s
2)−s2 .

This shows that each totally isotropic subspace of V ′ of dimension s can be lifted

to |M |2νs−(
s
2)−s2 totally isotropic free submodules of V of rank s. Therefore, the

number of totally isotropic free submodules of V of rank s is |M |2νs−(
s
2)−s2nSk

(2ν, s)

as desired.

We have seen that the vertices of a generalized symplectic graph over a finite

local ring relate to the vertices of the graph over its residue field. The following

theorem gives the relation of the adjacency conditions of those two generalized

symplectic graphs.
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Theorem 2.2.2 (Lifting Theorem). Let R be a finite local ring with maximal ideal M

and residue field k = R/M , (V, β) a symplectic space over R of rank 2ν where

ν ≥ 1, 1 ≤ s ≤ ν and r, t satisfy max{0, s + t − ν} ≤ r ≤ t and 1 ≤ t ≤ s.

Let κ = nSk
(2ν, s) and {x⃗(1)

i }si=1, {x⃗
(2)
i }si=1, . . . , {x⃗

(κ)
i }si=1 be sets of vectors in V

such that {
⊕s

i=1 kπ(x⃗
(1)
i ),

⊕s
i=1 kπ(x⃗

(2)
i ), . . . ,

⊕s
i=1 kπ(x⃗

(κ)
i )} is the vertex set of

Sk(2ν, s, r, t). For each j ∈ {1, 2, . . . , κ}, we write
⊕s

i=1R(x⃗
(j)
i +M2ν) for the set{

s⊕
i=1

R(x⃗
(j)
i + m⃗

(j)
i ) : m⃗

(j)
i ∈ M2ν and β(x⃗

(j)
l + m⃗

(j)
l , x⃗

(j)
l′ + m⃗

(j)
l′ ) = 0

for all i, l, l′ ∈ {1, 2, . . . , s}

}
.

Then the following statements hold.

(1) The set
{⊕s

i=1 R(x⃗
(1)
i +M2ν),

⊕s
i=1R(x⃗

(2)
i +M2ν), . . . ,

⊕s
i=1 R(x⃗

(κ)
i +M2ν)

}
is

a partition of the vertex set of SR(2ν, s, r, t). Moreover, any two distinct ver-

tices in
⊕s

i=1R(x⃗
(j)
i +M2ν) are non-adjacent vertices for all j ∈ {1, 2, . . . , κ}.

(2) The cardinality of
⊕s

i=1R(x⃗
(j)
i +M2ν) is |M |2νs−(

s
2)−s2 for all j ∈ {1, 2, . . . , κ}.

(3) For two vertices X and Y of SR(2ν, s, r, t), X is adjacent to Y if and only if

π(X) is adjacent to π(Y ) in Sk(2ν, s, r, t).

(4) For j, j′ ∈ {1, 2, . . . , κ}, if
⊕s

i=1 kπ(x⃗
(j)
i ) is adjacent to

⊕s
i=1 kπ(x⃗

(j′)
i ) in

Sk(2ν, s, r, t), then X is adjacent to X ′ for all X ∈
⊕s

i=1 R(x⃗
(j)
i + M2ν)

and X ′ ∈
⊕s

i=1 R(x⃗
(j′)
i +M2ν).

Proof. The first part of (1) follows from Theorem 1.5.1 (2) and the fact that

if X is a totally isotropic free submodule of V of rank s, then π(X) is a totally

isotropic subspace of V ′ of dimension s. Next, let X =
⊕s

i=1R(x⃗
(j)
i + m⃗

(j)
i ) and

X ′ =
⊕s

i=1 R(x⃗
(j)
i + n⃗

(j)
i ) be two vertices in a partite set

⊕s
i=1R(x⃗

(j)
i +M2ν) for

some j ∈ {1, 2, . . . , κ}. Then π(X) =
⊕s

i=1 kπ(x⃗
(j)
i ) = π(X ′). By Lemma 1.4.4,

we obtain rk β(X,X ′) = rk π(β(X,X ′)) = rk β′(π(X), π(X ′)) = 0 and rk

X

X ′

 =
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rk

π(X)

π(X ′)

 = rk π(X) = s, so X is not adjacent to X ′. This proves (1). For (3),

we note that X is adjacent to Y if and only if rk β(X,Y ) = r and rk

X

Y

 =

s + t if and only if rk π(β(X,Y )) = rk β′(π(X), π(Y )) = r and rk π

X

Y

 =

rk

π(X)

π(Y )

 = s + t if and only if π(X) is adjacent to π(Y ) in Sk(2ν, s, r, t).

Finally, (2) follows from Theorem 2.2.1 and (4) follows from (3).

The lifting theorem can be used to determine the degree of a vertex of our

graphs.

Theorem 2.2.3. Let R be a finite local ring with unique maximal ideal M and

residue field k = R/M , (V, β) a symplectic space of rank 2ν where ν ≥ 1, 1 ≤ s ≤ ν

and r, t satisfy max{0, s + t − ν} ≤ r ≤ t and 1 ≤ t ≤ s. Then the generalized

symplectic graph of V of type (s, r, t) has |M |2νs−(
s
2)−s2nSk

(2ν, s) vertices and it is

regular of degree |M |2νs−(
s
2)−s2dSk

(r, t).

Proof. Let X be any vertex in SR(2ν, s, r, t). Then π(X) is a vertex in Sk(2ν, s, r, t)

of degree dSk
(r, t). By the lifting theorem, X has degree |M |2νs−(

s
2)−s2dSk

(r, t).

Thus, SR(2ν, s, r, t) is regular of degree |M |2νs−(
s
2)−s2dSk

(r, t).

Next, we find the automorphism group of our generalized symplectic graph

over a finite local ring. It can be described by the automorphism group of the

generalized symplectic graph over its residue field based on the idea of Theorem 4.2

of [15].

Theorem 2.2.4. Let R be a finite local ring with unique maximal ideal M and

residue field k = R/M , (V, β) a symplectic space of rank 2ν, ν ≥ 1, 1 ≤ s ≤ ν and

r, t satisfy max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s. Then

Aut
(
SR(2ν, s, r, t)

) ∼= Aut
(
Sk(2ν, s, r, t)

)
×
(
Sym(|M |2νs−(

s
2)−s2)

)nSk
(2ν,s)

.
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Proof. Let
⊕s

i=1 Rx⃗
(1)
i ,

⊕s
i=1Rx⃗

(2)
i , . . . ,

⊕s
i=1Rx⃗

(κ)
i be vertices in SR(2ν, s, r, t)

such that the vertex set of Sk(2ν, s, r, t) is{ s⊕
i=1

kπ(x⃗
(j)
i ) : j ∈ {1, 2, . . . , κ}

}
,

where κ = nSk
(2ν, s). The lifting theorem shows that the subgraph of SR(2ν, s, r, t)

induced from the vertex set
{⊕s

i=1Rx⃗
(j)
i : j ∈ {1, 2, . . . , κ}

}
is isomorphic to the

graph Sk(2ν, s, r, t). Moreover, each automorphism of SR(2ν, s, r, t) corresponds

with an automorphism of the graph Sk(2ν, s, r, t) and a permutation of vertices

in the set
⊕s

i=1 R(x⃗
(j)
i +M2ν) for all j ∈ {1, 2 . . . , κ}. Hence,

Aut
(
SR(2ν, s, r, t)

) ∼= Aut
(
Sk(2ν, s, r, t)

)
×

κ∏
j=1

Sym
(
|

s⊕
i=1

R(x⃗
(j)
i +M2ν)|

)
= Aut

(
Sk(2ν, s, r, t)

)
×
(
Sym(|M |2νs−(

s
2)−s2)

)κ
because |

⊕s
i=1R(x⃗

(j)
i +M2ν)| = |M |2νs−(

s
2)−s2 for all j ∈ {1, 2 . . . , κ}.

Finally, we prove that our graph is arc transitive.

Theorem 2.2.5. A generalized symplectic graph over a finite local ring R is arc

transitive.

Proof. Let
⊕s

i=1 Rx⃗
(1)
i ,

⊕s
i=1Rx⃗

(2)
i , . . . ,

⊕s
i=1 Rx⃗

(κ)
i be vertices in a generalized

symplectic graph SR(2ν, s, r, t) over R such that the vertex set of the general-

ized symplectic graph Sk(2ν, s, r, t) over the residue field k of R is{ s⊕
i=1

kπ(x⃗
(j)
i ) : j ∈ {1, 2, . . . , κ}

}
,

where κ = nSk
(2ν, s). The lifting theorem shows that the subgraph H of the

graph SR(2ν, s, r, t) induced from the vertex set
{⊕s

i=1Rx⃗
(j)
i : j ∈ {1, 2, . . . , κ}

}
is isomorphic to the generalized symplectic graph Sk(2ν, s, r, t). To prove that

SR(2ν, s, r, t) is arc transitive, let A,B,C,D be vertices in SR(2ν, s, r, t) such

that A is adjacent to B and C is adjacent to D. Then A ∈
⊕s

i=1R(x⃗
(a)
i +M2ν),

B ∈
⊕s

i=1R(x⃗
(b)
i +M2ν), C ∈

⊕s
i=1R(x⃗

(c)
i +M2ν) and D ∈

⊕s
i=1R(x⃗

(d)
i +M2ν) for

some a, b, c, d ∈ {1, . . . , κ} with a ̸= b and c ̸= d. Hence, π(A) =
⊕s

i=1 kπ(x⃗
(a)
i ) is
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adjacent to π(B) =
⊕s

i=1 kπ(x⃗
(b)
i ) and π(C) =

⊕s
i=1 kπ(x⃗

(c)
i ) is adjacent to π(D) =⊕s

i=1 kπ(x⃗
(d)
i ). Since Sk(2ν, s, r, t) is arc transitive, there exists an automorphism

T ∈ Aut(Sk(2ν, s, r, t)) such that T (π(A)) = π(C) and T (π(B)) = π(D). Thus, T

is also an automorphism on the subgraph H which maps
⊕s

i=1Rx⃗
(a)
i to

⊕s
i=1 Rx⃗

(c)
i

and
⊕s

i=1 Rx⃗
(b)
i to

⊕s
i=1Rx⃗

(d)
i .

Finally, for α ∈ {a, b, c, d}, we let σα be a permutation on
⊕s

i=1R(x⃗
(α)
i +M2ν)

such that σa(A) =
⊕s

i=1Rx⃗
(a)
i , σb(B) =

⊕s
i=1 Rx⃗

(b)
i , σc(C) =

⊕s
i=1Rx⃗

(c)
i and

σd(D) =
⊕s

i=1Rx⃗
(d)
i . For α ∈ {1, . . . , κ} r {a, b, c, d}, let σα be the identity

permutation on
⊕s

i=1 R(x⃗
(α)
i +M2ν). By Theorem 2.2.4, the map T ×

∏κ
i=1 σi is

an automorphism on SR(2ν, s, r, t) and it carries A to C and B to D as desired.

2.3 Over Finite Commutative Rings

In this section, we finally present the results of generalized symplectic graphs over

finite commutative rings. We shall see shortly that the root of the graphs over

finite commutative rings consists of the graphs over finite local rings. Certainly,

the number of vertices is discussed. The decomposition of the graph over a finite

commutative ring is exposed at last.

Let R be a finite commutative ring decomposed as R
φ∼= R1 × R2 × · · · × Rℓ

where Rj is a finite local ring with maximal ideal Mj and residue field kj =

Rj/Mj for all j ∈ {1, 2, . . . , ℓ} and (V, β) a symplectic space of rank 2ν where

ν ≥ 1. For convenience, we take V = R2ν . Then for x⃗ = (x1, x2, . . . , x2ν) and

y⃗ = (y1, y2, . . . , y2ν) in V ,

β(x⃗, y⃗) = β
(
(x1, x2, . . . , x2ν), (y1, y2, . . . , y2ν)

)
=

(
β1

(
ρ1(x⃗), ρ1(y⃗)

)
, β2

(
ρ2(x⃗), ρ2(y⃗)

)
, . . . , βℓ

(
ρℓ(x⃗), ρℓ(y⃗)

))
,

where βj is an associate bilinear form on Vj := R2ν
j for all j ∈ {1, 2, . . . , ℓ}. So

β(x⃗, y⃗) = 0 ∈ R if and only if βj

(
ρj(x⃗), ρj(y⃗)

)
= 0 ∈ Rj for all j ∈ {1, 2, . . . , ℓ}.

Together with Lemma 1.5.2, we have a free submodule X of V is a totally isotropic

free submodule of rank s if and only if ρj(X) is a totally isotropic free submodule
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of Vj of rank s for all j ∈ {1, 2, . . . , ℓ}. Thus, by Theorem 2.2.1, we can conclude

that the number of totally isotropic free submodules of V of rank s is

ℓ∏
j=1

|Mj|2νs−(
s
2)−s2nSkj

(2ν, s).

Now, we assume that 1 ≤ s ≤ ν and let r, t satisfy max{0, s+t−ν} ≤ r ≤ t and

1 ≤ t ≤ s. The above number is the number of vertices of the graph SR(2ν, s, r, t).

Note that, under the isomorphism φ, we can view each vertex X of the graph

SR(2ν, s, r, t) as
(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
where ρj(X) is a totally isotropic free

submodule of Vj of rank s for all j ∈ {1, 2, . . . , ℓ}. In other words, we have{(
ρ1(Z), ρ2(Z), . . . , ρℓ(Z)

)
: Z is a totally isotropic free submodule of V of rank s

}
is the vertex set of SR(2ν, s, r, t).

Suppose that X =
(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
and Y =

(
ρ1(Y ), ρ2(Y ), . . . , ρℓ(Y )

)
be two vertices in SR(2ν, s, r, t). By Lemma 1.4.6, it implies that

X is adjacent to Y

⇔ rk β(X,Y ) = r and rk

X

Y

 = s+ t,

⇔ min
1≤j≤ℓ

rk βj

(
ρj(X), ρj(Y )

)
= r and min

1≤j≤ℓ
rk

ρj(X)

ρj(Y )

 = s+ t. (2.1)

Under this set-up, we proceed to prove the following decomposition theorem.

Theorem 2.3.1. Let R be a finite commutative ring decomposed as R ∼= R1×R2×

· · ·×Rℓ where Rj is a finite local ring, (V, β) a symplectic space of rank 2ν, ν ≥ 1,

1 ≤ s ≤ ν. Then the generalized symplectic graph SR(2ν, s, r, t) can be decomposed

into a family of subgraphs

SR1(2ν, s, r1, t1)⊗ SR2(2ν, s, r2, t2)⊗ · · · ⊗ SRℓ
(2ν, s, rℓ, tℓ)

where 1 ≤ tj ≤ s and max{0, s + tj − ν} ≤ rj ≤ tj for all j ∈ {1, 2, . . . , ℓ} and

r = min{r1, r2, . . . , rℓ} and t = min{t1, t2, . . . , tℓ}. Every subgraph in this family is
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arc transitive and has the same vertex set as the graph SR(2ν, s, r, t). In addition,

the number of subgraphs in this family is

(e0,0)
ℓ − (e0,1)

ℓ − (e1,0)
ℓ + (e1,1)

ℓ

where

ea,b =

(
r − s− t+ ν + 1− (a− b)

)(
t− r − s+ ν + 2 + (a− b)

)
2

+ (v − s+ 1)(2s− r − ν − b)

for any a, b in {0, 1}.

Proof. Clearly, the vertex sets of SR(2ν, s, r, t) and each tensor product graph in

the family are the same. We first show that the tensor product graph

G = SR1(2ν, s, r1, t1)⊗ SR2(2ν, s, r2, t2)⊗ · · · ⊗ SRℓ
(2ν, s, rℓ, tℓ)

is an arc transitive subgraph of SR(2ν, s, r, t). Let X =
(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
and Y =

(
ρ1(Y ), ρ2(Y ), . . . , ρℓ(Y )

)
be two vertices in G . Assume that X is ad-

jacent to Y . Then ρj(X) is adjacent to ρj(Y ) in SRj
(2ν, s, rj, tj) for all j ∈

{1, 2, . . . , ℓ}. In other words, rk βj

(
ρj(X), ρj(Y )

)
= rj and rk

ρj(X)

ρj(Y )

 = s + tj

for all j ∈ {1, 2, . . . , ℓ}. Since r = min{r1, r2, . . . , rℓ} and t = min{t1, t2, . . . , tℓ},

we obtain that X is adjacent to Y in SR(2ν, s, r, t) by (2.1). This implies that G

is a subgraph of SR(2ν, s, r, t). From Lemma 1.7.3, we obtain

Aut
(
SR1(2ν, s, r1, t1)

)
×Aut

(
SR2(2ν, s, r2, t2)

)
×· · ·×Aut

(
SRℓ

(2ν, s, rℓ, tℓ)
)
⊆ Aut(G ).

Since the graph SRj
(2ν, s, rj, tj) is arc transitive for all j ∈ {1, 2, . . . , ℓ}, it follows

that G is arc transitive as desired.

To show that this family is a decomposition of our generalized symplectic

graph, we let

G = SR1(2ν, s, r1, t1)⊗ SR2(2ν, s, r2, t2)⊗ · · · ⊗ SRℓ
(2ν, s, rℓ, tℓ)
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and

G ′ = SR1(2ν, s, r
′
1, t

′
1)⊗ SR2(2ν, s, r

′
2, t

′
2)⊗ · · · ⊗ SRℓ

(2ν, s, r′ℓ, t
′
ℓ)

be two tensor product graphs in the family and suppose that two vertices X =(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
and Y =

(
ρ1(Y ), ρ2(Y ), . . . , ρℓ(Y )

)
are adjacent in both

graphs G and G ′. Then for each j ∈ {1, 2, . . . , ℓ}, ρj(X) is adjacent to ρj(Y ) in

both SRj
(2ν, s, rj, tj) and SRj

(2ν, s, r′j, t
′
j). Then rj = rk βj

(
ρj(X), ρj(Y )

)
= r′j

and s+tj = rk

ρj(X)

ρj(Y )

 = s+t′j for all j ∈ {1, 2, . . . , ℓ}. This forces that G = G ′.

Therefore, the edge sets of these tensor product graphs are disjoint.

Next, we let X =
(
ρ1(X), ρ2(X), . . . , ρℓ(X)

)
and Y =

(
ρ1(Y ), ρ2(Y ), . . . , ρℓ(Y )

)
be any two adjacent vertices in SR(2ν, s, r, t). By (2.1), we have

min
1≤j≤ℓ

rk βj

(
ρj(X), ρj(Y )

)
= r and min

1≤j≤ℓ
rk

ρj(X)

ρj(Y )

 = s+ t.

Hence, X and Y are adjacent in the tensor product graph

SR1(2ν, s, r1, t1)⊗ SR2(2ν, s, r2, t2)⊗ · · · ⊗ SRℓ
(2ν, s, rℓ, tℓ)

where rk βj

(
ρj(X), ρj(Y )

)
= rj and rk

ρj(X)

ρj(Y )

 = s+ tj for all j ∈ {1, 2, . . . , ℓ}.

Finally, we determine the number of subgraphs in the family by counting

the ℓ-tuples of ordered pairs
(
(t1, r1), (t2, r2), . . . , (tℓ, rℓ)

)
satisfying 1 ≤ tj ≤ s

and max{0, s+ tj − ν} ≤ rj ≤ tj for all j ∈ {1, 2, . . . , ℓ} and t = min{t1, t2, . . . , tℓ}

and r = min{r1, r2, . . . , rℓ}. Let the set U consist of ℓ-tuples of ordered pairs(
(t1, r1), (t2, r2), . . . , (tℓ, rℓ)

)
satisfying 1 ≤ tj ≤ s and max{0, s+ tj−ν} ≤ rj ≤ tj

for all j ∈ {1, 2, . . . , ℓ}. For a, b ∈ {0, 1}, we let Ea,b be the set of ℓ-tuples of or-

dered pairs
(
(t1, r1), (t2, r2), . . . , (tℓ, rℓ)

)
in U such that t + a ≤ min{t1, t2, . . . , tℓ}

and r + b ≤ min{r1, r2, . . . , rℓ}. Therefore, the desired cardinality is equal to

|E0,0 r (E0,1 ∪ E1,0)|.

Now, we count the members of Ea,b. We first determine the number of (t1, r1)

satisfying 1 ≤ t1 ≤ s, max{0, s+ t1 − ν} ≤ r1 ≤ t1 and t+ a ≤ t1 and r + b ≤ r1.
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Note that we have 1 ≤ t ≤ t + a ≤ t1 and 0 ≤ r ≤ r + b ≤ r1. Thus, (t1, r1)

must satisfy t + a ≤ t1 ≤ s and max{s + t1 − ν, r + b} ≤ r1 ≤ t1. Since

t+ a ≤ t1 ≤ s, we may write t1 = (t+ a) + i for some i ∈ {0, 1, . . . , s− (t+ a)} so

that for each i ∈ {0, 1, . . . , s − (t + a)}, we can count the choices of r1 satisfying

max{s+ t1 − ν, r + b} ≤ r1 ≤ t1.

Case 1. 0 ≤ i ≤ (r + b) − s − (t + a) + ν. It follows that s + t1 − ν =

s + (t + a) + i − ν ≤ s + (t + a) + (r + b) − s − (t + a) + ν − ν = r + b. Then

max{s+ t1−ν, r+ b} = r+ b. Thus, we choose r1 such that r+ b ≤ r1 ≤ (t+a)+ i

and so there are (t+ a) + i− (r + b) + 1 = t− r + 1 + (a− b) + i choices of r1.

Case 2. s − (t + a) ≥ i ≥ (r + b) − s − (t + a) + ν + 1. Then s + t1 − ν =

s+(t+a)+ i−ν ≥ s+(t+a)+(r+b)−s− (t+a)+ν+1−ν = (r+b)+1 ≥ r+b.

This forces that max{s+ t1 − ν, r+ b} = s+ t1 − ν. Thus, we choose r1 such that

s+ t1 − ν ≤ r1 ≤ t1 and so there are ν − s+ 1 choices for r1.

From both cases, we have the number of (t1, r1) is

ea,b : =

r−s−t+ν−(a−b)∑
i=0

(
t− r + 1 + (a− b) + i

)
+

s−t−a∑
i=r−s−t+ν+1−(a−b)

(ν − s+ 1)

=

(
r − s− t+ ν + 1− (a− b)

)(
t− r − s+ ν + 2 + (a− b)

)
2

+ (v − s+ 1)
(
2s− r − ν − b

)
.

For other j ∈ {2, 3, . . . , ℓ}, the number of (tj, rj) can be obtained in the same way

and they also equal ea,b. Hence, |Ea,b| = (ea,b)
ℓ. Therefore,

|E| = |E0,0 r (E0,1 ∪ E1,0)|

= |E0,0| − |E0,1| − |E1,0|+ |E1,1|

= (e0,0)
ℓ − (e0,1)

ℓ − (e1,0)
ℓ + (e1,1)

ℓ.

This completes the proof of the theorem.



CHAPTER III

GENERALIZED ORTHOGONAL GRAPHS

In this chapter, we present nice analogous results of the graphs in the orthogonal

case. Generalized orthogonal graphs over finite commutative rings of odd char-

acteristic behave in the same way as generalized symplectic graphs. Again, we

classify the study into three cases: over finite fields, over finite local rings and over

finite commutative rings of odd characteristic. Most results and their proofs are

analogous to the symplectic case. In what are different, the number of vertices

and the degrees of the graphs are showed. In fact, the key for the outcomes is

Theorem 3.2.2 which will be proved in detail. Many results follow afterward.

We have seen that studying graphs on symplectic space is more convenient

since this space has a nice basis as discussed in the previous chapter. Similarly,

it was showed in [16] that an orthogonal space over a finite local ring of odd

characteristic also has an effective basis.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and let (Vδ, β) be an orthogonal space of rank 2ν+δ, where ν ≥ 1 and δ ∈ {0, 1, 2}.

Then (Vδ, β) possesses a basis B = {⃗b1, b⃗2, . . . , b⃗2ν+δ} such that

(
β

)
B
=


0 Iν

Iν 0

∆

 ,

where

∆ =


∅ (disappear) if δ = 0,

(1) or (z) if δ = 1,

diag(1,−z) if δ = 2,



39

and z is a fixed non-square unit in R. We denote this matrix by L. Thus, if

x⃗ = x1⃗b1+x2⃗b2+ · · ·+x2ν+δ b⃗2ν+δ and y⃗ = y1⃗b1+y2⃗b2+ · · ·+y2ν+δ b⃗2ν+δ in Vδ, then

β(x⃗, y⃗) = (x1, x2, . . . , x2ν+δ)L(y1, y2, . . . , y2ν+δ)
T

=



∑ν
i=1(xiyν+i + xν+iyi), if δ = 0,∑ν
i=1(xiyν+i + xν+iyi) + x2ν+1y2ν+1∆, if δ = 1,∑ν
i=1(xiyν+i + xν+iyi) + x2ν+1y2ν+1 − zx2ν+2y2ν+2, if δ = 2.

We apply this basis to study generalized orthogonal graphs over finite local

rings, particularly, finite fields of odd characteristic.

3.1 Over Finite Fields

For generalized orthogonal graphs over Fq of odd characteristic, the number of

vertices which is the number of totally isotropic subspaces of an orthogonal space

over Fq is given in Corollary 6.23 in [19]. It equals to

nOFq
(2ν + δ, s) =

∏ν
i=ν−s+1(q

i − 1)(qi+δ−1 + 1)∏s
i=1(q

i − 1)

For two vertices X and Y of OFq(2ν + δ, s, r, t),

X is adjacent to Y ⇔ rk β(X,Y ) = r and rk

X

Y

 = s+ t.

In order to determine the degree of our graphs, we require the following lemma.

Lemma 3.1.1. [20] Let Fq be a finite field of odd characteristic, (Vδ, β) be an

orthogonal space of dimension 2ν+δ where ν ≥ 1 with δ ∈ {0, 1, 2} and X,X ′, Y, Y ′

totally isotropic subspaces of dimension s.

(1) If X ̸= Y with rk(XLY T) = r and dim(X∩Y ) = s−t, then max{0, s+t−ν} ≤

r ≤ t and 1 ≤ t ≤ s.

(2) rk(XLY T) = rk(X ′LY ′T) and dim(X ∩Y ) = dim(X ′∩Y ′) if and only if there

exists a 2ν× 2ν matrix U with ULUT = L such that X ′ = XU and Y ′ = Y U .
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As the discussion in Remark 2.1.2, we may study generalized orthogonal graphs

of type (s, r, t) over finite commutative rings of odd characteristic only when

1 ≤ s ≤ ν and r, t satisfy max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s.

Next, we can apply the previous lemma to show that our graphs are arc tran-

sitive. The proof is similar to the symplectic case (Theorem 2.1.3).

Theorem 3.1.2. A generalized orthogonal graph over a finite field of odd charac-

teristic is arc transitive.

Since our graph is arc transitive, it is regular. Then, we let P be a fixed vertex

in OFq(2ν + δ, s, r, t). A vertex X adjacent to P is a totally isotropic subspace

of Vδ of dimension s satisfying rk(PLXT) = r and dim(P ∩ X) = s − t. Again,

Wei and Wang determined the number of these subspaces in Theorem 4.5 of [20].

We denote this number by dOFq
(r, t). We record the above discussion in the next

theorem.

Theorem 3.1.3. Let Fq be a finite field of odd characteristic, (Vδ, β) be an orthogonal

space of dimension 2ν+ δ where ν ≥ 1 and δ ∈ {0, 1, 2}, 1 ≤ s ≤ ν and r, t satisfy

max{0, s + t − ν} ≤ r ≤ t and 1 ≤ t ≤ s. Then the generalized orthogonal graph

of V of type (s, r, t) has

nOFq
(2ν + δ, s) =

∏ν
i=ν−s+1(q

i − 1)(qi+δ−1 + 1)∏s
i=1(q

i − 1)

vertices and it is regular of degree

dOFq
(r, t) = qr(2(ν−s)+δ)+(t−r)2+

r(r+1)
2

 s

s− t


q

t
r


q

nOFq
(2(ν − s) + δ, t− r).

3.2 Over Finite Local Rings

In this section, we study generalized orthogonal graphs over finite local rings of

odd characteristic. We start with discussing a relationship between an orthogonal

space over a finite local ring and over its residue field. We use this relationship

to determine the number of totally isotropic free submodules of an orthogonal
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space. Next, we expose the lifting theorem of generalized orthogonal graphs.

Finally, we show their properties: regularities, degrees, automorphism groups and

transitivities.

Let R be a finite local ring of odd characteristic with unique maximal ideal M

and let (Vδ, β) be an orthogonal space of rank 2ν+δ, where ν ≥ 1 and δ ∈ {0, 1, 2}.

An orthogonal space (Vδ, β) over R induces the orthogonal space (V ′
δ , β

′) over k

of dimension 2ν + δ where β′ is given via the canonical map π : R → k by

β′(π(x⃗), π(y⃗)) = π(β(x⃗, y⃗))

for all x⃗, y⃗ ∈ Vδ. As well, if X is a totally isotropic free submodule of (Vδ, β) of

rank s, then π(X) is a totally isotropic subspace of (V ′
δ , β

′) of dimension s.

An orthogonal space (Vδ, β) with the basis presented in the first part of this

chapter and the induced orthogonal space (V ′
δ , β

′) are useful in studying our

graphs, especially, the number of vertices in our graphs. To count the number

of vertices in our graphs which is the number of totally isotropic free submodules

of Vδ, we require the following lemma.

Lemma 3.2.1. [17] Let R be a finite local ring of odd characteristic. Let (Vδ, β) be

an orthogonal space of rank 2ν + δ with basis {⃗b1, b⃗2, . . . , b⃗2ν+δ} where ν ≥ 1 and

δ ∈ {0, 1, 2} and x⃗ = r1⃗b1+r2⃗b2+· · ·+r2ν+δ b⃗2ν+δ ∈ Vδ for some r1, r2, . . . , r2ν+δ ∈ R.

Then x⃗ is unimodular if and only if ri is a unit for some i ∈ {1, 2, . . . , 2ν}.

Now, we are ready to determine the number of totally isotropic free submodules

of Vδ.

Theorem 3.2.2. Let R be a finite local ring of odd characteristic with maximal

ideal M and residue field k = R/M , (Vδ, β) an orthogonal space over R of

rank 2ν + δ, where ν ≥ 1 and δ ∈ {0, 1, 2} and X a totally isotropic subspace of

the induced orthogonal space (V ′
δ , β

′) of dimension s. Then the number of totally

isotropic free submodules of Vδ of rank s whose reduction is X is |M |(2ν+δ)s−(s+1
2 )−s2.

Hence, the number of totally isotropic free submodules of Vδ of rank s equals

|M |(2ν+δ)s−(s+1
2 )−s2nOk

(2ν + δ, s).
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Proof. Lemma 3.2.1 implies that any linearly independent vector in Vδ has a unit

in some coordinate in {1, 2, . . . , 2ν}. By elementary row operation and permut-

ing the coordinates in {1, 2, . . . , 2ν}, we write X =
(
Is A B

)
where A is an

s × (2ν − s) matrix and B is an s × δ matrix over k. Then we assume that

x⃗1, x⃗2, . . . , x⃗s ∈ Vδ are such that X = kπ(x⃗1) ⊕ kπ(x⃗2) ⊕ · · · ⊕ kπ(x⃗s), where for

each a ∈ {1, 2, . . . , s}, x⃗a = (xa1, . . . , xaν , xa(ν+1), . . . , xa(2ν), xa(2ν+1), . . . , xa(2ν+δ))

with xaa = 1 and xab = 0 for all b ∈ {1, . . . , s} r {a}. Thus, R(x⃗1 + m⃗1) ⊕

R(x⃗2 + m⃗2) ⊕ · · · ⊕ R(x⃗s + m⃗s) where m⃗a ∈ M2ν+δ for all a ∈ {1, 2 . . . , s} is

a free submodule of Vδ of rank s whose reduction is X. Among these free submod-

ules, we determine the number totally isotropic free submodules by counting the

choices of m⃗a ∈ M2ν+δ for all a ∈ {1, 2, . . . , s} such that β(x⃗i+m⃗i, x⃗j+m⃗j) = 0 for

all i, j ∈ {1, 2, . . . , s}. Since (Vδ, β) is orthogonal, if β(x⃗i + m⃗i, x⃗j + m⃗j) = 0, then

β(x⃗j + m⃗j, x⃗i + m⃗i) = 0 for all i, j ∈ {1, 2, . . . , s}. Hence, we choose m⃗a ∈ M2ν+δ

for all a ∈ {1, 2, . . . , s} satisfying the system of
(
s+1
2

)
equations

β(x⃗i + m⃗i, x⃗j + m⃗j) = 0 for all i, j ∈ {1, 2, . . . , s} with i ≤ j.

For each a ∈ {1, 2, . . . , s}, let

m⃗a = (ma1,ma2, . . . ,maν ,ma(ν+1),ma(ν+2), . . . ,ma(2ν),ma(2ν+1), . . . ,ma(2ν+δ)),

where mab ∈ M for all b ∈ {1, 2, . . . , 2ν + δ}. We first arbitrarily choose mab ∈ M

for a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν}, ma(ν+b) for a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν}

with a < b, and ma(2ν+1), . . . ,ma(2ν+δ). Then we show that there are unique ma(v+b)

for all a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν} and a ≥ b satisfying the above
(
s+1
2

)
equa-

tions. Let

m⃗ = (m1(ν+1),m2(ν+1), . . . ,ms(ν+1),m2(ν+2),m3(ν+2), . . . ,ms(ν+2), . . . ,ms(ν+s)).

Then we write those
(
s+1
2

)
equations in an linear system m⃗C = y⃗ where m⃗ is

an
(
s+1
2

)
variable vector, C is the

(
s+1
2

)
×

(
s+1
2

)
coefficient matrix over R and

y⃗ ∈ R(s+1
2 ). It is similar to the proof of Theorem 2.2.1 in showing that the

coefficient matrix C is of rank
(
s+1
2

)
. Thus, there are unique ma(v+b) for all

a ∈ {1, 2, . . . , s}, b ∈ {1, 2, . . . , ν} and a ≥ b such that the
(
s+1
2

)
equations hold.
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Hence, there are |M |(2ν+δ)s−(s+1
2 ) choices for m⃗a ∈ M2ν+δ for all a ∈ {1, 2, . . . , s}

such that β(x⃗i+ m⃗i, x⃗j + m⃗j) = 0 for all i, j ∈ {1, 2, . . . , s}. By Theorem 1.5.1 (2),

the number of totally isotropic free submodules of Vδ of rank s whose reduction

is X is
|M |(2ν+δ)s−(s+1

2 )

|M |s2
= |M |(2ν+δ)s−(s+1

2 )−s2 .

Therefore, the number of totally isotropic free submodules of Vδ of rank s equals

|M |(2ν+δ)s−(s+1
2 )−s2nOk

(2ν + δ, s).

This completes the proof.

We also have the lifting theorem for generalized orthogonal graphs over finite

local rings. Its proof is analogous to the symplectic case (Theorem 2.2.2).

Theorem 3.2.3 (Lifting Theorem). Let R be a finite local ring of odd characteristic

with maximal ideal M and residue field k = R/M , (Vδ, β) an orthogonal space

over R of rank 2ν + δ where ν ≥ 1 and δ ∈ {0, 1, 2}, 1 ≤ s ≤ ν and r, t

satisfy max{0, s + t − ν} ≤ r ≤ t and 1 ≤ t ≤ s. Let κ = nOk
(2ν + δ, s)

and {x⃗(1)
i }si=1, {x⃗

(2)
i }si=1, . . . , {x⃗

(κ)
i }si=1 be sets of vectors in Vδ such that the set

{
⊕s

i=1 kπ(x⃗
(1)
i ),

⊕s
i=1 kπ(x⃗

(2)
i ), . . . ,

⊕s
i=1 kπ(x⃗

(κ)
i )} is the vertex set of the graph

Ok(2ν + δ, s, r, t). For each j ∈ {1, 2, . . . , κ}, we write
⊕s

i=1R(x⃗
(j)
i +M2ν+δ) for

the set{ s⊕
i=1

R(x⃗
(j)
i + m⃗

(j)
i ) : m⃗

(j)
i ∈ M2ν+δ and β(x⃗

(j)
l + m⃗

(j)
l , x⃗

(j)
l′ + m⃗

(j)
l′ ) = 0

for all i, l, l′ ∈ {1, 2, . . . , s}

}
.

Then the following statements hold.

(1) The set
{⊕s

i=1R(x⃗
(1)
i +M2ν+δ),

⊕s
i=1R(x⃗

(2)
i +M2ν+δ), . . . ,

⊕s
i=1R(x⃗

(κ)
i +M2ν+δ)

}
is a partition of the vertex set of OR(2ν + δ, s, r, t). Moreover, any two

distinct vertices in
⊕s

i=1 R(x⃗
(j)
i + M2ν+δ) are non-adjacent vertices for all

j ∈ {1, 2, . . . , κ}.
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(2) The cardinality of
⊕s

i=1R(x⃗
(j)
i + M2ν+δ) is |M |(2ν+δ)s−(s+1

2 )−s2 for all j ∈

{1, 2, . . . , κ}.

(3) For two vertices X and Y of OR(2ν+ δ, s, r, t), X is adjacent to Y if and only

if π(X) is adjacent to π(Y ) in Ok(2ν + δ, s, r, t).

(4) For j, j′ ∈ {1, 2, . . . , κ}, if
⊕s

i=1 kπ(x⃗
(j)
i ) is adjacent to

⊕s
i=1 kπ(x⃗

(j′)
i ) in

Ok(2ν + δ, s, r, t), then X is adjacent to X ′ for all X ∈
⊕s

i=1R(x⃗
(j)
i +M2ν+δ)

and X ′ ∈
⊕s

i=1 R(x⃗
(j′)
i +M2ν+δ).

The lifting theorem implies results for generalized orthogonal graphs over finite

local rings similar to the symplectic case (Theorems 2.7–2.9) as follows.

Theorem 3.2.4. Let R be a finite local ring of odd characteristic with unique

maximal ideal M and residue field k = R/M , (Vδ, β) an orthogonal space over R

of rank 2ν + δ, where ν ≥ 1 and δ ∈ {0, 1, 2}, 1 ≤ s ≤ ν and r, t satisfy

max{0, s+ t− ν} ≤ r ≤ t and 1 ≤ t ≤ s. Then

(1) The generalized orthogonal graph of V of type (s, r, t) has

|M |(2ν+δ)s−(s+1
2 )−s2nOk

(2ν + δ, s)

vertices and it is regular of degree

|M |(2ν+δ)s−(s+1
2 )−s2dOk

(r, t).

(2) The automorphism group of OR(2ν + δ, s, r, t) is

Aut(OR(2ν + δ, s, r, t)) ∼=Aut(Ok(2ν + δ, s, r, t))

× (Sym(|M |(2ν+δ)s−(s+1
2 )−s2))nOk

(2ν+δ,s).

(3) The generalized orthogonal graph over R is arc transitive.
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3.3 Over Finite Commutative Rings

Finally, we present results for generalized orthogonal graphs over finite commuta-

tive rings of odd characteristic. Again, the proof is analogous to the ones discussed

in Section 2.3. We note that the number ea,b equals to the one in Theorem 2.3.1

since the conditions on s, r, t of Lemma 3.1.1 are the same.

Theorem 3.3.1. Let R be a finite commutative ring of odd characteristic decomposed

as R ∼= R1×R2×· · ·×Rℓ where Rj is a finite local ring of odd characteristic with

maximal ideal Mj and residue field kj = Rj/Mj for all j ∈ {1, 2, . . . , ℓ}, (Vδ, β) an

orthogonal space over R of rank 2ν + δ, where ν ≥ 1 and δ ∈ {0, 1, 2}, 1 ≤ s ≤ ν

and r, t satisfy max{0, s+t−ν} ≤ r ≤ t and 1 ≤ t ≤ s. The generalized orthogonal

graph OR(2ν + δ, s, r, t) has

ℓ∏
j=1

|Mj|(2ν+δ)s−(s+1
2 )−s2nOkj

(2ν + δ, s)

vertices. It can be decomposed into a family of subgraphs

OR1(2ν + δ, s, r1, t1)⊗ OR2(2ν + δ, s, r2, t2)⊗ · · · ⊗ ORℓ
(2ν + δ, s, rℓ, tℓ)

where 1 ≤ tj ≤ s and max{0, s + tj − ν} ≤ rj ≤ tj for all j ∈ {1, 2, . . . , ℓ} and

r = min{r1, r2, . . . , rℓ} and t = min{t1, t2, . . . , tℓ}. Every subgraph in this family

is arc transitive and has the same vertex set as the graph OR(2ν + δ, s, r, t). In

addition, the number of subgraphs in this family is

(e0,0)
ℓ − (e0,1)

ℓ − (e1,0)
ℓ + (e1,1)

ℓ

where

ea,b =

(
r − s− t+ ν + 1− (a− b)

)(
t− r − s+ ν + 2 + (a− b)

)
2

+ (v − s+ 1)(2s− r − ν − b)

for any a, b in {0, 1}.
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