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CHAPTER 1
GENERALIZED BILINEAR FORM GRAPHS

Graphs arising from bilinear forms have been variously studied. The most
favorite such graphs are symplectic graphs and orthogonal graphs which have
been famously explored in several directions. In this chapter, we present a new
class of graphs arising from bilinear forms which will be called Generalized bilinear
form graphs over finite commutative rings. In order to understand the background
of becoming these graphs and their characters deeply, we first introduce all ter-
minologies regarding our graphs. The literature review and the definition of our
graphs are presented in the end of this chapter.

As we have known, a graph basically consists of vertices and edges acquired by
an adjacency condition. As well, our graphs are studied on free modules over finite
commutative rings. The properties of finite commutative rings and free modules
are introduced in Sections 1.1 and 1.2, respectively. Next, we exhibit the concept
of unimodular vectors in Section 1.3. Indeed, unimodular vectors are concerned in
both symplectic graphs and orthogonal graphs. After that, Section 1.4 reveals the
notion of rank of matrices over commutative rings which is the key for defining
the adjacency condition of our graphs. By design, the vertices of our graphs are
made up of certain free submodules. The basic features of free submodules are
studied in Section 1.5. Afterwards, Section 1.6 is devoted to bilinear forms which
play outstanding roles in our graphs. We introduce the concept of bilinear forms
over commutative rings and illustrate some kinds of bilinear forms. Necessarily,
Section 1.7 is aimed at writing down the general definitions of graphs. After all
things discussed, we give the history of graphs arising from bilinear forms running
from the start toward becoming generalized bilinear form graphs in the final section

of this chapter.



1.1 Finite Commutative Rings

In this section, we review the information of finite commutative rings. For basic
definition, notation and properties, the reader is referred to [1], [8] and [12].
Throughout this dissertation, our rings always contain the identity 1 # 0.

Let R be a ring. An element a in R is a unit if there exists an element b € R
such that ab = 1 = ba, a is a zero divisor if a is non-zero and there exists an
element 0 £ b € R such that ab = 0 = ba, and, a is nilpotent if there exists a
positive integer n such that a™ = 0. It is easy to see that the set of units of R form
a group under multiplication, called the group of units of R and denoted by R*.

An ideal I of a ring R is a nonempty subset of R such that a — b, ra and ar
are in [ for all a,b € I and r € R. An ideal M of a ring R is maximal if M # R
and for every ideal J of R, if M C J C R, then J = M or J = R. Actually, a ring
may own many maximal ideals. However, rings owning a unique maximal ideal
are the core of studying finite commutative rings.

A local ring R is a commutative ring which has a unique maximal ideal, its
unique maximal ideal M is R~ R*, and we call the field R/M the residue field
of R. This local ring is also equipped with the canonical map 7 : R — R/M given
by 7(r) =r+ M for all r € R.

Example 1.1.1. 1. Every field is a local ring with maximal ideal {0}.

2. Z, is alocal ring with maximal ideal pZ,+ and residue field k = Z,: /pZ, = Z,

for every prime p and ¢ € N.

3. Zisnot alocal ring since it has infinitely many maximal ideals of the form pZ

where p is a prime.

Proposition 1.1.2. [1] In a finite local ring, every element is either a unit or a

nilpotent element.

This implies that if M is a maximal ideal of a finite local ring R, then M* = {0}

for some t € N.



Next, let R be a finite commutative ring. It is well known that R is isomorphic

to a product of finite local rings. More precisely,

R= R X Ry X ---X Ry

where Ry, Ro,..., R, are finite local rings with maximal ideals M, Ms, ..., My,
respectively. We also have the projection map p; : = (s1, S2,...,s¢) + s; for all
je{1,2,..., ¢}

It follows immediately that
R*= R xRy x---x R}.

Moreover, if [ is an ideal of R, then I = p;(I) X pa(I) x -+ x pe(I) where p;([) is
an associate ideal of R; for all j € {1,2,...,(}.

Proposition 1.1.3. [1] In a finite commutative ring, every nonzero element is either

a unit or a zero divisor.

Example 1.1.4. Let n = pi'p .. .pZ‘ where p; is a prime and t; € N for all
j€{1,2,...,¢}. Then

Ly 27 17 X Uity X - X1
n pll p22 pZéa

where Zptj is a finite local ring with unique maximal ideal ijptj and residue field
j i

kj =7y, for all j € {1,2,...,/(}.

1.2 Free Modules

The concept of modules is known as a generalization of vector spaces. The def-
inition of modules is similar to that of vector spaces. Unlike vector spaces, the
scalars of modules are in rings.

Let R be a ring with identity 1. An R-module or a module over R is an
abelian group (V, +) with a scalar multiplication R x V' — V| denoted by rZ, the

image of (r, ¥), which satisfies for all ;s € R and Z,5 € V,



3. r(s¥) = (rs)x and
4. 1gd =T.

Example 1.2.1. 1. For a field F', an F-module is just a vector space over F.
2. Every abelian group is a Z-module.

3. Every ring R is a module over itself where the addition and the scalar mul-

tiplication are given by ring operations of R.

4. Let R be a ring. Then V = R", a direct product of n copies of R, is an

R-module under pointwise addition and scalar multiplication.

We provide some basic terminologies regarding modules in the following defi-
nitions.

Let R be a ring and V' an R-module. A subset X of V is called a submodule
of V' if X is an additive subgroup of V and r# € X for any r € R and ¥ € X.

Example 1.2.2. 1. For a field F, all submodules of an F-module which is a

vector space over F' are the subspaces.

2. Since every abelian group V is a Z-module, all subgroups of V' are equivalent

to submodules of the Z-module V.

3. For an R-module V, it is easy to see that RZ is a submodule of V' where

reV.

Next, let V' be an R module. We say V' is generated by a subset {¥, 75, ..., %, }
if it is the set

{r&@ +roZo+ -+ ryZy i ri,re,...,7n € R}



and we write

V = R#, + R¥y + - -+ + R,

A set {¥,Zs,...,@,} is said to be linearly independent if it is provided that
forany ri,ry,... 7, € R, it @1 +reZo+- - -+r, T, = 6, thenr; =ro=---=r, =0.
A set that is not linearly independent is said to be linear dependent.

If an R-module V is generated by a linearly independent set B, we say that V'
is a free R-module and that B is a basis of V.

Let V be a free R-module with basis {51,52, e l;n} It is easy to see that
V = Rgl &) Rl;g @---Pp Rgn, sometimes written as V' = @?:1 Rl_;i. Besides, every
element 7 in V' can be written uniquely as a linear combination: ¥ = rlgl + 7”252 +
st rnl;n where r; € R.

In case that R is a commutative ring, every free R-module owns a nice property

on its bases.

Lemma 1.2.3. [8] Let R be a commutative ring. Then every basis of a free R-module

has the same cardinality.

Thus, we call the cardinality of a basis of a free R-module V' over a commutative

ring R, the rank of V.

Example 1.2.4. Let R be a commutative ring. Then V = R" is a free R-module
of rank n with a basis {€1, €3, ..., €&,} where & = (0,0,...,1,...,0) (the 1 occurs

only in the i-coordinate), for all i.

Additionally, Proposition 2.9 of [8] says that any two free R-modules over
a commutative ring R with the same rank are isomorphic. Thus, V is a free
R-module over a commutative ring R of rank n if and only if V = R". Therefore,

we may assume V' = R" for convenience to study free R-modules of rank n.

1.3 Unimodular Vectors

Unimodular vectors are importantly considered in symplectic graphs and orthog-

onal graphs over finite commutative rings, see [10], [13], [14], [15], and [17]. We



show in this section that unimodular vectors over finite commutative rings are
exactly linearly independent vectors.

Let R be a commutative ring. Let V' be a free R-module of rank n with basis
{l;l, 52, . ,I;n} A vector ¥ in V is unimodular if Z = 71b; + roby + - - - + 17,,b,, and

the ideal generated by ri, 7y, ..., 7, is equal to R.
Example 1.3.1. 1. If R is a field, then every nonzero vector in V' is unimodular.

2. Let R =74 and V = Zj. Then (1,2,0,3) € V is unimodular since the ideal
(1,2,0,3) = Zy4, but (2,0,2,0) € V is not unimodular since (0,2) # Z,.

The unimodularity of a vector is required in the graphs because of a nice
relationship between a local ring and its residue field. In fact, for a local ring R
with maximal ideal M and the canonical map 7 : R — R/M, if Z is a unimodular
vector in an R-module R", then 7(z) is linearly independent over R/M. We next

show that a unimodular vector is itself linearly independent.

Proposition 1.3.2. Let R be a finite local ring with mazimal ideal M. Let V' be a
free R-module of rank n with basis {51, 52, S ,gn} and T = 11by 4+ roby + - - -+ 1,by

in'V for somery,ry,....,r, € R. Then the following statements are equivalent.
(1) & is a unimodular vector.

(ii) r; is a unit for some i € {1,2,...,n}.

(iii) {Z} is a linearly independent set.

Proof. (i) = (ii). Assume that r; is not a unit for all 4 € {1,2,...,n}. Since R is
a local ring, r; € M for all i € {1,2,...,n}. Thus, (r1,79,...,7,) € M and so &
is not a unimodular vector.

(ii) = (iii). Assume that r; is a unit for some i € {1,2,...,n}. Let ¢ € R be
such that ¢z = 0. Then c¢r; = 0. Since 7; is a unit, ¢ must be 0 and so {Z} is
linearly independent.

(iii) = (i). Assume that Z is not a unimodular vector. Then the ideal

(ri,7r9,...,m,) # R. Since R is local, (ry,79,...,r,) € M. If M = {0}, then R is



a field and so # = 0 and {Z} is linearly dependent. Assume that M # {0} and
let ¢ € N be such that M # {0} and M*™' = {0}. This ¢ exists because every
element of a finite local ring is either a unit or a nilpotent element. Choose a
nonzero element ¢ in M*. Then cr; € M™' = {0} for all i. Hence, ¢ = 0 and so

{7} is linearly dependent. O

Next, let R be a finite commutative ring decomposed as R = Ry X Ry X -+ X Ry
where R; is a finite local ring with maximal ideal M; and residue field k; = R;/M;
for all j € {1,2,...,¢}. Recall the projection map p; : R — R, given by p; : r =
(s1,82,...,80) > s; forall j € {1,2,...,¢}.

Let V be a free R-module of rank n. For convenience, we may take V' = R"

and for each & = (ry,79,...,1,) in V, we write

pi(@) = (ps(r1)spj(ra), ... pj(ra))
for all j € {1,2,...,(}.
Observe that for each j € {1,2,...,¢},

Ry X+ XRj.y X Mj X Rjpy X -+ X Iy

is a maximal ideal of R and a maximal ideal of R is in this form. If ¥ € R" and
I(%) is the ideal of R generated by the components of Z, then I(Z) is not equal
to R

< thereis a j € {1,2...,¢} such that

I(f)gRlX“‘XRj_1XMjXRj+1><...XRZ

& thereis a j € {1,2...,¢} such that p; (I(Z)) C M;.

Therefore, we have shown the next proposition.

Proposition 1.3.3. For ¥ € R", we have Z is unimodular if and only if p;(Z) is

unimodular in R} for all j € {1,2,...,(}.

To conclude the desired result on unimodular vectors and linearly independent

vectors, we require the following property.



Proposition 1.3.4. For 71, %s,...,Z, € R", we have {¥1,%s,...,Ts} is linearly in-
dependent over R if and only if {p;(Z1), p;(Z2), ..., p;(Zs)} is linearly independent
over R; for all j € {1,2,...,(}.

Proof. Assume that {Zy,7,...,Zs} is linearly independent over R. Let j €
{1,2,...,0} and aj1,a9,...,a;s € R; be such that a;1p;(Z1) + ajop;(Z2) + -+ +
ajspi(Ts) = 0. For each t € {1,2,...,s}, we set a; = (aut,...,Qjt, ..., Q)
where a; = 0 € Ry for all k € {1,2,...,¢} ~ {j}, and so a; € R. Then
Ty + asy + - - - + a7y = 0. Since {#1, %y, ...,Zs} is linearly independent over R,
it follows that a; = as = --- = a; = 0. Therefore, a;; = ajo = --- = a;, = 0 and
so {pj(Z1), pj(Z2), ..., p;(Zs)} is linearly independent over R;.

Conversely, assume that {p;(Z1), p;j(Z2),...,p;(Z5)} is linearly independent
over R; forall j € {1,2,...,0}. Let a; = (ay, a9, ...,an) € Rfort € {1,2,...,s}
be such that ai@ + as@y + -+ + as¥s = 0. Then for each je{L,2,...,4}, we
obtain a1 p;(Z1) + ajop;(T2) + - - - + ajep; (L) = 0. By the assumption, a;; = ajo =

- =ajs = 0forall j € {1,2,...,0}. Thus, a;y = ay = --- = ay = 0, and so

{Zy,%s,...,Zs} is linearly independent. Il

Combining Propositions 1.3.2-1.3.4 implies that for ¥ € R™, ¥ is unimodular
if and only if {Z} is linearly independent. We record this important observation

in:

Corollary 1.3.5. Let R be a finite commutative ring and £ € R". Then ¥ is

unimodular if and only if {ZX} is linearly independent.

1.4 Rank of Matrices over Commutative Rings

McCoy [12] introduced the concept of rank of matrices over commutative rings.
It generalizes the usual rank of matrices over fields. This rank is defined by the
annihilators of ideals.

For an ideal I of a commutative ring R, the annihilator of I is given by

AnngI ={re€e R:ra=0 for all a € I}.



It is easy to see that Anng [ is an ideal of R. Moreover, if I and J are ideals of R
such that I C J, then Anng J C Anng [.

Let R be a commutative ring and A an m X n matrix over R. We define
In(A) = R and [;(A) to be the ideal of R generated by the ¢ x ¢ minors of A for
1 <t <min{m,n}. Note that

and so
{0} = Anng Iy(A) € Anng [1(A) € -+ C Anng Lyingmn} (4).

The rank of A, rk A, is the largest integer r such that Anng I,(A) = {0}. If R is
a field, it follows that A has ¢ linearly independent columns if and only if there
exists a t X ¢t submatrix B of A such that det B # 0, if and only if I,(A) = R,
if and only if Anng [;(A) = {0} where ¢ < min{m,n}. Therefore, rk A coincides
with the maximal number of linearly independent columns of A, so it is the usual

rank of A when R is a field.

3—2—3 0
Example 1.4.1. Let R=Z,and A= |2 1 2 1| bean 3 x 4 matrix over R.

432 31 2
Then Io(A) = R, [,(A) = R, I5(A) = R and I3(A) = (2), the ideal generated by

2. Tt follows that Anng [o(A) = {0}, Anng I1(A) = {0}, Anng Ir(A) = {0} and
Anng I3(A) = (2). Therefore, the rank of A is 2.

Some properties of the rank of matrices are presented as follows.

Proposition 1.4.2. [4] Let R be a commutative ring and A an m xn matric over R.

Then
(1) 0 <rk A < min{m,n}.
(2) tk A =rk AT.

(3) tk A =1k PAQ for all P € GL,,(R) and Q € GL,(R).
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(4) tk A =0 if and only if Anng I,(A) # {0}.
(5) If m = n, then rk A < n if and only if det A is the zero or a zero divisor of R.

(6) The homogeneous system of equations ¥A = 0 has a non trivial solution if and

only if tk A < m.

(7) If m < n, then A has rank m if and only if the rows of A are linearly

independent.

Lemma 1.4.3. [5] Let R be a commutative ring and A an m X n matriz over R

with m < n.

(1) [fl_; € R" and the system of equations TA = b has a solution, then the solution

s unique if and only if tk A = m.

(2) If R is finite, then the system of equations ¥A = b has a solution for every
be R if and only if rk A =n.

For matrices over finite local rings, Brawley and Carlitz [3] showed an impor-
tant relation between the rank of matrices over a finite local ring and that over

its residue field.

Lemma 1.4.4. [3] Let R be a finite local ring with unique mazimal ideal M and the
canonical map ™ : R — R/M. Then for any matriz A = (a;;) of R, the rank of A
is v if and only if m(A) = (7(ai;)) has rank r over k = R/M.

Hence, the rank of a matrix over a finite local ring is obtained from computing

the rank of its reduction which can be done in an elementary way.

3230

Example 1.4.5. According to a matrix A = |2 1 2 1| over Z4 from Exam-

1 2 3 2
ple 1.4.1, we can alternatively obtain the rank of matrix A by considering the

1010
matrix m(A) = |0 1 0 1| over the residue field Z,. It is obvious that the

1 010
rank of m(A) is 2. By Lemma 1.4.4, the rank of A is 2.
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For any finite commutative ring, Bollman and Ramirez [2] showed a nice rela-
tionship between the rank of matrices over finite commutative rings and that over

finite local rings.

Lemma 1.4.6. [2] Let R be a finite commutative ring decomposed as R = Ry X

Ry x --- X Ry where R; is a finite local ring with the projection map p; : v =
(81,82,...,80) = s; forall j € {1,2,...,0}. If A= (a;;) is an m X n matriz over
R, then

rkA = min {rkp;(4)},
where p;(A) := (pj(ai;)) is a matriz over R;.
Example 1.4.7. Consider the commutative ring Z;» decomposed as Z4 X Zs. The
isomorphism is given by p : a = (a + 4Z,a + 3Z) for all a € Z. Let A =

3 10 7 0 3230
6 5 2 1 | beamatrixover Zijs. Then p1(A)= |2 1 2 1| isa matrix

1 6 11 10 1 2 3 2
01 10
over Zy and py(A) = |0 2 2 1| is a matrix over Zz. By Example 1.4.1,
1.0 2 1

we obtain that rkp;(A) = 2. As well as, we can see that rkpy(A) = 3. By
Lemma 1.4.6, rk(A) = min{rk p;(A4),rk p2(A)} = 2.

1.5 Free Submodules

For vector spaces over the finite field of order ¢, there is a well known formula [19]
for the number of subspaces of dimension s in a vector space of dimension n given
by

nl (@ -1 —q) (" — ¢

5 (qs_1>(qs_q>...(qs_qs—1) )

Dougherty and Salturk [6] determined the number of free submodules (they call
them “free codes”) of R™ of rank s when R is a finite Frobenius commutative ring.

They obtained this number by counting the set of s linearly independent vectors.
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Let R be a finite commutative ring. Following Meemark and Sriwongsa’s lifting
idea [17], we can count the number of free submodules of R" of rank s.

Let X be a free submodule of R" of rank s with basis {Z,Z5,...,Zs}. Then
we have X = RT; ® R¥y @ --- @ RZ, and we use the same letter X to denote an

s X m matrix whose its ith row is Z; for all 7, that is,

T
X —
T
Moreover, if Y is another free submodule of R of rank s with basis {1, %, - - ., Us },
we adopt the notation to denote the augmented 2s X n matrix whose rows

Y
are obtained from the matrices X and Y, respectively. Observe that the rank of

does not depend on the choice of bases for X and Y by Proposition 1.4.2 (3).
Y

In particular, if X and Y are subspaces over fields, it is clear that rk =
Y

X
dim(X 4+ Y), so dim(X NY) = s — ¢ if and only if rk = s+ t where
Y

te{0,1,...,s}.
As well, to count the number of free submodules over a finite commutative
ring, we first establish properties and the number of free submodules over a finite

local ring by lifting them from its residue field.

Theorem 1.5.1. Let R be a finite local ring with mazimal ideal M, residue field
k = R/M with q elements and the canonical map m: R — R/M.

(1) If X = R¥, & RZy & --- ® RZ is a free submodule of R™ of rank s, then

7(X) := kn(Z))®km(Ze)®- - -®km(Zs) is a subspace of k™ over k of dimension s.

(2) Let &y,%s,...,Zs € R". If kn(Z)) @ kn(Zs) & -+ - ® kn(Zs) is a subspace of k"

over k of dimension s, then

R(Z1 + 1) © R(To + mho) @ -+ - ® R(T, + 1)
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is a free submodule of R"™ of rank s where my; € M™ for alli € {1,2,...,s}.
Moreover, for my,ni; € M™ where i € {1,2,...,s}, R(Z1+m1) D R(Zy+mso) ®
<o ® R(Zs 4+ my) = R(Z +11) ® R(Zy + 1) & - -+ ® R(Ts + 1is) if and only if

fl—f-’l’?bl fl"_ﬁl
:(Is+N)
Ts 4 M fs_’_ﬁs

for some s x s matrix N whose all entries are in M.

(8) The number of free submodules of R" of rank s is

|M|nsvsz

S
q

Proof. (1) Assume that X = R#, & R¥s @ --- @ RZ, is a free submodule of R"
of rank s. We show that {m (%), 7(Z3),...,7(Zs)} is linearly independent over k.
Let ag, o, ..., as € k be such that aym(71) + aom(Za) + -+ + a,m(Ts) = 0. Then
an(X) = 0 where @ = (o, a9,...,ay). Since tkX = s, we have rk7(X) = s.
Thus, the homogeneous system of equations an(X) = 0 has the trivial solution,
that is, @ = 0, and s0 @y = vy = - - - = ay = 0. Hence, 7(X) := kn (7)) ® k(o) ®
- @ km(Z) is a subspace of k™over k of dimension s.

(2) Assume that X := kn(Z)) @ kn(2) ® --- @ kn(Z,) is a subspace of k"
over k of dimension s. Let miy, ma,...,ms € M™. We show that {Z + mq, 7y +
Ma, ..., Ts + Mg} is linearly independent over R. Let ay,as,...,a; € R be such
that ay(Z) + 171) + ag(Zy + Ma) + - - - 4 as(Zs + 1) = 0. Then X' = 0 where
a = (ay,as,...,as) and X' is an s x n matrix whose ith row is #; + n; for all
i€{1,2,...,s5}. Since tkn(X’) = tkX = s, it follows that tk X’ = s. By
Proposition 1.4.2 (6), the homogeneous system of equations aX' = 0 has the
trivial solution, that is @ =0, and so a; = ag = - - - = a5 = 0. Thus, R(Zy+my) ®
R(Zy 4+ ma) @ -+ ® R(Zs + my) is a free submodule of R" of rank s.

Next, let m;, 7i; € M" for alli € {1,2,...,s}, X1 = R(Z1+ 1) ® R(Ty+ 1) &
<@ R(Zs + my) and Xy = R(Z) +1i1) & R(Zy +1i2) & - - - & R(Zs + 1i5). Suppose
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that X; = X,. We may assume without loss of generality that X = ( I, 6)
where C is an s x (n — s) matrix over k. Then we can write X; = <]8 + N, C1>

and Xy = ( I,+ N, C2> where N; and N, are s X s matrices whose all entries are
in M and Cy, Cy are s x (n— s) matrices over R. Since free submodules X; and X5
are equal, X; = UX, for some U € GLs(R). It follows that Iy + Ny = U(Is+ N3),
and so U = Iy + (N; — UNs).

Conversely, assume that X; = (I; + N)X, for some s X s matrix N whose all
entries are in M. Since Iy + N € GLg(R), we have that X; and X, generate the
same free submodule.

(3) We have seen that a free submodule of R™ of rank s is of the form
R(Z1 + my) @ R(Zy + ma) @ - -+ & R(Zs + m) where kn(Z)) Dk (Z2)D- - - Dhm(Zs)
is a subspace of k™ over k of dimension s and m; € M™. Hence, each subspace
of k" over k of dimension s can be lifted to [ M| /|M|** free submodules of R" of
rank s. Thus, the number of free submodules of R" of rank s is

|M|ns

= l]w’nsfs2
| M|+

S S
q q

n
where is the number of subspaces of dimension s in a vector space k™. [

S
q

Finally, we let R be a finite commutative ring decomposed as R; X Ry X - - X Ry
where R; is a finite local ring with maximal ideal M, and residue field R;/M;
with ¢; elements for all j € {1,2,...,¢}. The ring R is equipped with the pro-
jection map p; : r = (s1,82,...,5) — s; for all j € {1,2,...,¢}. Observe that
for each j and a submodule X of R"™ generated by Zi,7s,...,7,, the submod-
ule p;(X) of R} is generated by p;(Z1), pj(%2),...,p;(Zs). We also have from
Proposition 1.3.4 that {¥, 25, ..., Zs} is linearly independent over R if and only if
{p;i(Z1), pj(Z2),. .., p;(Zs)} is linearly independent over R; for all j € {1,2,...,¢}.

Thus, we have shown:

Lemma 1.5.2. X is a free submodule of R™ of rank s if and only if p;(X) is a free
submodule of R} of rank s for all j € {1,2,...,(}.
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Together with the number of free submodules over a finite local ring computed

in Theorem 1.5.1, we obtain the next corollary.

Corollary 1.5.3. The number of free submodules of R™ of rank s is

14

[Ti

j=1 S
a5

We end this section with showing examples of free submodules and pointing

out that the intersection of two free submodules may not be free.

Example 1.5.4. Let R = Z, and V = R* be a free R-module of rank 4. Let X be
the submodule generated by By := {(1,0,0,0),(0,1,0,0)} and Y the submodule
generated by By := {(1,0,2,0),(0,0,0,1)}. It is easy to see that X and Y are
two free submodules of V' with bases Bx and By, respectively. Suppose T €
X NY. Then 21(1,0,0,0) + 22(0,1,0,0) = # = 11(1,0,2,0) + 2(0,0,0,1). So
x1 =y1,2y; = 0 and z9 = yo = 0. It follows that Z is either (0,0,0,0) or (2,0,0,0).
Therefore, X NY = {(0,0,0,0),(2,0,0,0)} which is not a free submodule over R.

1.6 Bilinear Forms

Let R be a commutative ring. Let V be a free R-module of rank n. A bilinear
form 5 on V is a two-variable function g : V x V' — R which is linear in each

variable, namely,
B(@+y,2)=pB(Z,2)+ By, Z) and B(rz, 2) =rp(Z, 2)

and

for all Z,¢,Z,w € V and r,s € R.

Next, we classify certain bilinear forms. Let [ be a bilinear form on V. We
say that § is non-degenerate if (1) ¥ € V and S(Z,y) = 0 for all ¥ € V implies
Z =0, similarly, if ¥ € V and §(#,y) = 0 for all ¥ € V, then ¢ = 0, and (2) for
any R-linear map f : V — R, there exist &y, 7y € V such that f(Z) = [(Z, %)
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and f(Z) = B(Z,vo) for all ¥ € V, § is alternating if 5(7,Z) = 0 for all ¥ € V,

§ is symmetric if 3(Z, )
B(Z,y) = —p(y,Z) for all Z,5/ € V.

By, %) for all ¥,y € V, and f is skew-symmetric if

If 8 is an alternating bilinear form on V', then
0=03(F+y,2+y)=p2)+B(Z,9)+ By, %)+ By, 9) = B(Z,9) + By, T)
for all Z,y € V. Thus, every alternating bilinear form is skew-symmetric.

Example 1.6.1. 1. Let p be a prime number and let R be the ring of integer
modulo p", Z,», or the field of order p", F,», where n € N. For v > 1, let
V = R%. Define §:V xV — R by

o 0 1, .
B(xvy) — (x17$27'~-7x2u) (ylvaa-"ayQV)
=l 0
where [, is the v X v identity matrix, for all ¥ = (zq,29,...,29,) and
¥ = (y1,Y2,.-.,y2,) in V. Then § is a non-degenerate alternating bilinear

form on V.

2. Let p be an odd prime number and let R be the ring of integers modulo p”,
Zyn, or the field of order p™, F,n, where n € N. For v > 1 and ¢ € {0, 1,2},
let V = R?***°. Define 3:V xV — R by

0 I,
B(Z,y) = (z1,22,...,Zawss) | I, 0 (Y1, Y25+ -+ s Yours)
A

where

(

& (disappear) if § =0,

A= ¢(1)or (2) if § =1,

\diag(l, —z) if § =2,
and z is a fixed non-square unit in R, for all ¥ = (x1,z2,...,29,.5) and
¥ = (y1,Y2,---,Y24s) in V. Then S is a non-degenerate symmetric bilinear

form on V.
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An R-module automorphism ¢ on V is an isometry with respect to 3 if
B(o(Z),0(y)) = B(Z,y) for all Z,y € V. It is clear that the set of isometries on V
with respect to [ forms a group under composition. It is called the group of
isometries on (V, /3).

If 5 is non-degenerate and alternating, then we call the pair (V, ) a symplectic
space and we call its group of isometries a symplectic group. If R is of odd
characteristic and £ is non-degenerate and symmetric, then the pair (V, 3) is called

an orthogonal space and its group of isometries is called an orthogonal group.

1.7 Graphs

In this section, we focus on all notions of graphs which will be regarded in this
dissertation.

A graph G = (V, E) consists of a nonempty set V' of vertices and a set F of
edges formed by pairs of vertices. A graph is regular if each vertex has the same
number of neighbors which is called the degree of a regular graph. A complete
graph is a graph in which any two distinct vertices are adjacent. Equivalently, a
complete graph with n vertices is a regular graph of degree n — 1.

Let G and H be graphs. A function o from G to H is a homomorphism
from G to H if g, is adjacent to go in G implies o(g1) is adjacent to o(gs). A
homomorphism from G to H is called an isomorphism if it is a bijection and o~!
is a homomorphism from H to G. An isomorphism on G is called an automor-
phism. The set of automorphisms of G is denoted by Aut(G). It is a group under
composition, called the automorphism group of G.

A graph G is vertex transitive if its automorphism group acts transitively
on the vertex set. That is, for any two vertices of GG, there is an automorphism
carrying one to the other. An arc in G is an ordered pair of adjacent vertices
and G is arc transitive if its automorphism group acts transitively on its arcs. It

follows that an arc transitive graph is always vertex transitive and regular.

Example 1.7.1. 1. The complete graph is arc transitive.
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2. The following Petersen graph is an arc transitive graph.

For two graphs G and H with vertex sets V(G), V(H), respectively, the ten-
sor product of G and H, denoted by G ® H, is the graph whose vertex set is
V(G) x V(H) and (v, v9) is adjacent to (v, v4) if vy is adjacent to v} in G and v

is adjacent to v4 in H.

Example 1.7.2. The following graph shows the tensor product of the graphs G
and H.

®
[}

G GeH

A useful property of an automorphism of tensor product of graphs is proved

in Theorem 2.11 of [17]. We record it in the following lemma.
Lemma 1.7.3. Let G and H be graphs. Then Aut(G) x Aut(H) C Aut(G ® H).

For the end of this section, we introduce a decomposition of a graph which will

play an important role in our graphs over finite commutative rings.
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A decomposition of a graph G is a family of edge-disjoint subgraphs of G such
that any edge of GG belongs to exactly one subgraph.

Example 1.7.4. Consider the following complete graph with five vertices.

P2y

It can be decomposed into a family of two following graphs.

m VAN

1.8 Generalized Bilinear Form Graphs

Let R be a finite commutative ring, V' a free R-module of rank n and ( a bilinear

form on V.
For any two free submodules X and Y of V of rank s with bases {71, ..., 7}
and {71, ...,¥s}, we have the associate s X s matrix for § given by

(6(@-, yj)) where 4,5 € {1,...,s}.

By Proposition 1.4.2 (3), the rank of this matrix is independent of choices of bases

for X and Y. Thus, we may denote this rank by rk 5(X,Y).
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We finally introduce the last terminology before revealing the definition of gen-
eralized bilinear form graphs, namely the notion of totally isotropic submodules.
A submodule X of V is totally isotropic if (Z,y) = 0 for all ;5 € X. If X is
a free submodule of V' with basis {Z,...,Z,}, then X is totally isotropic if and

only if g(;,2;) =0 for all 4,5 € {1,...,s}.

Example 1.8.1. Let R be a finite local ring. For v > 1, let V = R? be a free
R-module with a bilinear form 5:V x V — R by

o 0 I .
B(Iay) = (xlvx%"':x2u> (ylay27--'ay21/) .
-1, 0

for all ¥ = (z1,29,...,29,) and ¥ = (y1,Y2,...,y2,) in V. If s < v, then a
free submodule generated by {é}, &, ..., €} is totally isotropic. More generally,
if 41,19,...,1, are s indices such that 1 < 1; < 15 < -+ < iy, < v, then a free

submodule generated by {e;,, €, .., €.} is a totally isotropic submodule.

There are many graphs defined on totally isotropic free submodules. In 2006,
Tang and Wan [18] defined graphs over symplectic spaces over finite fields. The
vertex of this symplectic graph is the set of subspaces of dimension one and its
adjacency condition is given by for two subspaces with bases {Z} and {¢}, respec-
tively, they are adjacent if 5(Z, %) # 0. Note that any subspace of dimension one
of a symplectic space is clearly totally isotropic. Two years later, Gu and Wan [7]
introduced graphs over orthogonal spaces over finite fields of odd characteristic.
These orthogonal graphs are defined analogously to symplectic graphs but the
vertex set is not the set of subspaces of dimension one. The vertex set is the set
of totally isotropic subspaces of dimension one. Note that the totally isotropic
condition is required to avoid loops in our graphs.

Meemark and Prinyasart [13] generalized the concept of symplectic graphs
over finite fields to symplectic graphs over finite commutative rings. They intro-
duced symplectic graphs over Z,» the ring of integers modulo p™ where p is prime
and n > 1. After that, symplectic graphs and orthogonal graphs over other fi-

nite commutative rings have been explored such as symplectic graphs modulo pq
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where p and ¢ are primes [11] and over finite local rings [14], and orthogonal graphs
over Galois rings of odd characteristic [10]. Meemark and Puirod [15] completely
studied symplectic graphs over finite commutative rings. Recently, Meemark and
Sriwongsa [17] worked on orthogonal graphs over finite commutative rings of odd
characteristic. They used the lifting theorem which lifts results over a finite local
ring from the ones over its residue field. This approach is clean and is more effec-
tive in determining the number of common neighbors of adjacent and non-adjacent
vertices.

The vertex set of their graphs over finite commutative rings is the set of totally
isotropic submodules generated by a unimodular vector. However, we have shown
in Corollary 1.3.5 that unimodular vectors coincide with linearly independent vec-
tors in finite commutative rings. Thus, the vertex set of a symplectic graph or an
orthogonal graph is the set of totally isotropic free submodules of rank one. Two
submodules with bases {7} and {¥}, respectively, are adjacent if 5(Z,¥) is in R*.

Zeng et al. [21] gave another generalization of symplectic graphs over finite
fields called the generalized symplectic graphs. Its vertex set is the set of totally
isotropic s-dimensional subspaces of a symplectic space, where s > 1, and two
vertices X and Y are adjacent if rk f(X,Y) =1 and dim(X NY) = s — 1. When
s = 1, a generalized symplectic graph is a symplectic graph. Later, Huo and
Zhang [9] worked on an orthogonal graph of type (s, s— 1,0) over a finite field. It
is a graph whose vertex set is the set of totally isotropic subspaces of dimension
s > 1 and two vertices X and Y are adjacent if and only if tk8(X,Y) = 0

and dim(X NY) = s — 1. Observe that dim(X NY) = s — 1 is equivalent to

X
rk = s+ 1. This rank can be used in our generalization of the graphs

Y

because, over a commutative ring, the intersection of two free submodules X

and Y may not be free but we can always compute the rank of
Y

Let R be a finite commutative ring, V a free R-module of rank n and 5 a

bilinear form on V. A generalized bilinear form graph of V' of type (s, r,t) is the
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graph whose vertex set is the set of totally isotropic free submodules of V' of rank s

X
and two vertices X and Y are adjacent if rk 5(X,Y) = r and rk = s+t
Y

If (V, ) is a symplectic space, the graph is called a generalized symplectic graph
of V of type (s,r,t) and denoted by #g(n,s,r,t) and if (V, ) is an orthogonal
space, the graph is called a generalized orthogonal graph of V' of type (s, r,t) and
denoted by Og(n,s,r,t).

Let {Z} and {¢} be two linearly independent sets over R. Clearly, 5(Z,y) € R*
if and only if rk <5(f, g’)) = 1. Moreover, if 3(Z,7y) € R*, then {Z, ¢} is linearly

z
independent, and so the rank of is two by Proposition 1.4.2 (7). This

implies that the graph #g(n,1,1,1) ?iJs a symplectic graph over R and the graph
Or(n,1,1,1)is an orthogonal graph over R. The symplectic and orthogonal graphs
over finite commutative rings are completely studied in [15] and [17], respectively.

In what follows, we obtain results on generalized symplectic graphs and gen-
eralized orthogonal graphs over a finite commutative ring in Chapters 2 and 3,
respectively. The combinatorial approach is the lifting theorem similar to [17].
As usual, we divide the study into three cases: over finite fields, over finite local
rings and over finite commutative rings. We can determine the degree of each
vertex of these graphs. If R is a finite local ring, we show that these graphs are
arc transitive and obtain their automorphism groups. Finally, we can decompose

the graphs over a finite commutative ring into the tensor products of graphs over

finite local rings.



CHAPTER II
GENERALIZED SYMPLECTIC GRAPHS

This chapter is devoted to study generalized symplectic graphs over finite com-
mutative rings. We begin with the results of general symplectic graphs over finite
fields. After that, we carry on those results to the generalized symplectic graphs
over finite local rings by the lifting idea. Finally, the generalized symplectic graphs
over finite commutative rings are presented.

First of all, we discuss a nice result of symplectic spaces over finite local rings
which is convenient to study our graphs.

Let R be a finite local ring and (V, 8) be a symplectic space over R of rank 2v
where v > 1. Then (V, 8) possesses a basis B = {51, by, . .. 752,/} such that

( 0o v
B) =
B —IY 0
We denote this matrix by K. Therefore, if ¥ = xlgl + a:252 + -4 xg,,gg,, and

?72 y151 + ygl;g + -4 ygyggl, in V, then

BT, Y) = (x1, %2, ., o) K (Y1, Yoy - -+, Y2u)

= (T1Ypq1 + DYy + - F DY) — (TpgpaYr + Togolo + -+ TYy).

This basis is useful in studying symplectic spaces over finite local rings, especially,

over finite fields.

2.1 Over Finite Fields

For generalized symplectic graphs over finite fields, the number of vertices is given
in [19]. We apply results in [20] to prove that the graph is arc transitive and
determine the degree of the graph in the end of this section.
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Let IF, be the finite field of order ¢ and (V, 3) be a symplectic space over F,
of dimension 2v where v > 1. The generalized symplectic graph of V' of type
(s,r,t) has the set of totally isotropic subspaces of dimension s where 1 < s < v
as the vertex set. Wan determined the number of totally isotropic subspaces of V'

of dimension s in Corollary 3.19 of [19]. It equals to

HZ’V:V—S—H (qzi - 1)
[[o (@ —1)

For two vertices X and Y of A, (2v, 5,7, 1),

ns., (2v,s) =

X
X is adjacent to Y < rk (X, Y) = r and rk = s+t
Y

To compute the degree of our graphs, we first show that the generalized symplectic

graphs are arc transitive by applying the following lemma.

Lemma 2.1.1. [20] Let F, be the finite field of order q, (V,B) a symplectic space
over F of dimension 2v where v > 1 and X, X", Y,Y" totally isotropic subspaces

of dimension s.

(1) If X #Y withtk(XKY7T) = 7 and dim(XNY) = s—t, then max{0, s+t—v} <
r<tandl <t<s.

(2) tk(XKY"') = tk(X’KY'") and dim(X NY) = dim(X’' NY") if and only if
there exists a 2v x 2v matriz U with UKUY = K such that X' = XU and
Y'=YU.

Remark 2.1.2. Let R be a finite local ring. Let X and Y be two free submodules

X
of V of rank s and 1 < t. Suppose rk(XKYT) = r and rk = s+ t.
Y

X
Since is an 2s X 2v matrix, we have ¢ < s. Then rk(m(X)K7(Y)") = r
Y

m

and rk = s+, so dim (7(X)N7(Y)) = s —¢t. Since ¢t # 0, we have
m(Y)

7(X)#7(Y),s0 X #Y. By Lemma 2.1.1 (1), max{0,s +t — v} <r <. Thus,
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we may study generalized symplectic graphs of type (s,r,t) over finite local rings
only when 1 < s < v and r,t satisfy max{0,s +t —v} <r <tand 1 <t <s.
Next, we let R be a a finite commutative ring decomposed as Ry X Ry X -+ X Ry
where R; is a finite local ring. Let X = (p1(X),p2(X),...,p(X)) and ¥ =
(p1(Y), p2(Y),...,pe(Y)) be two free submodules of V of rank s and 1 < ¢,

X
Suppose that tk (X,Y) = r and rk = s+ t. By Lemma 1.4.6, we ob-

Y
. - . p;i(X)
tain min;<;<,1k(p;(X)Kp;(Y)") = r and min;<j<,rk = s+t. It fol-
pi(Y)
lows that there are r,7s,... 7 and t1,ts,...,t, with 7 = min{ry,7o,..., 7.} and
. - p;(X)
t = min{ty,ts,...,t} such that rk(p;(X)Kp;(Y)") = r; and rk =
pi(Y)

s+t; for all j € {1,2,....¢}. Since 1 < t < t;, we have 1 < t; < s and
max{0,s +t; —v} < r; <t forall j € {1,2,...,¢}. Assume that r = r;, and
t = t;, for some ji,j2 € {1,2,...,¢}. The minimality of ~ and of ¢ implies that
max{0,s +t — v} < max{0,s +¢;, —v} <r;, =randr <r;,, <t;, =t Thus,
max{0,s+t—v} <r < t. Therefore, we may study generalized symplectic graphs
of type (s, r,t) over finite commutative rings only when 1 < s < v and r,t satisfy

max{0,s+t—v} <r <tand 1 <t <s. This concludes the remark.

Let 1 < s < wv. All generalized symplectic graphs of V' of type (s, r,t) have the

same vertex set. Theorem 2.1 of [20] implies that
{{(X,Y) Tk(XKY') =rand dim(X NY) = s — t} :
max{0,s+t—v} <r <tand 1 §t§s}

is a partition of the set of order pairs of distinct totally isotropic subspaces of V' of
dimension s. Therefore, the complete graph of nsg, (2v, s) vertices is decomposed
into generalized symplectic graphs of V' of type (s,r,t) where 1 < t < s and
max{0,s +t—v} <r <t.

Now, we show that our graphs are arc transitive.
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Theorem 2.1.3. A generalized symplectic graph over a finite field is arc transitive.

Proof. Let X1, X5, Y7, Y5 be four vertices in a generalized symplectic graph such
that X is adjacent to Y; and X, is adjacent to Y3. Then dim(X; NY)) =
dim (X, NY,) and rk(X; KY") = tk(X,KY,"). By Lemma 2.1.1 (2), there exists
an 2v x 2v matrix U with UKUT = K such that X, = XU and Y, = Y;U. Hence,
the map Z +— ZU for all vertices Z in #¢,(2v, s,r,t) is a graph automorphism
mapping X; to X, and Y] to Y5. O]

Since our graph is arc transitive, it is regular. Then, we let P be a fixed
vertex in ., (2v, s,7,t) and count the degree of P. A vertex X adjacent to P is
a totally isotropic subspace of V of dimension s satisfying tk(PKXT) = r and
dim(P N X) = s —t. Wei and Wang gave the number of these subspaces in
Theorem 2.7 of [20]. We denote this number by dsg, (r,t). We record the above

discussion in the next theorem.

Theorem 2.1.4. Let F, be the finite field of order q, (V, ) a symplectic space overF,
of dimension 2v where v > 1, 1 < s < v and r,t satisfy max{0,s+t—v} <r <t

and 1 <t <s. Then the generalized symplectic graph of V' of type (s,r,t) has

Hz’V:y—s+1(q2i - 1)
[[i- (¢ = 1)

s, (2v,s) =

vertices and it is reqular of degree

r(v—s )24t
dS]Fq(T’,t) :q2 (v=—s)+(t—r)2+ 25 nSFq(2(V—S),t—T).

2.2 Over Finite Local Rings

In this section, we give the generalized symplectic graphs over local rings by apply-
ing the results over finite fields and using the lifting idea. Relationships between
symplectic spaces over finite local rings and symplectic spaces over finite fields are
firstly studied. Next, we determine the number of vertices which is the number

of totally isotropic free submodules. After that, we present the lifting theorem of
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our graphs which is effective in showing that the graphs are regular, computing
their degrees and presenting that they are arc transitive.

Let R be a finite local ring with maximal ideal M and residue field k = R/M,
and let (V, 3) be a symplectic space over R of rank 2v where v > 1. A symplectic
space (V, ) over R induces the symplectic space (V’, ") over k of dimension 2v

where (3’ is given via the canonical map 7 : R — k by

for all Z, € V. Hence, if X is a totally isotropic submodule of (V, 3), then 7(X)
is a totally isotropic subspace of (V’, ). Moreover, if X is a totally isotropic
free submodule of (V) of rank s, then w(X) is a totally isotropic subspace of
(V',B") of dimension s by Theorem 1.5.1 (1). We first count the number of totally

isotropic free submodules of V.

Theorem 2.2.1. Let R be a finite local ring with mazimal ideal M and residue field
k= R/M, (V,3) a symplectic space over R of rank 2v where v > 1 and X a totally
isotropic subspace of the induced symplectic space (V',3") of dimension s. Then
the number of totally isotropic free submodules of V' of rank s whose reduction
is X is |M|2”s_(§)_52. Hence, the number of totally isotropic free submodules of V/

of rank s equals

Kl

(M=) g (20, 5).

Proof. By elementary row operations and permuting the coordinates of X, we may
write X = <78 Z) where A is an s x (2v — s) matrix over k. Then we assume
that &, @y, ..., 7, € V are such that X = kn (7)) ® kn(Zs) © - - - ® kn(F,), where
for each a € {1,2,...,s},

Lo = (xala <o Lavs La(v+1)y - - - 7xa(21/)> with Taa =1

and x, = 0 for all b e {1,...,s} N {a}.

Thus, R(Z) + my) & R(Zy + ma) & -+ & R(Zs + m,) where m, € M* for all

ac{1,2...,s} is a free submodule of V' of rank s whose reduction is X. Among



28

these free submodules, we determine the number of totally isotropic free sub-
modules by counting the choices of m, € M?* for all a € {1,2,...,s} such
that B(z; +m;, @; +m;) =0 for all 4, j € {1,2,...,s}. Since (V, ) is symplectic,
B(Z; + vy, Z;+my;) = 0 and if B(Z; +ny;, £;+m;) = 0, then B(Z; +ni;, Z; +m;) =0
for all 4,5 € {1,2,...,s}. Hence, we choose m, € M?* for all a € {1,2,...,s}

satisfying the system of (;) equations
B(Z; +my, &, +my) =0 foralli,je€{1,2,...,s} withi < j.
We rearrange the equations by running the (7, j) as

(1,2), (1,3), ., (1,8), (2,3),(2,4), . ., (2,8), (3,4), (3,5), .., (3,8),..., (s — 1, 5).

For each a € {1,2,...,s}, let

mge = (mah Ma2; -+« -y Mays Ma(v41) Ma(v+2)y - - - 7ma(21/))7

where mg, € M for all b € {1,2,...,2v}. We first arbitrarily choose mg, € M for
ae{l,2,...,s},be{l,2,..., v} and mgpqp) fora € {1,2,...,s}, b€ {1,2,..., v}
with @ < b. Then we show that there are unique m,,45) for all @ € {1,2,... s},
be{l,2,...,v} and a > b satisfying the above (;) equations. Now, we have the

system of (;) linear equations mC' = i where

M= (Ma(ut1)s MBA41)s - - - Mhs(u1)5 TUB(042) 5 TA(w42) 5 - - - s Mhs(u42)5 - - - Mhs(vs—1))

S

2)—Vauriable vector, ¥ € RG) and C is an (8) X (S) matrix over R. Consider

is an( 5 5

the equation 5(Z; + m;, ©; + ni;) = 0 where ¢ < j. Note that

Z + ity

=M1, -+, Migi—1)5 L+ Mgy M1y, - -+ 5 Misy Ti(s41) + Mi(s41)s - - > Tigaw) + Mi(2w))
and

=(mj1,. .. ST G—1)s L M, My a1)s - -+ s Miss Tjs41) T Mj(sg1)s -+ Ti(2w) + mj(?u))-
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Then

B(Z; + My, Tj + 1)
= (mil (Tj41) + Mjrn)) + -+ M) (Tjgio1) + Mjti-1))
+ (1 + M) (Tjray + Myriy) + M) (Tjwrivn) + Myerirn)
o (@i M) (T520) + mj(2u))>
- (mjl(fi(uﬂ) + Miwa1)) + -+ MG (Tiaj—1) + Mirj-1))
+ (14 m55)(Tiorg) + Micwrs) + M5G41) (Tirsr1) + M)

+ -+ (xjy + mjz/)(xi(2u) + mi(Zu)))-

Thus, the coefficient of mq(, s for a € {1,2,...,s}, b€ {1,2,...,v} with a > b
is 1 +my € R if a = j and b = i, and is in M otherwise. Hence, C = (¢;;)
where ¢;; € R* if i = j and ¢;; € M, otherwise. Clearly, 7(C) = I(;) So
tkC =rk7(C) = (;) By Lemma 1.4.3, the system of (;) equations has a unique
solution. Thus, there are unique mg( 45 for all @ € {1,2,...,s}, b€ {1,2,...,v}

s) equations hold. It follows that there are |M \2”8_(;)

and a > b such that the (2

choices for m, € M* forall a € {1,2,...,s} such that 8(Z; +m,;, Z; +m;) = 0 for
all i,7 € {1,2,...,s}. By Theorem 1.5.1 (2), the number of free totally isotropic

submodules of V of rank s whose reduction is X is

M 21/8—(;) e (9) 2
|||M—|S2 L |papres(E)=et,

This shows that each totally isotropic subspace of V' of dimension s can be lifted

S

to | M ]2”5_(2) = totally isotropic free submodules of V of rank s. Therefore, the

E]

number of totally isotropic free submodules of V' of rank s is | M |2”57(2>732n5k (2v, s)

as desired. n

We have seen that the vertices of a generalized symplectic graph over a finite
local ring relate to the vertices of the graph over its residue field. The following
theorem gives the relation of the adjacency conditions of those two generalized

symplectic graphs.
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Theorem 2.2.2 (Lifting Theorem). Let R be a finite local ring with mazimal ideal M
and residue field k = R/M, (V,B) a symplectic space over R of rank 2v where
v>1,1<s <vandrt satisfy max{0,s +t —v} <r <tand 1 <t < s.
Let k = ng, (2v,s) and {:13’51 o 1,{ﬁ }z . {f(n)}f_ be sets of vectors in V
such that {D;_, kﬂ(fgl)),@izl kﬂ(xi ), LD k7r( )} is the vertex set of
Fe(2u,s,1,t). For each j € {1,2,...,k}, we write @;_, R(T 5 7 4 M) for the set

{@R(f@ + Dy e M* and B2V +m? 20 +md) =0

for all i,1,1' € {1,2, ... ,s}}.
Then the following statements hold.

(1) The set {@B:_, R(TV+M>), @, RED+ M), ... @, RE@™ +M>)} is
a partition of the vertex set of Sg(2v,s,r,t). Moreover, any two distinct ver-

tices in @;_, R( +]V12”) are non-adjacent vertices for all j € {1,2,... k}.
(2) The cardinality of @;_, R(% (])—I—MZ”) is | M|*5~ (3)—s “forallj € {1,2,... Kk}

(8) For two vertices X and Y of Sp(2v,s,r,t), X is adjacent to'Y if and only if
7(X) is adjacent to w(Y') in S(2v, 8,1, t).

(4) For j.j' € {1,2,...,k}, if B, kﬂ(_’gj)) is adjacent to @;_, kﬁ(fl(»j/)) in
F(2v,s,1,t), then X is adjacent to X' for all X € @], R( )+ M)
and X' € @5, R(Z) + M),

Proof. The first part of (1) follows from Theorem 1.5.1 (2) and the fact that
if X is a totally isotropic free submodule of V' of rank s, then 7(X) is a totally
isotropic subspace of V' of dimension s. Next, let X = @, R(Z” +m")) and

=@d;_, R( )+ i ])) be two vertices in a partite set €D;_ R(H(J M?*) for
some j € {1,2,...,k}. Then 7n(X) = @], kr(#Y) = 7(X’). By Lemma 1.4.4,

we obtain rk (X, X') = rk7(8(X, X)) = rk 8/(7(X), 7(X’)) = 0 and rk * =
X/
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m(X
rk 20 =rk7(X) = s, so X is not adjacent to X’. This proves (1). For (3),
7(X')
X
we note that X is adjacent to Y if and only if rk 5(X,Y) = r and rk =
Y
X
s + t if and only if rk7(5(X,Y)) = tkf'(7n(X),n(Y)) = r and rk7 =
Y
m(X)
= s+t if and only if 7(X) is adjacent to n(Y) in % (2v, s, 7, 1).
m(Y)
Finally, (2) follows from Theorem 2.2.1 and (4) follows from (3). O

The lifting theorem can be used to determine the degree of a vertex of our

graphs.

Theorem 2.2.3. Let R be a finite local ring with unique maximal ideal M and
residue field k = R/M, (V, 3) a symplectic space of rank 2v wherev > 1,1 < s <wv
and r,t satisfy max{0,s +t —v} <r <t and 1 <t < s. Then the generalized

symplectic graph of V' of type (s,r,t) has |M|2”s_<2)_52n5k(2u, s) vertices and it is

s

reqular of degree \M|2”S_(2)_82d5k (ryt).

Proof. Let X be any vertex in .#z(2v, s, 7, t). Then 7(X) is a vertex in .%;(2v, s, 1, t)
of degree dg, (r,t). By the lifting theorem, X has degree |Z\/[]2”S_(§)_s2ds,c (r,t).
Thus, Sr(2v, s,1,t) is regular of degree ]M|2”S*(;)752d5k (r,t). O

Next, we find the automorphism group of our generalized symplectic graph
over a finite local ring. It can be described by the automorphism group of the

generalized symplectic graph over its residue field based on the idea of Theorem 4.2

of [15].

Theorem 2.2.4. Let R be a finite local ring with unique maximal ideal M and
residue field k = R/M, (V,3) a symplectic space of rank2v, v > 1,1 < s < v and

r,t satisfy max{0,s +t —v} <r <tand1<t<s. Then

Aut(Sr(2v, 5,7, 1)) = Aut(F4 (20, 5,7, 1)) x (Sym(| M [ ()=57)) s,
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Proof. Let @, RZ"V, @, R#” ... @, RZ™ be vertices in Fp(2v,s,7,t)
such that the vertex set of .74 (2v, s,r,t) is

{@m(*ﬁ”) = {1,2,...,@},

where k = ng, (2v, s). The lifting theorem shows that the subgraph of .7 (2v, s, r, t)
induced from the vertex set { @;_, Rfl(-j) :j €{1,2,...,K}} is isomorphic to the
graph % (2v, s,r,t). Moreover, each automorphism of .#z(2v, s, r,t) corresponds
with an automorphism of the graph .#;(2v, s, 7,t) and a permutation of vertices

in the set @;_, R(:E'gj) + M?) for all j € {1,2...,r}. Hence,

Aut(YR(ZV, s, T, t)) = Aut(fk(Ql/, s, T, t)) X H Sym(| EB R(fgj) + M2”)|)

j=1 i=1

. Aut(fk(Ql/,s,r, t)) X (Sym(|M|2VS*(§)782))H
because | P;_, R(fgj) + M*)| = }Mlz"s_(;)_SQ forall j € {1,2... Kk} O
Finally, we prove that our graph is arc transitive.

Theorem 2.2.5. A generalized symplectic graph over a finite local ring R is arc

transitive.

Proof. Let @, RZ"V, @, RT” ... @, RZ"™ be vertices in a generalized
symplectic graph .Zz(2v, s,r,t) over R such that the vertex set of the general-
ized symplectic graph %% (2v, s, r,t) over the residue field &k of R is

{@kw(@) Lj € {1,2,...,/-;}},

where k = ng, (2v,s). The lifting theorem shows that the subgraph H of the
graph . (2v, 5,7, t) induced from the vertex set { @;_, ngj) je{1,2,...,k}}
is isomorphic to the generalized symplectic graph .7 (2v, s,r,t). To prove that
Sr(2v, s, t) is arc transitive, let A, B,C, D be vertices in .#g(2v, s,r,t) such
that A is adjacent to B and C' is adjacent to D. Then A € @°_, R(Z" + M?),
Be@®.  REY + M), Ce @, RE)+M*)and D € @:_, R(#\"+M?) for

some a,b,c,d € {1,...,k} with a # b and ¢ # d. Hence, 7(4) = P;_, kw(fga)) is
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adjacent to 7(B) = @;_, kﬂ'(fl(b)) and 7(C) = @;_ lmr( ) is adjacent to (D) =
b;_, kw(fgd)). Since . (2v, s,,t) is arc transitive, there exists an automorphism
T € Aut(S(2v, s,r,t)) such that T'(7(A)) = n(C) and T'(7(B)) = w(D). Thus, T
is also an automorphism on the subgraph H which maps @@;_, Ra_:’ga) to P;_, Ra_:’l(c)
and @:_, RZ"” to @:_, RT\Y.

Finally, for a € {a,b, c,d}, we let 0, be a permutation on @;_, (_’(a) + M?)
such that o,(A) = @l  RZ. 0,(B) = @, RZ", 0.(C) = @, RZ) and
od(D) = B;_, R:z:i . For a € {1,...,k} ~{a,b,c,d}, let o, be the identity
permutation on @, R(Z\* + M?). By Theorem 2.2.4, the map T x [[F_, o; is

an automorphism on .z(2v, s, 7, t) and it carries A to C' and B to D as desired. []

2.3 Over Finite Commutative Rings

In this section, we finally present, the results of generalized symplectic graphs over
finite commutative rings. We shall see shortly that the root of the graphs over
finite commutative rings consists of the graphs over finite local rings. Certainly,
the number of vertices is discussed. The decomposition of the graph over a finite
commutative ring is exposed at last.

Let R be a finite commutative ring decomposed as R ’i‘ Ry x Ry X -+- X Ry
where R; is a finite local ring with maximal ideal M; and residue field k; =
R;/M; for all j € {1,2,...,¢} and (V, ) a symplectic space of rank 2v where
v > 1. For convenience, we take V = R*. Then for ¥ = (z1,%9,...,Ts,) and

g: <y17y27 s 7y21/) in Va

B(fv 37) = ﬁ((xlvx% e 73721/)7 (y17y27 <. 7y21/>)

= (&(m(@,m(ﬂ)),52(p2(f),p2(ﬁ)),...,5g(pe(f),pe(?7))),

where f3; is an associate bilinear form on V; := RQ-” for all j € {1,2,...,¢}. So
B(Z,§) = 0 € R if and only if 3;(p;(Z),p;(7)) =0 € R; for all j € {1,2,...,¢}.
Together with Lemma 1.5.2, we have a free submodule X of V' is a totally isotropic

free submodule of rank s if and only if p;(X) is a totally isotropic free submodule
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of V; of rank s for all j € {1,2,...,¢}. Thus, by Theorem 2.2.1, we can conclude

that the number of totally isotropic free submodules of V' of rank s is

E]

L
111 ]2”5_(2>_52n5kj (2v, s).
j=1

Now, we assume that 1 < s < v and let r, ¢ satisfy max{0, s+t—v} < r < tand
1 <t <'s. The above number is the number of vertices of the graph #z(2v, s, 7, t).
Note that, under the isomorphism ¢, we can view each vertex X of the graph
Fr(2v,s,1,t) as (p1(X), p2(X), ..., pe(X)) where p;(X) is a totally isotropic free

submodule of V; of rank s for all j € {1,2,...,¢}. In other words, we have
{(pl(Z), p2(Z),...,pe(Z)) : Z is a totally isotropic free submodule of V' of rank s}

is the vertex set of .Zr(2v, s, 7,1).

Suppose that X = (pi(X), pa(X), -, pe(X)) and Y = (p1(Y), p2(Y ), .., pe(Y))
be two vertices in .#g(2v, s,7,t). By Lemma 1.4.6, it implies that

X is adjacent to Y

X
<1k [f(X,Y) =rand rk =5
4

: . Pj
= féljlggrk B; (Pj(X), Pj(Y)) =r and 121]122 rk () =s+t. (2.1)
J

Under this set-up, we proceed to prove the following decomposition theorem.

Theorem 2.3.1. Let R be a finite commutative ring decomposed as R = Ry X Ry X
-+ X Ry where R; is a finite local ring, (V, B) a symplectic space of rank 2v, v > 1,
1 < s <w. Then the generalized symplectic graph #r(2v, s,r,t) can be decomposed

into a family of subgraphs
T (2, 8,11,t1) @ SR,y (20, 8,19, 1) @ -+ - @ SR, (20, 8,74, 1y)

where 1 < t; < s and max{0,s +t; —v} <r; <t; forall j € {1,2,...,0} and

r=min{ry,ra, ..., 7} andt = min{ty, ts, ..., t,}. Every subgraph in this family is



35

arc transitive and has the same vertex set as the graph Sr(2v,s,r,t). In addition,

the number of subgraphs in this family is

(e00)" — (€0,1)" — (e10)" + (e1,1)"

where

(r—s—t+v+l—(a=b)(t-—r—s+v+2+(a—1)
2
+(w—s+1)2s—r—v—b)

€ab =

for any a,b in {0,1}.

Proof. Clearly, the vertex sets of .#z(2v, s,7,t) and each tensor product graph in
the family are the same. We first show that the tensor product graph

G = SR, (2v,8,11,t1) @ LR, (20, 5,79,19) @ -+ ® SR, (2v, 5,74, 0)

is an arc transitive subgraph of .Z5(2v, s,7,t). Let X = (p1(X), p2(X), ..., pe(X))

and Y = (p1(Y), p2(Y), ..., pe(Y)) be two vertices in 4. Assume that X is ad-

jacent to Y. Then p;(X) is adjacent to p;(Y) in #g,(2v,s,7;,t;) for all j €
pi(X)

{1,2,...,¢}. In other words, rk 3;(p;(X), p;(Y)) = r; and rk =s+t;
pi(Y)

for all j € {1,2,...,0}. Since r = min{ry,re,..., 7} and t = min{ty, ta, ..., ¢},

we obtain that X is adjacent to Y in #z(2v, s,r,t) by (2.1). This implies that ¢

is a subgraph of #x(2v, s, r,t). From Lemma 1.7.3, we obtain
Aut (S, (2v, 8,11, t1)) X Aut (T, (20, 8,72, 12) ) X+ - - x Aut (SR, (2v, 5,74, 7)) C Aut(Z).

Since the graph #g, (2v, s, 75,;) is arc transitive for all j € {1,2,..., £}, it follows
that ¢ is arc transitive as desired.
To show that this family is a decomposition of our generalized symplectic

graph, we let

G = SR (2v,5,11,t1) @ LR, (20, 5,79,12) ® - - ® SR, (2v, 5,74, t0)
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and

G = Sr (2, 8,1, 1]) @ SR, (21, 5,15,15) @ -+ @ SR, (20, 8,7, t))

be two tensor product graphs in the family and suppose that two vertices X =
(p1(X), pa(X), ..., pe(X)) and Y = (p1(Y), p2(Y), ..., pe(Y)) are adjacent in both
graphs ¢ and ¢’. Then for each j € {1,2,...,¢}, p;(X) is adjacent to p;(Y) in
both Sr, (2v,s,7;,t;) and g, (2v,s, 75, 1;). Then r; = 1k B;(p;(X), p;(Y)) =1}
and s+t; =rk pi(X) = s+t forall j € {1,2,...,¢}. This forces that 4 = ¥".

pi(Y)
Therefore, the edge sets of these tensor product graphs are disjoint.

Next, welet X = (p1(X), p2(X), ..., p(X)) and Y = (p1(Y), p2(Y), ..., pe(Y))

be any two adjacent vertices in .#z(2v, s,r,t). By (2.1), we have

min rk 3;(p;(X),p;(Y)) =7 and min rk Pi =5+t

1<j<t e,
o o A\nY)

Hence, X and Y are adjacent in the tensor product graph
Fr, 2, 8,71,t1) @ SR,y (20, 8,19, 1) R -+ @ SR, (20, 8,74, 1y)

pi(X)

pi(Y)
Finally, we determine the number of subgraphs in the family by counting

where 1k 8; (p;(X), p;(Y)) = r; and rk =s+t; forall j € {1,2,...,¢}.

the /-tuples of ordered pairs ((tl,rl), (ta,r9),. .., (tg,rg)) satisfying 1 < t; < s
and max{0,s+¢;, —v} <r; <t;forall j € {1,2,...,¢} and t = min{ty,t2,...,t}
and r = min{ry,re,...,r}. Let the set U consist of (-tuples of ordered pairs
((tl,rl), (ta,r2), ..., (te, ’l”g)) satisfying 1 <t; < s and max{0,s+t;—v} <r; <t;
for all j € {1,2,...,¢}. For a,b € {0,1}, we let E,; be the set of ¢-tuples of or-
dered pairs ((tl, r1), (ta,r2), ..., (ts, Tg)) in U such that ¢t + a < min{ty,ts,...,t}
and 7 + b < min{ry,79,...,7}. Therefore, the desired cardinality is equal to
[Eoo ~ (Eo1 U Er)l|.

Now, we count the members of E, ;. We first determine the number of (t1,71)

satisfying 1 <t; < s, max{0,s+t; —v} <rm <tjandt+a <t;yand r+b < r;.
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Note that we have 1 <t <t+a <ty and 0 <r <r+0b < r;. Thus, (t1,7)
must satisfy ¢ +a < t; < s and max{s +t; —v,r + b} < r; < t;. Since
t+a <t <s, wemay write t; = (t+a)+i for some i € {0,1,...,s—(t+a)} so
that for each i € {0,1,...,s — (t + a)}, we can count the choices of r satisfying
max{s +t; —v,r + b} <r; <t.

Case 1. 0 < i < (r+b)—s—(t+a)+v. It follows that s + ¢, — v =
s+(t+a)+i—v<s+(t+a)+(r+b —s—(t+a)+v—v=r+0b Then
max{s+t; —v,r+b} = r+0b. Thus, we choose 1 such that r+b < r; < (t+a)+1
and so there are (t+a)+i—(r+0b)+1=t—7r+1+ (a —b) + i choices of r;.

Case 2. s—(t+a)>i>(r+b —s—(t+a)+v+1. Then s+t —v =
s+(t+a)+i—v>s+(t+a)+(r+b)—s—(t+a)+v+1—v=(r+b)+1>r+b.
This forces that max{s + ¢, —v,7+ b} = s+t; — v. Thus, we choose r; such that

s+t —v <r; <t; and so there are v — s + 1 choices for r;.

From both cases, we have the number of (¢1,77) is

r—s—t+v—(a—b) s—t—a
Cap = Z (t—r+1+(a=0b)+1i)+ Z (v—s+1)
=0 i=r—s—t+v+1—(a—b)
B (r—s—t+v4+l=(a=b)(t=r—s+v+2+(a—10))
N 2

+(w—s+1)(2s—r—v—0b).

For other j € {2,3,..., ¢}, the number of (¢;,r;) can be obtained in the same way

and they also equal e,;,. Hence, |E, ;| = (eqp)¢. Therefore,

’E’ = ‘EO,O N (E()J U E1’0)|
= |Eoo| — |Eo1| — |Evo| + |E1a]

= (e00)" — (e01)" — (e10)" + (e1,1)".

This completes the proof of the theorem. O



CHAPTER III
GENERALIZED ORTHOGONAL GRAPHS

In this chapter, we present nice analogous results of the graphs in the orthogonal
case. Generalized orthogonal graphs over finite commutative rings of odd char-
acteristic behave in the same way as generalized symplectic graphs. Again, we
classify the study into three cases: over finite fields, over finite local rings and over
finite commutative rings of odd characteristic. Most results and their proofs are
analogous to the symplectic case. In what are different, the number of vertices
and the degrees of the graphs are showed. In fact, the key for the outcomes is
Theorem 3.2.2 which will be proved in detail. Many results follow afterward.

We have seen that studying graphs on symplectic space is more convenient
since this space has a nice basis as discussed in the previous chapter. Similarly,
it was showed in [16] that an orthogonal space over a finite local ring of odd
characteristic also has an effective basis.

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and let (Vj, 8) be an orthogonal space of rank 2v+4, where v > 1 and 6 € {0, 1, 2}.
Then (Vs, 3) possesses a basis B = {by, by, . .., bay4s} such that

0 I,
<B>B: L, 0

where

p

& (disappear) if § =0,

A= (1) or (2) if § =1,

\diag(l, —z) if § =2,



39

and z is a fixed non-square unit in R. We denote this matrix by L. Thus, if

T = 1by + Toby + - - '+5132u+552u+6 and § = ?/151 +?/252 +-- '+y2u+6g2l/+5 in Vs, then

B(‘f) :J) - (’Il; Lo, .. >$2u+§)L(y1, Y2, ... 7y2u+(5)T
(
S (@i + Toili), if § =0,
= 1 S (T + Topitii) + T 1Yo, ifo=1,

\211'/:1(%%% + Tyili) T Tovp1Yov41 — ZTopr2Youy2, if 6 =2

We apply this basis to study generalized orthogonal graphs over finite local

rings, particularly, finite fields of odd characteristic.

3.1 Over Finite Fields

For generalized orthogonal graphs over IF, of odd characteristic, the number of
vertices which is the number of totally isotropic subspaces of an orthogonal space

over F, is given in Corollary 6.23 in [19]. It equals to

[T, (@ =D +1)

Himi(¢' = 1)

For two vertices X and Y of O, (2v + 6, 5,7, t),

nog, (2v +4,8) =

X
X is adjacent to Y < 1k 5(X,Y) = r and rk =5+ t.
Y

In order to determine the degree of our graphs, we require the following lemma.

Lemma 3.1.1. [20] Let F, be a finite field of odd characteristic, (Vs,3) be an
orthogonal space of dimension 2v+6 wherev > 1 with 6 € {0,1,2} and X, X' Y)Y’

totally isotropic subspaces of dimension s.

(1) If X # Y withtk(XLYT) = r and dim(XNY) = s—t, then max{0, s+t—v} <

r<tandl <t<s.

(2) tk(XLYT) =1k(X'LY'T) and dim(X NY) = dim(X'NY") if and only if there
exists a 2v X 2v matriz U with ULUY = L such that X' = XU andY' =Y U.
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As the discussion in Remark 2.1.2, we may study generalized orthogonal graphs
of type (s,7,t) over finite commutative rings of odd characteristic only when
1 <s<wandrtsatisfy max{0,s +t —v} <r<tand 1 <t <s.

Next, we can apply the previous lemma to show that our graphs are arc tran-

sitive. The proof is similar to the symplectic case (Theorem 2.1.3).

Theorem 3.1.2. A generalized orthogonal graph over a finite field of odd charac-

teristic is arc transitive.

Since our graph is arc transitive, it is regular. Then, we let P be a fixed vertex
in Op,(2v + 6,s,7,t). A vertex X adjacent to P is a totally isotropic subspace
of Vs of dimension s satisfying rk(PLX™") = r and dim(P N X) = s — t. Again,
Wei and Wang determined the number of these subspaces in Theorem 4.5 of [20].
We denote this number by do,, (r,t). We record the above discussion in the next

theorem.

Theorem 3.1.3. LetF, be a finite field of odd characteristic, (Vs, B) be an orthogonal
space of dimension 2v+ 9§ wherev > 1 and 0 € {0,1,2}, 1 < s < v and r,t satisfy
max{0,s+t—v} <r <tandl <t <s. Then the generalized orthogonal graph
of V' of type (s,r,t) has

H;/:stJrl (ql re) 1)(qi+6_1 + 1)

Hf:1(qi —1)

no, (2v +90,s) =

vertices and it is reqular of degree

r(r+1)
dog, (r,t) = g RE= ()T nog, (2(v —s) +d,t —r).

3.2 Over Finite Local Rings

In this section, we study generalized orthogonal graphs over finite local rings of
odd characteristic. We start with discussing a relationship between an orthogonal
space over a finite local ring and over its residue field. We use this relationship

to determine the number of totally isotropic free submodules of an orthogonal



41

space. Next, we expose the lifting theorem of generalized orthogonal graphs.
Finally, we show their properties: regularities, degrees, automorphism groups and
transitivities.

Let R be a finite local ring of odd characteristic with unique maximal ideal M
and let (Vj, B) be an orthogonal space of rank 2v+§, where v > 1 and 6 € {0, 1, 2}.
An orthogonal space (Vs, 8) over R induces the orthogonal space (Vy, ') over k

of dimension 2v 4+ § where (3’ is given via the canonical map 7 : R — k by

B (m (&), 7 () = = (B(Z, §))

for all ©,i7 € Vs. As well, if X is a totally isotropic free submodule of (Vj, 5) of
rank s, then m(X) is a totally isotropic subspace of (VJ, 8) of dimension s.

An orthogonal space (Vj, 8) with the basis presented in the first part of this
chapter and the induced orthogonal space (Vj,’) are useful in studying our
graphs, especially, the number of vertices in our graphs. To count the number
of vertices in our graphs which is the number of totally isotropic free submodules

of Vs, we require the following lemma.

Lemma 3.2.1. [17] Let R be a finite local ring of odd characteristic. Let (Vs, 5) be
an orthogonal space of rank 2v + § with basis {51, 52, - 752V+6} where v > 1 and
d€{0,1,2} andz = r151+7’252+~ . -—|—7"2,,+552V+5 € Vs for somery,ry, ..., ro1s € R.

Then Z is unimodular if and only if r; is a unit for some i € {1,2,...,2v}.

Now, we are ready to determine the number of totally isotropic free submodules

of V.

Theorem 3.2.2. Let R be a finite local ring of odd characteristic with maximal
ideal M and residue field k = R/M, (Vs,5) an orthogonal space over R of
rank 2v + 6, where v > 1 and § € {0,1,2} and X a totally isotropic subspace of
the induced orthogonal space (V{,B') of dimension s. Then the number of totally

S— 752

isotropic free submodules of Vi of rank s whose reduction is X is |M|(2”+6) (2")

Hence, the number of totally isotropic free submodules of Vs of rank s equals

M@ 0s=(2) = (20 + 6, 5).
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Proof. Lemma 3.2.1 implies that any linearly independent vector in Vs has a unit
in some coordinate in {1,2,...,2r}. By elementary row operation and permut-
ing the coordinates in {1,2,...,2v}, we write X = (75 A E) where A is an
s X (2v — 5) matrix and B is an s x J matrix over k. Then we assume that
Ty, T, ..., 7 € Vs are such that X = k7 (&) @ kn (%) @ - - - @ km(Z,), where for
each a € {1,2,...,5}, To = (a1, - - Tav, Ta(41)s - - - > Ta(2)s Ta(2041)s - - - » La(20+5))
with 24, =1 and x4, =0 for all b € {1,...,s} ~ {a}. Thus, R(Z + m;) &
R(Zy + 1ig) @ - -+ @ R(Z, + m,) where m, € M?* for all a € {1,2...,s} is
a free submodule of Vs of rank s whose reduction is X. Among these free submod-
ules, we determine the number totally isotropic free submodules by counting the
choices of m, € M** foralla € {1,2,..., s} such that 8(Z;+m;, Z; +m;) = 0 for
all 4,5 € {1,2,...,s}. Since (Vj, ) is orthogonal, if 5(z; + ny;, ©; + ni;) = 0, then
B(Z; + m, & +m;) = 0 forall i, j € {1,2,...,s}. Hence, we choose 1, € M?+9

for all @ € {1,2,..., s} satisfying the system of (S;I) equations
B(Z; +m, & +m;) =0 foralli,j € {1,2,...,s} with ¢ <j.
For each a € {1,2,...,s}, let

me = (malu Ma2y -+« s Mau; Ma(v41), Ma(v+2)5 -+ 5 Ma(2v); Ma(20+1)5 - - - 7ma(2y+5))7

where mg, € M for all b € {1,2,...,2v+ 0}. We first arbitrarily choose my, € M
forae {1,2,...,s},b€{1,2,...,v}, mauqp fora € {1,2,...,s}, b€ {1,2,...,v}
with a < b, and mg2u41), - - -, Ma(2v+5)- Then we show that there are unique mq(y45)
foralla € {1,2,...,s},b€ {1,2,...,v} and a > b satisfying the above (sgl) equa-

tions. Let

M= (MA(41)5 M241)s - - - > Ms(w+1) s M2(042)5 MB(42) s - - - Ms(142)5 - - - » Mes(uts) ) -

s+1

5 ) equations in an linear system mC' = ¢ where m is

Then we write those (

an (Sgl) variable vector, C' is the (S;I) X (s;rl) coefficient matrix over R and

iy € R(S§1> It is similar to the proof of Theorem 2.2.1 in showing that the
coeflicient matrix C' is of rank (S'QH). Thus, there are unique mg4s) for all

a€{l,2,...,s},be{1,2,...,v} and a > b such that the (Sgl) equations hold.
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Hence, there are [ M| 9 ~(*3") choices for M € M foralla € {1,2,...,s}
such that B(z; +m;, @;+m;) =0forall 7,5 € {1,2,...,s}. By Theorem 1.5.1 (2),

the number of totally isotropic free submodules of Vs of rank s whose reduction

is X is

(2v+8)s— (11
|M‘ _ ( ) _ ’M’(QV-HS)S—(S;l)—sQ.
| M|

Therefore, the number of totally isotropic free submodules of Vs of rank s equals
M@= (2) =" (20 + 6, 5).
This completes the proof. O

We also have the lifting theorem for generalized orthogonal graphs over finite

local rings. Tts proof is analogous to the symplectic case (Theorem 2.2.2).

Theorem 3.2.3 (Lifting Theorem). Let R be a finite local ring of odd characteristic
with maximal ideal M and residue field k = R/M, (V5,B) an orthogonal space
over R of rank 2v + 0 where v > 1 and 6 € {0,1,2}, 1 < s < v and r,t
satisfy max{0,s +t —v} < r < tand 1 <t < s. Let Kk = no, (2v + 0,s)
and {f(l Yo 1,{_' }Z 1,...,{@(”)};9:1 be sets of wvectors in Vs such that the set
{B;_k (_’(1)) B, kw(fz(?)),... b;_ 1]{:7r( )} is the vertex set of the graph
Ox(2v + 0, s,1,t). For each j € {1,2,...,Kk}, we write @;_, R(x§ D4 M?¥+3) for
the set

{@R 2 @) mY e M0 and B0 + w7 + mi) =0

forall i1l € {1,2,... ,s}}.
Then the following statements hold.

(1) The set{@_lR +M2”+5) b;_ 1]%(*(2 +M2E) L D 1R( +M2"+5)}
is a partition of the vertex set of Or(2v + §,s,7,t). Moreover, any two
distinct vertices in @;_, R(fﬁj’ + M?*9) are non-adjacent vertices for all

je{l,2,...,k}.
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(2) The cardinality of @;_, R(ZY + M>+9) is ]]\/[](2”5)5_(8;1)_52 for all j €
{1,2,...,k}.

(3) For two vertices X andY of Or(2v+4,s,1,t), X is adjacent to Y if and only
if m1(X) is adjacent to w(Y') in Op(2v + 9, s,7,1).

(4) For j,j € {1,2,...,k}, if @ kn(Z7) is adjacent to P k(@)Y in
Ox(2v+9,s,1,t), then X is adjacent to X' for all X € @;_, R(fgj) + M2+
and X' € @;_, R(#" + M>+9),

The lifting theorem implies results for generalized orthogonal graphs over finite

local rings similar to the symplectic case (Theorems 2.7-2.9) as follows.

Theorem 3.2.4. Let R be a finite local ring of odd characteristic with unique
maximal ideal M and residue field k = R/M, (Vs, 3) an orthogonal space over R
of rank 2v + 5, where v > 1 and § € {0,1,2}, 1 < s < v and r,t satisfy

max{0,s+t—v} <r<tandl1<t<s. Then
(1) The generalized orthogonal graph of V' of type (s,r,t) has
M@= CT) " (90 + 6, 5)

vertices and it is reqular of degree

|M|(2y+5)87(531)752d0k (7“, t).

(2) The automorphism group of Or(2v + 0, s,r,t) is

Aut(Or(2v + 6, 8,1, 1)) ZAut(Ok(2v + 6, 8,1, 1))
X (Sym(|]\/[’(2u+5)s_(s42rl)_s2))nok (20+3,5)

(8) The generalized orthogonal graph over R is arc transitive.
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3.3 Over Finite Commutative Rings

Finally, we present results for generalized orthogonal graphs over finite commuta-
tive rings of odd characteristic. Again, the proof is analogous to the ones discussed
in Section 2.3. We note that the number e,; equals to the one in Theorem 2.3.1

since the conditions on s,r,t of Lemma 3.1.1 are the same.

Theorem 3.3.1. Let R be a finite commutative ring of odd characteristic decomposed
as R= Ry X Ry X --- X Ry where R; is a finite local ring of odd characteristic with
mazimal ideal M; and residue field k; = R;/M; for all j € {1,2,...,¢}, (V5,B) an
orthogonal space over R of rank 2v + 0§, where v > 1 and § € {0,1,2}, 1 <s<wv
and r,t satisfy max{0,s+t—v} <r <tandl <t <s. The generalized orthogonal
graph Or(2v + 8, s,1,t) has

2

¢
H |Mjl(2u+5)si(s;1)fs nij (2V + 57 S)
j=1
vertices. It can be decomposed into a family of subgraphs

Or,(2v+6,s,r1,t1) ® O, (2046, 5,19,12) & - - - @ OR,(2v + 0, 5,74, 1¢)

where 1 < t; < s and max{0,s +t;, —v} <r; <t; forall j € {1,2,...,4} and
r = min{ry,ro, ..., 7} and t = min{ty, to, ..., t;}. FEvery subgraph in this family
is arc transitive and has the same vertex set as the graph Or(2v + 0,s,r,t). In

addition, the number of subgraphs in this family is

(e00)" — (€0,1)" — (e10)" + (e1,1)"

where

(r=s—t+v+l—(a=b)(t-r—s+tv+2+(a-1)
2
+(w—s+1)(2s—r—v—0)

€ab =

for any a,b in {0,1}.
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