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CHAPTER 1
INTRODUCTION

The basic idea of the hypergraph is to consider a generalization of a graph.
There are many interesting topics on graph theory. One of its is a proper vertex col-
oring on a graph that was generalized to a proper vertex coloring on a hypergraph
as follows. A A-coloring of a hypergraph H is a labeling f : V(H) — {1,2,3,..., A}
and a proper A-coloring of a hypergraph H is a A-coloring of a hypergraph H such
that no edge of H (besides singletons) has all vertices of the same color. The
chromatic number of hypergraph H, denoted by x(H), is the minimum number A
for which a proper A-coloring exists [9].

The vertex coloring on a graph does not have only proper vertex colorings.
Many researchers are also interested in defective colorings, see [3] and [4]. A
defective coloring on a graph G is a coloring of a graph G in which some adjacent
vertices maybe assigned the same color. A (k, d)-defective coloring of a graph G
is a vertex coloring of G with £ colors such that each vertex is allowed at most
d neighbors having the same color. In this work, we modify the definition of
a defective coloring and a defective chromatic number on graphs to a defective
coloring and a defective chromatic number on hypergraphs as follows. Let d > 0,
a (A, d)-defective coloring is a A-coloring of a hypergraph H in which there are
at most d edges of H having all vertices of the same color. If H admits a (A, d)-
defective coloring, then y<4(H) denotes the least integer A.

In 2016, Muaengwaeng and and Nakprasit [8] considered (A, d)-defective color-
ings and chromatic numbers of graphs of which each color class induces a forest,
i.e., each color class is acyclic. We also modify their idea to a (), d)-defective col-
oring and chromatic number on a hypergraph of which each color class is acyclic.

This thesis is organized as follows. In Chapter II, we recall some basic defini-



tions and theorems involving the research.

In Chapter III, we determine the defective chromatic numbers on a complete
bipartite k-uniform hypergraph and also determine the defective chromatic num-
bers on a complete bipartite k-uniform hypergraph of which each color class is
acyclic.

In Chapter IV, we determine the defective chromatic number and the defective
chromatic number of which each color class is acyclic on a complete k-partite
k-uniform hypergraph whose each edge has k vertices from £ different partite sets.

In Chapter V, we determine the upper bound of the defective chromatic number
and determine the defective chromatic number of which each color class is acyclic
on a complete tripartite 3-uniform hypergraph whose each edge has three vertices

from at least two different partite sets.



CHAPTER II
PRELIMINARIES

In this chapter, we recall some definitions and notations used throughout this

research. We also review some literature related to our research.

Definition 2.1. [9] A hypergraph H is an ordered pair H = (V(H), E(H)),
where the set V' (H) of vertices is a nonempty finite set and the set E(H) of (hyper)
edges is a collection of distinct nonempty subsets of V(H). Let k > 1. If every
edge of H has size k, then H is called a k-uniform hypergraph. Note that a
2-uniform hypergraph is simply an ordinary graph.

Figure 2.1 shows a hypergraph H of 6 vertices V(H) = {vy, vq, v3, vy, U5, V6 }
and 4 edges E(H) = {ey,ea,e3,e4} where e; = {vy,v9,03}, 60 = {v9,v3},635 =

{vs,v5,v6} and eq = {v4}.

Co /5

Figure 2.1: hypergraph H.

Any hypergraph H' = (V(H'), E(H')) such that V(H') C V(H) and E(H') C
E(H) is a subhypergraph of H. In such a case, we write H' C H.

A hypergraph H' = (V(H'), E(H')) is called an induced subhypergraph of
H if V(H') C V(H) and all edges of H completely contained in V(H') form the
family F(H'). Sometimes we say that H' is a subhypergraph induced by V(H').

Figure 2.2 shows a hypergraph H of five vertices and three edges of which both
H, and H, are subhypergraphs; H; is an induced subhypergraph of H but Hj is



not an induced subhypergraph of H.

(%1 (%1

—

H H, H,

Figure 2.2: Hypergraph H, induced subhypergraph H; and subhypergraph Hs.

A set U C V(H) is called an independent (stable) set if U induces no edge

of H. {v1,vs,v5} is an independent set of the hypergraph H shown in Figure 2.2.

Definition 2.2. [9] For £ > 1, a complete k-uniform hypergraph on n
vertices, denoted by K,(Lk), has all k-subsets of an n-set vertices as edges. The

hypergraph Kff) is the complete graph K.

Example 2.3. A complete 3-uniform hypergraph K ég) with vertex set {vy, vg, v3, vy,
vs} has 10 edges as follows.
er = {v1,v2,v3}, €2 = {v1, V2, 0a}, €3 = {1, V2, v5}, €4 = {v1, v3,v4}, €5 = {v1,v3,v5},

€6 = {U17U4,U5},€7 = {02703,04}, €g = {02,03,05}, €9 = {02,1)4,1)5},610 = {03,114,115}-

In 2001, Jirimutu and Wang [6] introduced the concept of a complete bipartite
k-uniform hypergraph K,Sf)n as follows.

Definition 2.4. For £ > 1, a complete bipartite k-uniform hypergraph
K,Sf)n has the vertex set V(Kf?f)n) consisting of two partite sets V; and V5 such that
V1| = m, |Va| = n, k < m+ n and the edge set E(Kf,]f)n) ={eCViUVy: |e| =
k,enNVi # & and enNVy # &}

From Definition @, we notice that

- £)(8)-(1)-(6)-6)

p=1



Next, we give an example of complete bipartite 3-uniform hypergraphs, namely

K.

Example 2.5. Let Vi = {0,1,2} and V5 = {0,1,2,3}. The complete bipartite
3-uniform hypergraph K. 3534) whose vertex set is Vi U V5 has 30 edges as follows:
{0,0,1},{0,0,2},{0,0,3},{0,1,2},{0,1,3},{0,2,3},{1,0,1},{1,0, 2}, {1,0, 3},
{1,1,2},{1,1,3},{1,2,3},{2,0,1},{2,0,2},{2,0,3},{2,1,2},{2,1,3},{2, 2, 3},
{0,1,0},{0,1,1},{0,1,2},{0,1,3},{0,2,0},{0,2,1}, {0, 2,2}, {0, 2,3}, {1, 2,0},
{1,2,1},{1,2,2},{1,2,3}.

Note that {0, 1,2}, {0,1,2},{0,1,3},{0,2,3} and {1,2,3} are not edges of Kéif.

Later on, some researchers added more partite sets and try to set up a defi-
nition of a complete r-partite k-uniform hypergraph. However, the knowledge of
hypergraph is still dynamic. Thus, some literature may use different definitions of
a complete r-partite k-uniform hypergraph. In this work, we are interested in the

definition that was given by Kuhl and Schroeder [[7] and by Boonklurb et al. [2].

Definition 2.6. [7] For £ > 2, a complete k-partite k-uniform hypergraph

K,g’i)m has a vertex set as k partite sets, Vi, V5, Vs, ..., Vi, of equal size m and
E(K,(gkx)m) is the set of all {vy, vy, vs,. .., v} such that {vy, v, vs,..., v} intersects

every partite set.

Example 2.7. Let V; = {0,1,2}, V5 = {0,1,2} and V3 = {0,1,2}. The complete
tripartite 3-uniform hypergraph K. 51)3 whose vertex set is V3 UV, U V3 has 27 edges

as follows:
{0,0,0},{0,0,1},{0,0,2},{0,1,0},{0,1,1}, {0, 1,2}, {0, 2,0}, {0,2,1}, {0, 2, 2},
{1,0,0},{1,0,1},{1,0,2},{1,1,0},{1,1,1},{1,1,2},{1,2,0},{1,2,1},{1,2,2},
{2,0,0},{2,0,1},{2,0,2},{2,1,0},{2,1,1},{2,1,2},{2.2,0},{2,2,1},{2,2,2}.

Note that Definition @ can be modified to a complete k-partite k-uniform
hypergraph whose partite sets have different sizes, Kgf?nwg 7777 ny» and there are

ningns - - -ny edges which each edge is still of the form e = {wvy,vq9,v3, ..., v},

where v; € V; for all i € {1,2,3,...,k}.



Notice that if a,b € Vi and ¢ € V5, then {a,b,c} is not an edge of Kr(b?mm
defined by Kuhl and Schroeder [7]. We give a remark here that the next definition
considers a more general complete r-partite k-uniform hypergraph in which {a, b, ¢}

is its edge even if a,b € V} and c € V5.

Definition 2.8. [2] For k,r > 2, a complete r-partite k-uniform hypergraph
K,g?nz’ng ..... », has a vertex set consisting of r partite sets V1, V5, Vs, ..., V,. such that
Vil = nq, |Va| = na, |V3| = na, ..., |Vi]l = npy kB < ny+ny+ng3+ -+ n, and
the edge set E(KW n) =1e:e CV(H),|le|=Fand [enV;] <k forall i €

n1,n2,n3;...,

{1,2,3,...,r}}.

From Definition @, we notice that

ian) N (s
BBl = (27 ) = (),
=1

Next, we give an example of a complete tripartite 3-uniform hypergraph, namely

3
K33

Example 2.9. Let V; = {0,1}, V5 = {0,1,2} and V5 = {0,1,2,3}. The complete
tripartite 3-uniform hypergraph K. 5?3?74 whose vertex set is V; UV, U V3 has 79 edges

as follows:
{0,0,0},{0,0,1},{0,0,2}, {0,0,3},{0,1,0}, {0,1,1},{0, 1,2}, {0, 1,3}, {0, 2,01,
{0,2,1},{0,2,2},{0,2,3},{1,0,0},{1,0,1},{1,0,2},{1,0,3},{1,1,0},{1,1,1},
{1,1,2},{1,1,3},{1,2,0},{1,2,1},{1,2,2},{1,2,3},{0,1,0},{0,1,1},{0, 1,2},
{0,1,0},{0,1,1},{0,1,2},{0,1,3},{0,0,1},{1,0,1},{0,1,0}, {0, 1,1}, {0, 1, 2},
{0,1,3},{0,0,2},{1,0,2},{0,2,0},{0,2,1}, {0, 2,2}, {0, 2, 3}, {0, 1,2}, {1, 1, 2},
{1,2,0},{1,2,1},{1,2,2},{1,2,3},{0,0,1},{1,0,1},{0,0,1},{1,0,1},{2,0, 1},
{0,0,2},{1,0,2},{0,0,2},{1,0,2},{2,0,2},{0,0,3},{1,0,3},{0,0, 3}, {1,0, 3},
{2,0,3},{0,1,2},{1,1,2},{0,1,2},{1,1,2},{2,1,2},{0,1,3},{1,1, 3}, {0, 1, 3},
{1,1,3},{2,1,3},{0,2,3},{1,2,3},{0,2,3},{1,2,3},{2,2,3}.

Note that {0,1,2},{0,1,2},{0,1,3},{1,2,3} are not edges of KSQA. Next, let
us introduce a cycle of length ¢ of a hypergraph H.



Definition 2.10. [1] For ¢ > 1, a cycle of length g of a hypergraph H is

defined to be a sequence (vq, €1, V2, €2, U3, €3, . .., €4, Ugr1) such that
1. v, v2,03,...,v, are all distinct vertices of H,
2. e1,e9,€3,...,¢4 are all distinct edges of H and

3. Uk, Vg1 € eg for k€ {1,2,3,...,q} and v,y = vy.

€1

Figure 2.3: The hypergraph H with cycle (vq, €3, v2, €1, V3, €3, V4, €4, V7).

For example, (vy, eq, v, €1,v3, €3, 04, €4,v1) is a cycle of length 4 of the hyper-
graph H shown in Figure 2.3.

In general, the idea of the hypergraph is to generalize a graph. Also, in a
vertex coloring, there is a definition of hypergraph colorings which generalize the

respective graph concepts as follows.

Definition 2.11. [9] A A-coloring of a hypergraph H is a labeling f : V(H) —
{1,2,3,...,\} and a proper A-coloring of a hypergraph H is a A-coloring of a
hypergraph H such that no edge of H (besides singletons) has all vertices of the
same color. The chromatic number of a hypergraph H, denoted by x(H), is the
minimum number A for which a proper A-coloring exists.

An edge of a hypergraph is said to be monochromatic if all its vertices have

the same color.

3 .
Example 2.12. Kfo) has 10 vertices, {v1, va, V3, U4, Vs, Vg, U7, Us, Vg, U10 } -



Let f : V(K{g)) — {1,2,3,4,5} be a labeling defined by f(v;) = 1 for i €
{1,10}, f(v;) = 2 for i € {2,9}, f(v;) = 3 for i € {3,8}, f(v;) =4 fori € {4,7}
and f(v;) =5 for i € {5,6}. Because of all edges having size 3, there are no edges

being monochromatic. Then, K §§)

has a proper 5-coloring.
If we assign only four colors, then we can use the Pigeonhole principle to obtain
that there is a color class containing at least 3 vertices. Then, there is monochro-

matic edges. Thus, K S) has no proper 4-coloring. Therefore, X(K%)) =5.

Example 2.13. Consider a complete 4-partite 3-uniform hypergraph K2(‘:52)73’3 of
which each edge has 3 vertices from at least 2 different partite sets.

Assign 4 colors to all vertices of KQ(?Q)’&?, with only vertices of the same partite
set got the same color. Thus, Kg’&?, has a proper 4-coloring. Now, assign 3 colors
to K§?2)73’3. Since K§?2)7373 has 10 vertices, there are one color class contains at least
4 vertices and such 4 vertices have at least two vertices from different partite sets.
Thus, there is a monochromatic edge and hence, K 532)33 has no proper 3-coloring.

Therefore, X(K§?§,373) =4.

Example 2.14. Consider K%)Q. Let Vi = {vi, v}, Vo = {01, 02} and V3 = {01, 02}
4)

be the partite sets of KZ(’A‘Q)Q. Assign two colors to all vertices of Ké 5.2 as follows.

Let f: V(Kéflz)z) — {1,2} be a labeling defined by f(i) = 1 for ¢ € {vy,vs, 01}
and f(i) = 2 for i € {va,01,02}. Because of all edges having size 4, there are no
edges being monochromatic. Then, KQ(?Q)Q has a proper 2-coloring. It is easy to see

that Kégg has no proper 1-coloring. Therefore, X(Kégvg) = 2.

These three examples leads to the following two lemmas.

Lemma 2.15. Forn >k > 2. y(K®) = L{; 1 1—‘.

Proof. Assign [%—‘ colors to all n vertices of Kflk) by coloring each color to at

most k — 1 vertices. Since every edge of KT(Z’“) contains k vertices, Kflk) has a proper

n lori
1 -coloring.



Now, suppose that Kﬁbk) has a proper ([%—‘ - 1) -coloring. Since any k-

subset of V(K™ is an edge, the number of vertices assigned the same colors must

be at most k — 1 vertices. Thus, <{%—‘ — 1> (k—1)>n.

Let n=(k—1)¢+r, where 0 <r < k — 1.
n n
If r =0, then {m-‘ —1=¢g—1and ([m-‘ - 1) (k—=1)=(¢—1)(k—1) <

q(k — 1) = n, a contradiction.
n

If0 < r < k—1, then [%w —1=gand Gk—J —1) (k—1) = q(k—1) =

n —r < n, a contradiction.
Thus, K® has no proper ([%-‘ — 1)—coloring. Therefore, y(K*) = [k n 1-‘ .
O

Lemma 2.16. Let k,r > 2. (K ) < r, where K® is the

1,102,103, Nn1,M2,M3,...,Nr

hypergraph defined in Definition @

Proof. Assign r colors to all vertices of K,(L]f?nw&m’n with only vertices of the

T

same partite set got the same colors. Thus, Kffi?mm 77777 n, has a proper r-coloring.
Therefore, X(Kfl?nz,ng,.--,nr> <. O

Note that if we consider the complete multipartite k-uniform hypergraph de-
fined in Definition @, then we can also use the same idea to proof Lemma
to conclude that X(K,i’;)m) < k.

There are many research articles that studied coloring on hypergraphs. For
example, in 2013, Frieze and Mubayi [b] considered a simple k-uniform hypergraph
for an integer k£ > 3 (a k-uniform hypergraph is simple if every two edges share
at most one vertex). They showed that there is a constant ¢ depending only on

k such that every simple k-uniform hypergraph H with maximum degree A has

chromatic number satisfying

A\
X(H)<C(logA) :

A defective coloring on a graph is one of the generalized idea of proper coloring

on a graph and it is one of the interesting concepts that has been studied by
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many researchers, see [3] and [4]. It can be used to solve the scheduling problem.
Some researchers added the condition that each color class of a defective coloring
is acyclic and found the defective chromatic number of this type. In the following
definition, we modify the definition of a defective coloring and a defective chromatic
number on graphs to a defective coloring and a defective chromatic number on

hypergraphs as follows.

Definition 2.17. Let d > 0. A (A, d)-defective coloring of a hypergraph H is
a A-coloring of a hypergraph H in which there are at most d monochromatic edges.

If H admits a (A, d)-defective coloring, then y<4(H) denotes the least integer A.

Note that (A, 0)-defective coloring of a hypergraph H is a proper A-coloring of
such hypergraph.

Example 2.18. Consider a hypergraph K S) from Example . We obtain that
a proper H-coloring of a hypergraph K fg) has a (5, 0)-defective coloring of K f?.
Let d = 1. Since d = 1, there is at most 1 edge of K{g) being monochro-

matic. Then, we get immediately that A 1(3)

has a (5, 1)-defective coloring. Now,
we suppose that ng) has a (4, 1)-defective coloring. By Example D.19, K{ﬁ’ has
no (4, 0)-defective coloring. Then, K fg) has exactly one monochromatic edge con-
taining 3 vertices. Consider the other 7 vertices outside this monochromatic edge.

Since there are 3 colors left to be assigned, we use the Pigeonhole principle to

7
obtain that there is a color class containing at least {5“ = 3 vertices, impossible.

Therefore, XSl(ng)) = 5.

Let d = 2. We show that ng) has a (4, 2)-defective coloring. Let f : V(Kf‘g)) —
{1,2,3,4} be a labeling defined by f(v;) = 1 for i € {1,2,3}, f(v;) = 2 for
i€{4,5,6}, f(v;) =3 fori e {7,8} and f(v;) =4 for i € {9,10}. Since all edges
having size 3, there are exactly two edges being monochromatic. Thus, K 1(3) has a

(3)

(4, 2)-defective coloring. Now, we suppose that K 13 has a (3, 2)-defective coloring.

Since ng) has no (4, 1)-defective coloring, we get immediately that K 1(?6) has no
(3, 1)-defective coloring. Thus, K fg) has exactly two disjoint monochromatic edges

of two different colors if two such edges are not disjoint, then it will occur at least
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4 monochromatic edges. Consider the other 4 vertices outside these two disjoint
edges. Since there is only one color left, we obtain that there is a color class
containing 4 vertices, impossible. Therefore, y<a(K fg)) = 4. For d = 3,4 and 5,
we obtain XSd(ng)) =4 in a similar way.

Let d = 6. We show that Kﬁ)’)) has a (3, 6)-defective coloring. Let f : V(ng)) —
{1,2,3} be a labeling defined by f(v;) = 1 for i € {1,2,3,4}, f(v;) = 2 for
i €{5,6,7} and f(v;) = 3 for i € {8,9,10}. Since all edges having size 3, there
are four edges containing all vertices of color 1 and the other two edges containing
all vertices of colors 2 and 3. Thus, there are six edges being monochromatic.
Hence, K 1(3) has a (3, 6)-defective coloring. Now, If we assign only two colors, then
it occurs at least 20 monochromatic edges, impossible. Therefore, XSG(K{S)) = 3.

From this example, we see that the chromatic number of a hypergraph H

decreases when the value of d is increasing.

Next, let us consider relation between a complete hypergraph and a complete

multipartite hypergraph as follows.

Theorem 2.19. Letr > 2, n=ny+ns+n3+---4+n, >k >2andd>0. If

n T2 n3 M
(k> " (k:) ’ (k:) TR (k) < d then x<a(K,") < XKy na...n)

Proof. Let d > 0 and (KW ) = t. Consider K®. Since n = ny + ny +

n1,Mn2,13,...,Nr

ng + -+ n,, we divide n vertices of Kr(f) into r parts, V; where |V;| = n; for all

i €{1,2,3,...,r}. Now, we show that K¥) has a (¢, d)-defective coloring. Since

K{ 1?n2,n3,...,nr has a proper t-coloring, we can color 7 parts of K*) similar to such
coloring of K,(l’f?m’ns,wnr. Next, consider a coloring in each part. Since K®) is a

complete k-uniform hypergraph, there are edges containing vertices in each part.

Since each part has at most n; vertices assigned the same color, the number of

monochromatic edges is (7;1) + (7;2) + (7;) 4t (72> < d. Thus, K}zk) has

a (t,d)-defective coloring. Therefore, y<q(KF) < x (KW ). O

n1,mn2,N3,...,Nr

na ns ny ’77%—‘
(k> " (k:) T (k) = ( v ) then x<a(K,") = XK\ ama..)-



Proof. By Theorem - and Lemma . X< d(K(k)) X(KT(I]I)H2 ngmn) ST

.....

Let us assign 7 — 1 colors to all vertices of Kflk). Since K¥) has n vertices, by

the Pigeonhole principle, there are vertices assigned the same colors.

Since such { 1—‘ vertices induce ( ) monochromatic edges which is more
r —

than d. Thus, in this case y<q(K®) > r — 1 and hence, r — 1 < y<g(K®) <

XK, ) < 7. Therefore, x<q(KM) = x(K¥,, .. ) =r. O

Example 2.21. Consider Kg) and K 5’275.

Let d = 20. Since n = 13, ny = 4,ny = 4,n3 =5, (T/Lfl N (T;j) N <n3) -

4 4 5 [-2-] == 7
—44+44+10=18and ('"1') = ('3 1") = = 35.
(6 (5) + (5) o aio s (1571) = () = ¢
Then, (7;) + <7;f) + (7;3) <d< (Eﬂ)- By Corollary b4, x<eo(K(3) =
X(K{ls) <3
(3)

Now, we assign two colors to all vertices of Kj3". Since there are 13 vertices

with two colors, we use the Pigeonhole principle to obtain that there is a color class

13
containing at least ?w = 7 vertices of the same colors and then those 7 vertices

7
induces (3) = 35 monochromatic edges which is more than d. Thus, K {? has no
(2, 20)-defective coloring and hence, 2 < XSQO(K( )) < X(K( ) 5) < 3. Therefore,
3 3
xen(K1Y) = X(Kils) =3,

Example 2.22. Consider Kg) and Kﬁ)g).

Let d = 56, that is, d > maz{ (721> + (7:) + (723) ((”Tkﬂ>} From the

previous example, X(Kf’iﬁ) = 3. By Theorem , XS%(KS)) < X(Kﬁfﬁ) =
3)

3. However, we can assign two colors to the vertices of K3

6 7
vertices and 2 to other 7 vertices. Then, it occurs <3) + <3) =20+ 35 = 55

by coloring 1 to 6

monochromatic edges which is less than d. Thus, Kg) has a (2,55)-defective
coloring. Therefore, XS%(K{? ) < x(K &)75).

From Theorem and its corollary, we can see that the number of vertices in

K®) determine the number of colors to be assigned.
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Theorem 2.23. Let k> 3. If 0 < d < k+ 1, then there is an integer n such that
x<a(KW®) =1 for all ] € N.

Proof. Let 0 < d < k+1and ! € N. Choose n = (I —1)(k — 1) + kd. Consider
K,gk). Color all vertices of K,(Lk) in such a way that there are at most d edges of
KT(Lk) being monochromatic edges. Since d < k + 1, all of d monochromatic edges
of K,(f) are pairwise disjoint. If all of d monochromatic edges are not pairwise
disjoint, then there are at least k + 1 vertices having the same color and such
k + 1 vertices form (k —]: 1) = k + 1 monochromatic edges which is more than
d. Now, we assign d colors to kd vertices by each color is assigned to exactly k

vetices. Then, there are d monochromatic edges of KT(Z’“). Next, color other n — kd

— kd
nk 1 —‘ colors. By Lemma , each edge form by these

vertices by using [

— kd
n — kd vertices is not a monochromatic edge. Thus, x<q(K%) = [n w +1=

k—1
[a_lxk;?ikd_hﬂzﬂk—n+1=L O

Theorem 2.24. Let k > 3. For any hypergraph H, if 0 < d < k+ 1, then

=] if kd>n,
X<a(KP) = 1
— kd
[Z_1W+¢ if kd < n.

Proof. We know from the proof of Theorem that if d < k+1, then d monochro-
matic edges are pairwise disjoint.

n
Case 1: kd > n. Assign [E-‘ colors to n vertices in such a way that at most

k vertices having the same color. Since kd > n, d > [%W Thus, KT(L’“) has a
n

q%-‘ ,d)—defective coloring. Suppose that KT(L’“) has a ([E-‘ -1, d> -defective col-

oring. Since each monochromatic edge is pairwise disjoint, the number of vertices
n
assigned by the same color must be at most k. Thus, GEW - 1> k> n.
Let n = kq + r where 0 <r < k.

If r =0, then {%—‘ = q and ([%—‘ — 1) k= (¢— 1)k < gk = n, a contradiction.
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If0 < r <k, then [%W = g+1and ([%W - 1) k= (¢+1-1)k = kqg=n—r <n,
a contradiction.
Thus, x<q(K*) = {%-‘

Case 2: kd < n. Assign d colors to kd vertices in such a way that at most k

vertices having the same color. Since kd < n, there are n—kd vertices left to be

— kd
colored. Assign [nk: 1 —‘ colors to those left over vertices in such a way that at
most k—1 vertices having the same color. Thus, K, has a 1 +d,d -

defective coloring.

n—kd
k—1
are d—: monochromatic edges where 0 < ¢ < d, then those d—i monochromatic

Next, let us try to assign [ -‘ +d—1 colors to each vertex of Kflk). If there

edges contain k(d—i) vertices and then there are n—kd + ki vertices left to be

colored. Thus, there are other F;c——kldw +(d=1)-(d~-1i) = [nk— k;d—‘ +

(1 — 1) colors that can be assigned to those n—kd + ki vertices and all edges

constructed from those vertices are not monochromatic. However, for a proper

<] ki
vertex coloring, we need at least n_k_kil—li-_g colors. Since (k +1i)—1 > 2,
n — kd + ki (n—Fkd+ki)=(k+i)+1] [n—Fkd , )
[TW 4 F=1 o s B
— kd —kd
has no ({nk — —‘ +d—1, d) ~defective coloring. Thus, y<q(K¥) = [nk T —‘
d. ]

Theorem indicate that if a k-uniform hypergraph contains a large com-
plete k-uniform hypergraph as its subhypergraph, then the number of colors to be
assigned need to be at least greater or equal to the number of vertices contained in
this induced subhyergraph. Now, let us introduce the clique number of a k-uniform

hypergraph as follows.

Definition 2.25. [l Let k£ > 2. For a k-uniform hypergraph H, a nonempty set
A C V(H) is defined to be a clique if either |[A] < k or A is a complete k-uniform
subhypergraph of H. The clique number, denoted by w(H), of a k-uniform
hypergraph H is the largest cardinality of a subset of V(H) inducing a complete
k-uniform hypergraph.
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Example 2.26. Let H be a 3-uniform hypergraph with 6 vertices, as follows.

. .
U1 U2
° ° D .
Vg Us (1 Vs

We see that {vy,ve,v3,v4} induces Kf) and it is easy to see that 4 is the

largest number of a subset of V(H) inducing a complete 3-uniform hypergraph.

Thus, w(H) = 4.

Example 2.27. Let H be a 3-uniform hypergraph with 8 vertices, as follows.

° ° L]

U1 U2 U3
° g L4 N
* Up o Ug o Us

We see that {vy, v, v3} induces K?EB) and it is easy to see that 3 is the largest
number of a subset of V(H) inducing a complete 3-uniform hypergraph. Thus,
w(H) = 3.

Next, we study relation between x<4(H) and w(H) for any k-uniform hyper-
graph and 0 < d < k+ 1.

Theorem 2.28. Let k > 3. For any k-uniform hypergraph H, if 0 < d < k + 1,

then -
@-‘ , if kd>w(H),
X<a(H) =
%}kd-‘ +d, if kd<w(H).

Proof. Let w(H) =m. Then, H contains K.
Case 1: Let kd > w(H). Since H contains Kﬁf),kd >mand 0 < d< k+1, by
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Theorem , [%W colors are required to color just the clique. Thus, x<q4(H) >

w(H)
|
Case 2: Let kd < w(H). Since H contains K® kd < m and 0 < d < k+ 1, by
kd
Theorem P - [m —‘ + d colors are required to color just the clique. Thus,

> [A0R] "

Example 2.29. Consider the 3-uniform hypergraph H from Example . The
hypergraph H has k = 3.

Ifd=0, then kd=0<4=w(H).
By Theorem , X(H) > {M—’ +d= [ﬂ-‘ +0=2.

e

=1

If d=1, then kd =3 < 4 =w(H).
fw(H) — 4 —

ByTheorem 8 x<1(H) > w(—k#erd:[T‘g—‘qu:l—kl:Q.

If 2<d<4. Then, kd > 4 =w(H).

(w(H 4
By Theorem , X<d(H) > 9)—(—)-‘ = [_—‘ = N

Example 2.30. Consider a hypergraph ng). It is obvious that w(K{g)) = 10.

~—

If d =0, then kd = 0 < 10 = w(ng)). By Theorem , X(ng)) >
r ) 7 - .
k-1 | " T —
Ifd = 1, then kd = 3 < 10 = w(KY). By Theorem .24, y<i(K&)) >
®) ) .
[W(K®)) - hd 10— 3
Wiy) —Ra) o NS
- + — |+ +1=75
Ifd =2, then kd = 6 < 10 = w(KP). By Theorem P24, y<o(K®) >
r ) ‘ - .
(KDY — kd 10— 6
- +d — |+ n
I d =3, then kd = 9 < 10 = w(K). By Theorem .28, yo5(K) >
w(KY) — kd 0—9

= | — =1+3=4.
- +d [ 5 W+3 +3

It d = 4, then kd = 12 > 10 = w(ng)). By Theorem , X§4(K§’))) >
w(Kiy) | _[10 .
k 3

In 2016, for d > 0, Muaengwaeng and Nakprasit [8] considered (), d)-defective

colorings on a graph and each color class induces a forest, i.e., each color class is
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acyclic. We also modify their idea as follows.

Definition 2.31. Let d > 0. A (A, d)-defective coloring without monochro-
matic cycle of a hypergraph H is a (A, d)-defective coloring of a hypergraph of
which each color class which is a set of the same color vertices induces an acyclic
subhypergraph of H. If H admits a (A, d)-defective coloring without monochro-
matic cycle, then xZ;(H) denotes the least integer A. If d = 0, we use x' (H)
instead of Xgo(H ).

Notices that if hypergraph H contains cycle, then ng(H ) # 1.

Example 2.32. Kég) has 5 vertices, {v1, va, 03, v4,v5}, and 10 edges,

e1 = {v1,v2,v3}, €2 = {v1, 02,04}, €3 = {1, 02,05}, €4 = {v1, V3, 04}, €5 = {v1, 03,05},
e = {v1,v4,05}, €7 = {va,v3, 04}, €5 = {v2, V3, U5}, €9 = {v2, Vg, v5} and

e10 = {vs, vy, v5}.

Let d = 4 and f : V(KS) — {1,2} be a labeling defined by f(v;) = 1 for
i€ {1,2,3,4}, f(vs) = 2. Then, ey, es,€e4 and e; are monochromatic. Thus, Ké?’)
has a (2,4)-defective coloring. However, there is the cycle (vq, ey, va, €2, V4, €4, V1),
that vy, ve and vy are assigned the same color, namely 1. Thus, this (2, 4)-defective

coloring does not satisfy Definition .

Example 2.33. The hypergraph H shown in Figure 2.4 has 8 vertices and 4 edges.

Let f:V(H) — {1,2} be a labeling defined by f(v;) = 1 for i € {3,7,8} and
f(v;) =2 forie{1,2,4,5,6}.

Consider vertices in the color class 1, there is only one edge of H containing
v3, U7, vg. Thus, this color class is acyclic.

Now, consider color class 2, {vy, vq, v4, V5, v6}. This color class is an independent

set. Hence, {v1,vq, v4,v5, 06} induces an acyclic subhypergraph.
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Figure 2.4: Hypergraph H.

Therefore, H has a (2, 1)-defective coloring in which each color class is acyclic.
It is obvious that we cannot assing (1, 1)-defective coloring for H. Thus, X;(H )=

2.

Example 2.34. Consider a hypergraph K 5(3)) from Example .

Let d = 6. We show that K {? has a (4, 6)-defective coloring without monochro-
matic cycle. Let f : V(K{g)) — {1,2,3,4} be a labeling defined by f(v;) = 1 for
i€ {1,2,3}, f(v;) =2 for i € {4,5,6}, f(v;) =3 for i € {7,8,9} and f(vy9) = 4.
Because of all edges having size 3, there are exactly three edges being monochro-
matic and then each color class does not induce a cycle. Thus, K %) has a (4, 3)-
defective coloring without monochromatic cycle. Also, K S) has a (4, 6)-defective
coloring without monochromatic cycle. Now, we suppose that Kl(g) has a (3,6)-
defective coloring without monochromatic cycle. Note that if there is a color class
of size at least 4, then such color class induces a cycle. Thus, we allow at most 3
vertices labeled the same color. Hence, K ff;) has no (3, 6)-defective coloring without

monochromatic cycle because K 1(3) has 10 vertices. Therefore, X%(K {3’) =4.

Example 2.35. Consider a hypergraph K§?2)7373 of which each edge has 3 vertices
from at least 2 different partite sets.

Let d = 4. we show that K ;32)33 has a (4, 4)-defective coloring without monochro-

matic cycle. Since K§?2)1373 has 4 partite sets, we can assign different colors to ver-

tices of different partite sets. Since each edge has vertices from at least two partite
3)

sets, no edges of Ké 53,3 18 monochromatic. Kéf;)ﬁﬁ has a (4, 4)-defective coloring
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without monochromatic cycle. Now, we suppose that Kg(?2)7373 has (3,4)-defective
coloring without monochromatic cycle. If we assign three colors, then there are at
least one color class containing four vertices, v, v9, v3 and v4. Since K2(?2),3,3 has no
partite set with four colors, these four vertices are contained in at least two par-
tite sets. Suppose that v; and vy are in different partite sets. There are different

edges e; = {v1, v, v3} and ey = {vy, v9,v4}. Hence, these four vertices induce cycle

(v1, €1, Vg, €2,01), impossible. Therefore, X£4(K§?2)7373) =4.

From Examples }2.11 b.lé, }234] and , we can conclude the theorem as

follows.
Theorem 2.36. Let d > 0. For any hypergraph H, x(H) > ng(H) > x<a(H).

Proof. Since a proper vertex coloring of the hypergraph H forces each color class
being an independent set, the chromatic number of H is greater than or equal
to the defective chromatic number of H of which each color class is acyclic, i.e.,
\(H) = XL(H).

Since x<q(H) is the minimum number A for which a (), d)-defective coloring
exists and xZ,(H) is the minimum number A for which a (), d)-defective coloring
without monochromatic cycle exists, x%,(H) cannot be less than x<q(H). Thus,

X2a(H) > x<a(H). H

Note that for d = 0, x(H) = x<o(H). Thus, x(H) = x%,(H) = x<o(H).
Next, if we consider the proof of Theorem and the proof of theorem ,
then each pairwise disjoint monochromatic edges cannot form any monochromatic

cycle. Thus, we can conclude the following.

Theorem 2.37. Let k > 3. For any hypergraph H, if 0 < d < k+ 1, then

%} , if kd>n,
X£d<K7(~bk)> = <
— kd
"k_l w +d, if kd<n.
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Theorem 2.38. Let k > 3. For any k-uniform hypergraph, if 0 < d < k+1, then

[@} , if kd > w(H),
X<a(H) >
\ [%}’“ﬂ d, if kd < w(H).

The following theorems are some observations on x(H) and x<4(H).

Theorem 2.39. For any hypergraph H in which each edge has only one verter,
X(H) =1.

Proof. For a hypergraph H. Since each edge has only one vertex, we can use one

color to assign to all vertices. Thus, x(H) = 1. O

Theorem 2.40. Let d > 0 and k > 1. For any hypergraph H in which each edge
has at least k vertices, x<q(H) = 1 if and only if d > |E(H)|.

Proof. We get immediately that if d > |E(H)|, then x<4(H) = 1.
Conversely, let x<q(H) = 1, that is, H has a (1,d)-defective coloring. Then,
all edges of H are monochromatic edges or singletons. Since £ > 1, there is no

singleton. Thus, d > |E(H)]. O



CHAPTER I11
DEFECTIVE COLORING ON COMPLETE BIPARTITE
k-UNIFORM HYPERGRAPH

In this chapter, we focus on a complete bipartite k-uniform hypergraph and
provide values of XSd(K(”C ) and X<d(K o), for d > 0.
Throughout this chapter, we let V; and V, be partite sets of V(K,(f)n) with

V1| = m, |V3| = n and we always assume that m < n.

Theorem 3.1. For a hypergraph K let k>1and d>0. Then

1, if d>|E(ED),

2, if d<|B(EP,)

Proof. Case 1: d > ]E( )] By Theorem X<d(K(k) )=1.
Case 2: d < |E(K,, )| Assign all vertices of partite set V; color a and assign the
other vertices color b. Since each edge has vertices from both partite sets, no edge

of K(k)n is monochromatic. Thus, X(Kr(,f)n) < 2. By Theorem .36 X<d(K7(r’f,)n) <

x(K ¥ )) < 2. By Theorem R.4(, since k > 1 and |E( mn)] > d, x<al gf)n) # 1.
Therefore, X<d(K( )y =2. O

Example 3.2. Let V; = {0,1,2} and V, = {0, 1,2, 3} be two partite sets of vertex
set of KP(,%E. Note that ]E(K?Ei))] = (z) - (Z) - (i) =35—-0—1=34

(i) Let d = 35. Then, d > |E(K. §2)| We can use one color to assign to all
vertices of K§4 and X<35(K( ) =1.

(ii) Let d = 30. Then, d < |E( 34)\ By Theorem 3.1, we can assign the color
a to all vertices in V; and the color b to all vertices in V5. Since each edge has

vertices from both partite sets, no edges of K 3(:2 has all vertices of the same color
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and X§30(K§2) =2.

Next, we find chromatic numbers of defective coloring on Kf?f)n in which each
color class is acyclic.

Theorem 3.3. Let k > 3.
(i) X" (KX, =2.

(ii) For d > 1, then
1, if m4+n=%k,

2, if m+n>Ek.

Proof. (i) We know that X(K(k) ) = 2. Then, XT(K(k) ) = X(K(k) ) =2.
(ii) Case 1: m +n = k. Since K

m,n

is a k-uniform hypergraph and k& > 3,
there is one edge. Since |E(K(’C )] =1 and d > 1, we can only assign the vertices
by one color. Thus, X<d(K( )y =1,

Case 2: m+n > k. We know that X(K(k) ) < 2. By Theorem , ng(K,(,’z)n) <
X(K(k) ) < 2. Now, we show that X<d(K(k )£ 1 Ifd < |E(K(k) )|, then we cannot
assign one color to this hypergraph. Suppose that d > |E (K} k) '|. Consider the
hypergraph Kf?f)n with two partite sets Vi = {v1,...,v,,} and Vo = {uy, ..., u,}.
Since Kf,'f)n is a complete bipartite k-uniform hypergraph and k£ > 3, there are two
different edges containing both v; and w; , namely e; and e;. Thus, Kr(f)n contains
cycle (vq,ey,u,e9,v1). Since K, (k) contains a cycle, we cannot assign only one

m,n

color to this hypergraph. Thus, ng(K(k ) # 1. Therefore, X<d(K( )y =2. O

Example 3.4. Let V; = {0,1,2} and V5 = {0, 1,2, 3} be two partite sets of vertex
set of K34 Note that |E( 34)] = 34.

Let d = 35. Then, d > |E(K§44))| We can assign the color a to all vertices in V;
and the color b to all vertices in V5. Since each edge has vertices from both partite
sets, no edges of Kéif are monochromatic and each color class is an independent
set. Thus, X£35(K§2) =2.

Example 3.5. Let d > 0 and let V; = {0, 1,2} and V5 = {0, 1,2, 3} be two partite
sets of vertex set of K34 Sincem+n=3+4=7, X<d(K§74)) =1



CHAPTER IV
DEFECTIVE COLORING ON COMPLETE k-PARTITE
k-UNIFORM HYPERGRAPH

In this chapter, we focus on a complete k-partite k-uniform hypergraph of
which each edge contains vertices from k different partite sets according to Kuhl
and Schroeder [7] and provide values of y<(K® o) and xZ (K (k) ).

ni,mnz,n3,..., n1,n2,M3,...,Nk
Note that |E(K, m n2 naom )| = MmN ey

Throughout this chapter, we assume that nqy < ny <ng <--- < ny.

Theorem 4.1. For a hypergraph Kfl'f ==Y ,let k>2,d>0. Then
Lo d 2 [BKS, g )l
X<d(K7(1]j?n2 N3,y nk> Tt e
27 Zf d< |E( nl 'rL2 N3yeeny nk)|

nl 'rL2 3 3geesy )‘ By Theorem 7 XSd(Kélf)nz ,n3 ) = 1

.....

Proof. Case 1: d > |E(K
Case 2: d < |E(Kf£ noms...m, )| Assign all vertices of one partite set color a

and then assign the other vertices color b. Since each edge has vertices from

all partites, no edge of this hypergraph has all vertices of the same color. Thus,

XK ) < 2. By Theorem 36 x<al( K e, ) € XKy n) <2
Since d < |E(K m m ns...mi) |, by Theorem ng(K’r(l’j?ng,ng _____ n.) 7 1. Thus,
X§d<K7s]?n2,n3 ..... nk) = 4. D

777777

(i) Let d = 1800. Then, d = |E( 172)7373747575)\ We can use one color to assign

(ii) Let d = 1234. Then, d < |E( 1,273’374;—)75)| By Theorem 4.1, we can assign

color a to all vertices in V; and color b to all vertices in the other partite sets. Since
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each edge has vertices from all partite sets, no edges of K 572)7373747575 has all vertices

of the same color and X§1234(K£72)73 3455) = 2-

Next, we find chromatic numbers of defective coloring on K ,(l’j)m ns....m;, 0 Which

each color class is acyclic.

Theorem 4.3. Let k > 3.

(1) XT(KﬁL’;:?’I’LQ,TLg,...,TLk> = 2

(ii) For d > 1,

1, if |E(nnn )|:1’
ng(KSj?ng,ng,...,nk) - v
27 lf ‘E( n1 ’fLQ n3,...,1 )| Z 2
Proof. (i) We get from Theorem @ that x( Kfn)m’m’ ) =2
k k
Then? X (K7(L1)n2,n3 nk) (K’r(n)nz ;T3 5050y Tbk) i
(ii) Case 1: ‘E<Kr(£)n2n3nk)’ = 1. Since d > 1, we can only assign the vertices
by one color. Thus, ng(Kgﬂnmwm) =l
Case 2: |E(K m m na.omy )] = 2. We get from Theorem @ that X(Kfﬁ)mmnk) =
2. By Theorem , ng Kgf)m,n& nk) < X(Kr(bl?ng,ng, nk) = 2.
Next, we show that XSd(KT(l]f?ng,ng,.. O FLIfd< |E(K7(l’j o s, )| then we
: . k
cannot assign one color to this hypergraph. Suppose that d > |F (qul)mm’ )l
Consider the hypergraph Kn]f)m ns...n, With k partite sets V; = {v11, V12, -+, V1ny }s
Vo ={va1, 029, ..., Vo by e oo, Vi = {vkl, Uk -+« s Ukny, - Since Kr(u)n2 ns...my, 1S & COM-

plete k-partite k-uniform hypergraph and k > 3, there are two dlfferent edges

containing both vy; and v9; , namely e; and e;. Thus, ng)m s, CONbAINS Cy-

cle (vy1,e1,v91,€9,v11). Since K,(L’f)m ns....m, CONtains a cycle, we can not assign

only one color to this hypergraph. Thus, ng(K (k) m.) 7 1. Therefore,

n1,m2,n3;...,
(k)

de(Knl,ng,ng,...,nk> =2 O

Example 4.4. Consider K1(T2)73’37475,5. Then, by Theorem 4.3, XT(K£772)’373747575) =2
and since 1 x 2 x 3% x 4 x 5% # 1, by Theorem 4.2, ng(K{Q,&?)Aéﬁ) =2ford>0.



CHAPTER V
DEFECTIVE COLORING ON COMPLETE
TRIPARTITE 3-UNIFORM HYPERGRAPH

Throughout this chapter, we consider Kéi)m, a complete tripartite 3-uniform

hypergraph, in which the vertex set V(Kéi)m) consists of 3 partite sets Vi, V5 and
V3 of the same size m, m > 3, and each edge has 3 vertices from at least 2 different

partite sets.

3)
xm)

Remark 5.1 Before finding the defective chromatic number of K. ?E

vertex coloring in Kéi)m which uses only two colors. Note that there are five

we consider

possible ways to assign two colors, namely a and b, to the vertices of Kg(,?;)m as

follows.

(1) Assign all vertices of partite sets 1 and V5 color a and then assign the other

vertices color b, see Figure 5.1. The number of monochromatic edges is

(1) () G)(T) =t

Vi Va V3
a a b
a a b
a a b
a a b
a a b

Figure 5.1: The first colored assignment.

(7i) For 1 < p < m — 1, assign all vertices of partite set V; and V5 color a and
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assign p vertices of V3 color a and then assign the rest m — p vertices of V3

color b, see Figure 5.2. The number of monochromatic edges is

me (1) (5)+ G0 (6) ()6 - ()

+ (";) (];) =m®+ (2p — 1)m* + (p* — 2p)m.

Vi Va |
a a a
a a a}]?
a a a
a a b
a a b

Figure 5.2: The second colored assignment.

(137) For 1 < p < m — 1, assign all vertices of partite set V] color a, and all
vertices of partite set V5 color b and then assign p vertices of V3 color a and
assign the rest m — p vertices of V3 color b, see Figure 5.3. The number of

monochromatic edges is

()G () ()

=m® — (p+ 1)m? + p*m.

Vi Va Vs
a b a
a b a}p
a b a
a b b
a b b

Figure 5.3: The third colored assignment.
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(iv) For 1 < p,q < m—1, assign all vertices of the partite set V; color a, assign ¢
vertices of V5 color a and assign the rest m — ¢ vertices of V5 color b. Next,
assign p vertices of V3 color a and assign the rest m — p vertices of V3 color

s (1)) + (2)0) (1)) ()6) - () )
)0 ()0

=m’ — (p+q+1)m* + (p* + ¢° + 3pg)m — 2pq.

Vi Vs Vs

a a a

a a }q a }p
a a a

a b b

a b b

Figure 5.4: The fourth colored assignment.

(v) For 1 <p,q,r <m—1, for each partite set, assign r, ¢ and p vertices of V;, V5

and V3 color a, respectively and assign the other vertices color b, see Figure
5.5.

Vi Vs Vs

2 2 9
—

=3
>l o 2o
—

Q
.ol o o
—

i)

M~

Figure 5.5: The fifth colored assignment.
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The number of monochromatic edges is

() (3>+<;) (M) 5+ GGG
wm=nem=am=n+ (") (") (") (")
+(m?°>(mf>+< )
("))

+ (3rp + 3rq)m — (2rq + 2pq + 2rp).

Notice from these five cases that if we assign only two colors, then it must occur

some monochromatic edges.

Theorem 5.1. Letm >3, d >0 and t = V—;—J

(i) X(K$,) =3.

(ii)
(
1, if d > 4m?® — 3m?,
X<a(K$D,) =

2, if 4m® —3m? >d>m?® — (t + 1)m* + t*m

\

(iil) x<a(K$ ) <3 if m® = (t+ 1)m? + t2m > d.

Proof. (i) Assign the color a to all vertices in the partite set Vi, the color b to all
vertices in the partite set V5 and the color ¢ to all vertices in the partite set V3.

Since each edge contains vertices from at least two partite sets, K?E admits a

proper 3-coloring. Thus, x(K ®) ) < 3.

3xm

Now, we show that y (K. ®) ) # 2. Assume that Kéi)m is a proper 2-coloring.

3Ixm

From Remark 5.1, there is the edge whose contains all vertices with the same color.

Thus, x( 3xm) # 2. Therefore, X(ngx)m) = 3.
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. f m\ (m\ [(m
(ii) Case 1: d > 4m® — 3m?. We know that |E(K§3X)m)\ =m® +3!(2) (1) (0)
= 4m® — 3m?. Then, we can assign one color to K?E‘i)m Thus, ng(K?Ei)m) = 1.
Case 2: 4m® —3m* > d > m® — (t + 1)m* 4+ t*m. Assign the color a to vertices in
partite set Vi, the color b to vertices in partite set V5 and then divide the vertices
of partite set V3 into two groups of size t = {%J and size m —t, the vertices of the

group of size t is assigned the color a and the vertices of another group is assigned

the color b.

Vi Va V3
a b a
a b a }t
a b a
a b b
a b b

The number of edges being monochromatic is

(&) G =) G)()

Then,

(=GR CC)

_pmm=) =) (m=f)(m—t—1)

y My 2
:%( 2 A —t+m?—tm—m—tm+ 2 +1)
- %(ng — 2t + 1)m + 26%)

=m? — (t + 1)m? + t*m.
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Since d > m® — (t + 1)m* + t*m, we can assign two colors to the vertices of

K Thus, y<a(K

3Ixm

) <2
Next, we show that y<a( 3xm) # 1. Assume that KV

3xm

admits a (1,d)-
defective coloring. Since |E( 3xm)| = 4m® — 3m? and d < 4m® — 3m?, there must

be at least one edge which does not be monochromatic. Thus, we cannot assign

only one color to K(k) . Thus, X<d(K?E><)m) # 1. Therefore, X<d(K3(:§<)m) = 2.
(iii) Let m® — (t + 1)m® + t>m > d. We know that x(K{ ) = 3. By Theorem
7 XSd(K?EX)m) < X(KS(X)m) = 3. Thus, Xﬁd(Kng)m> <3. [

7
Example 5.2. Consider K:E?? which m =7 and t = {iJ = 3. Then,

4m? — 3m? = 4(7%) — 3(7*) = 1225

— (t+ )m? +Pm =7 — (47 + (3%)7 = 210.

Thus, by Theorem 5.1, we have

(Ksr)

XSd(K§i)7) 1if d > 1225,
(F$)) = 2if 1225 > d > 210,
hBosg s

X<alKS2) <3210 > d > 0.

7
Example 5.3. Let d = 200. Consider K?Ei)7 which m =7 and t = lﬁJ = 3. From

Example 5.2, we have XSQOO(K?ESX)7) < 3. Assume that Kéw is (2,200)-defective
coloring. From Remark 5.1, we can consider 5 cases as follow.
(i) Assign the color a to all vertices in partite sets V; and V5 and then assign

the color b to all vertices in partite set V3. We can see that there are

(1)) () (1) -2

monochromatic edges and more than d.

(ii) For 1 < p < 6, assign the color a to all vertices in partite set V; and
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V5 and then assign the color a to p vertices of V3 and assign the color b to the
rest 7 — p vertices of V3. We can see that the number of monochromatic edges
s (1)) () (1) = (0)6)+ G+ 0)6)+ C)6) -
7+ (2p — )7+ (p* — 2p)7 = 294 + 84p + Tp* edges which is more than d.

(iii) For 1 < p < 6, assign the color a to all vertices in partite set Vi, and the
color b to all vertices in partite set V5 and then assign the color a to p vertices of V3

and assign the color b to the rest 7 — p vertices of V3. We can see that the number

oo () G0 - G -

7 —(p+ D)7+ (p*)7 =294 —49p + Tp* = 7(p — ;)2 + 208.25 edges which is more
than d.

(iv) For 1 < p,q < 6, assign the color a to all vertices in the partite set Vi,
assign the color a to ¢ vertices of V5 and assign the color b to the rest 7— g vertices
of V5. Next, assign the color a to p vertices of V3 and assign the color b to the
rest 7 — p vertices of V3. We can see that the number of monochromatic edges
s (1)) G)0) (6 C)0) - 06+ ()0 +

7;]9 7;6] . 7gp) 7IQ) =P g+ )T+ (0 + ¢ +3pg)T— 2pg =
294 + 19pq — 49(p + q)

+ 7(p* + ¢*) edges. For 1 < p,q < 6, all possible values of
294 4+ 19pq — 49(p + q) + 7(p* + ¢*) are

220,225,229, 230, 244, 254, 277,
292,297,324, 344, 354, 410, 425,
430, 510, 520, 624, 629, 752, 894

which they are more than d.
(v) For 1 < p,q,r < 6, for each partite set, assign the color a to r,q and p
vertices of V1, V5, and V3, respectively and assign the color b to the rest vertices of

each partite set. We can see that the number of monochromatic edges is pgr +

DG C)O 0G0 6 () () oo
zz;(; 1(7; )02 ()0 (4)00)
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72+ 2p + 2q + 2r + 3pq + 3rp + 3rq)7 — (2rq + 2pq + 2rp) = 1225 + 19(pq + pr +
qr) —182(p+q+ 1) +7(p* + ¢* +r?) edges. For 1 < p,q,r < 6, all possible values
of 1225 +19(pq + pr +qr) — 182(p + q + 1) + 7(p* + ¢* +r?) are

240, 245, 250, 254, 260, 265, 269,

270,274, 282, 284, 289, 302, 312,

317,322, 349, 364, 369, 374, 430,
440, 445, 525, 530, 634, 757

which they are more than d.

Therefore, Ké?;)7 is not (2,200)-defective coloring. Hence, XSQOO(Kéi)ﬂ =3

Remark 5.2 Actually, for m* — (t + 1)m* +t*m > d > 0, If we try to assign only

two colors for vertices of K.*) then, according to Remark 5.1, there are five cases

3xm>
as we can see in Example 5.3. We can generally prove that in cases (i) - (iv), the
number of monochromatic edges is more than m® — (¢ + 1)m? 4 t*m and hence,
more than d as follows.
Case 1: Since m > t, tm > t*. Then, —m?* > —(t+1)m?+t*m. Thus, m® —m? >
m? — (t + 1)m? + t*m.
Case 2: First, we claim that m® + (2p — 1)m® + (p* — 2p)m > m® — m?. Since
m®+ (2p—1)m?* + (p* — 2p)m = (m* —m?) + (2pm* +p*m — 2pm) and m*> —m?* > 0,
it is sufficient to show that 2pm? + p*m — 2pm > 0. The assertion is true because
2pm? 4+ p’m > 2pm? > 2pm whenever m > 3 and we obtain the claim. Next,
by Case 1, we can conclude that m® + (2p — 1)m* + (p* — 2p)m > m* — m?* >
m? — (t + )m* + t*m.
Case 3: Let t = {%J and 1 < p <m — 1. We consider two cases as follows.
Case 3.1: p<t. Then, t +p < m and (t — p)(t +p)m < (t — p)m>.
Thus, m® — (t + 1)m?* + t*m < m® — (p+ 1)m?* + p*m.
Case 3.2: t <p. Then, p+t>mand (p+t)(p—t)m > (p—t)m>.
Thus, m® — (p + \)m? + p*m > m® — (t + 1)m* + t*m.
From both cases, we conclude that m® — (p+1)m*+p*m > m® — (t+1)m*+t*m.

Case 4: Let t = {%J and 1 < p,qg <m — 1. We consider two cases as follows.
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Case 4.1: p+¢ <t. Then, t+ (p+gq) <mand ({ — (p+¢q))(t+ (p+q))m <
(t—(p+q))m?. Since m > 3, we have (t*—(p+¢q)*)m—(m—2)pg < (t*—(p+q)*)m <
t—(p+qm* = ({t+1—(p+q+1)m* Thus, m*> — (t + I)m? + t*m <
m® — (p+q+1)m* + (p° + ¢* + 3pg)m — 2pq.

Case 4.2: t <p+gq. Then, (p+q)+t>mand (p+q) —t)(p+q) +t)m >
((p+q)—t)m?. Since m > 3, we have ((p+q)*—t*)m+(m—2)pqg > ((p+q)*—t*)m >
(p+q)—t)ym* = ((p+q+1) = (t+1))m? Thus, m®> — (p+q+ 1)m?* + (p* + ¢ +
3pq)m — 2pq > m* — (t + 1)m? + t*m.

From both cases, we conclude that m® — (p+q+ 1)m2 + (p* 4+ ¢* +3pg)m —2pq >
m?® — (t 4+ 1)m?* + t*m.

As we can see that in general these four cases can almost lead us to the conclu-

sion that ngK(g) =3 for m* — (¢ + 1)m* + t*m > d > 0. Now, we consider the

3Ixm
last case. In this case, we want to show that 4m® — (4p+4q+4r+3)m*+(p* +¢* +
72 4+ 2p 4 2q + 2r 4 3pq + 3pr +3qr)m — (2pq + 2pr + 2qr) > m® — (t -+ 1)m? + t*m.
. m .
Since t = LEJ, we consider two cases as follows.

Ift= %, then 4m® — (4p +4q+4r +3)m* + (p* + ¢* +r? + 2p+ 2q + 2r + 3pq +

3pr + 3qr)m — (2pq + 2pr + 2qr) — (m® — (t + 1)m? + t*m) = %m‘g — (4p +4q +
4r +2)m* + (p* + ¢ +r® +2p 4+ 2q + 2r + 3pq + 3pr + 3qr)m — (2pq + 2pr + 2qr).
We only know that for a sufficiently large m, %m?’ — (dp +4q+4r +2)m* + (p* +
@+ 1%+ 2p42q + 2r 4+ 3pg + 3pr + 3qr)m — (2pq + 2pr + 2qr) > 0.

ire— "1

, then 4m® — (dp +4q+4r +3)m* + (P + ¢* + 7> +2p +2q + 2r +
3pg+3pr+3qr)m— (2pg+2pr+2qr) — (m® — (t+1)m* +*m) = 17437713 — (4p+4q+
dr+2)m* + (p* + ¢* +1r°+2p+2q+2r + 3pq + 3pr + 3qr — i)m— (2pq + 2pr + 2qr).
We only know that for a sufficiently large m, %m3 — (dp +4q+4r +2)m* + (p* +
@+ 1%+ 2p+2¢+ 2r + 3pg + 3pr + 3qr — ;l)m— (2pq + 2pr + 2qr) > 0.
Therefore, at this point, we can just conclude that 4m? — (4p+4q+4r + 3)m2 +
(P> + @+ 4 2p+2q+2r+3pq+3pr+3qr)m— (2pg+2pr+2qr) > m>—(t+1)m>+t*m
provided that m is large enough. We also implement a computer program and

varies several values of m and it confirm that the desire inequality holds.



34

Next, we determine a chromatic number of defective coloring on K. éi)m of which
each color class is acyclic.
Theorem 5.4. Let m > 3. ng(K?(,?’X)m) =3, for alld > 0.
Proof. 1t is obvious that we can assign three colors. Thus, ng(Kéi)m) < 3. By

Remark 5.1, there are five cases to assign two colors. The cases each occurs a
color class which induces a cycle. Then, we cannot assign only two colors to this

hypergraph. Thus, ng(Kéi)m) # 2. Therefore, ng(Kéi)m) = 3. O

From Theorem @, X;(K?Ei)m) = X(K?(,Sx)m) = 3, we see that the value of d does

not affect the result.
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