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CHAPTER I

INTRODUCTION

The basic idea of the hypergraph is to consider a generalization of a graph.

There are many interesting topics on graph theory. One of its is a proper vertex col-

oring on a graph that was generalized to a proper vertex coloring on a hypergraph

as follows. A λ-coloring of a hypergraph H is a labeling f : V (H) → {1, 2, 3, . . . , λ}

and a proper λ-coloring of a hypergraph H is a λ-coloring of a hypergraph H such

that no edge of H (besides singletons) has all vertices of the same color. The

chromatic number of hypergraph H, denoted by χ(H), is the minimum number λ

for which a proper λ-coloring exists [9].

The vertex coloring on a graph does not have only proper vertex colorings.

Many researchers are also interested in defective colorings, see [3] and [4]. A

defective coloring on a graph G is a coloring of a graph G in which some adjacent

vertices maybe assigned the same color. A (k, d)-defective coloring of a graph G

is a vertex coloring of G with k colors such that each vertex is allowed at most

d neighbors having the same color. In this work, we modify the definition of

a defective coloring and a defective chromatic number on graphs to a defective

coloring and a defective chromatic number on hypergraphs as follows. Let d ≥ 0,

a (λ, d)-defective coloring is a λ-coloring of a hypergraph H in which there are

at most d edges of H having all vertices of the same color. If H admits a (λ, d)-

defective coloring, then χ≤d(H) denotes the least integer λ.

In 2016, Muaengwaeng and and Nakprasit [8] considered (λ, d)-defective color-

ings and chromatic numbers of graphs of which each color class induces a forest,

i.e., each color class is acyclic. We also modify their idea to a (λ, d)-defective col-

oring and chromatic number on a hypergraph of which each color class is acyclic.

This thesis is organized as follows. In Chapter II, we recall some basic defini-
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tions and theorems involving the research.

In Chapter III, we determine the defective chromatic numbers on a complete

bipartite k-uniform hypergraph and also determine the defective chromatic num-

bers on a complete bipartite k-uniform hypergraph of which each color class is

acyclic.

In Chapter IV, we determine the defective chromatic number and the defective

chromatic number of which each color class is acyclic on a complete k-partite

k-uniform hypergraph whose each edge has k vertices from k different partite sets.

In Chapter V, we determine the upper bound of the defective chromatic number

and determine the defective chromatic number of which each color class is acyclic

on a complete tripartite 3-uniform hypergraph whose each edge has three vertices

from at least two different partite sets.



CHAPTER II

PRELIMINARIES

In this chapter, we recall some definitions and notations used throughout this

research. We also review some literature related to our research.

Definition 2.1. [9] A hypergraph H is an ordered pair H = (V (H), E(H)),

where the set V (H) of vertices is a nonempty finite set and the set E(H) of (hyper)

edges is a collection of distinct nonempty subsets of V (H). Let k > 1. If every

edge of H has size k, then H is called a k-uniform hypergraph. Note that a

2-uniform hypergraph is simply an ordinary graph.

Figure 2.1 shows a hypergraph H of 6 vertices V (H) = {v1, v2, v3, v4, v5, v6}

and 4 edges E(H) = {e1, e2, e3, e4} where e1 = {v1, v2, v3}, e2 = {v2, v3}, e3 =

{v3, v5, v6} and e4 = {v4}.

b
b

b

b
bb

H :

v4

e4

v1 v2 v3

v5
v6

e1
e2

e3

Figure 2.1: hypergraph H.

Any hypergraph H ′ = (V (H ′), E(H ′)) such that V (H ′) ⊆ V (H) and E(H ′) ⊆

E(H) is a subhypergraph of H. In such a case, we write H ′ ⊆ H.

A hypergraph H ′ = (V (H ′), E(H ′)) is called an induced subhypergraph of

H if V (H ′) ⊆ V (H) and all edges of H completely contained in V (H ′) form the

family E(H ′). Sometimes we say that H ′ is a subhypergraph induced by V (H ′).

Figure 2.2 shows a hypergraph H of five vertices and three edges of which both

H1 and H2 are subhypergraphs; H1 is an induced subhypergraph of H but H2 is
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not an induced subhypergraph of H.

b
b

b b

b

v1

v2

v3v4

v5

H

b b

b

b

v1

v2

v4

v5
b b

b b

v2

v3v4

v5

H1 H2

b
v3

Figure 2.2: Hypergraph H, induced subhypergraph H1 and subhypergraph H2.

A set U ⊆ V (H) is called an independent (stable) set if U induces no edge

of H. {v1, v3, v5} is an independent set of the hypergraph H shown in Figure 2.2.

Definition 2.2. [9] For k ≥ 1, a complete k-uniform hypergraph on n

vertices, denoted by K(k)
n , has all k-subsets of an n-set vertices as edges. The

hypergraph K(2)
n is the complete graph Kn.

Example 2.3. A complete 3-uniform hypergraph K
(3)
5 with vertex set {v1, v2, v3, v4,

v5} has 10 edges as follows.

e1 = {v1, v2, v3}, e2 = {v1, v2, v4}, e3 = {v1, v2, v5}, e4 = {v1, v3, v4}, e5 = {v1, v3, v5},

e6 = {v1, v4, v5}, e7 = {v2, v3, v4}, e8 = {v2, v3, v5}, e9 = {v2, v4, v5}, e10 = {v3, v4, v5}.

In 2001, Jirimutu and Wang [6] introduced the concept of a complete bipartite

k-uniform hypergraph K(k)
m,n as follows.

Definition 2.4. For k ≥ 1, a complete bipartite k-uniform hypergraph

K(k)
m,n has the vertex set V (K(k)

m,n) consisting of two partite sets V1 and V2 such that

|V1| = m, |V2| = n, k ≤ m + n and the edge set E(K(k)
m,n) = {e ⊆ V1 ∪ V2 : |e| =

k, e ∩ V1 ̸= ∅ and e ∩ V2 ̸= ∅}.

From Definition 2.4, we notice that

|E(K(k)
m,n)| =

k−1∑
p=1

(
m

p

)(
n

k − p

)
=

(
m+ n

k

)
−
(
m

k

)
−

(
n

k

)
.
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Next, we give an example of complete bipartite 3-uniform hypergraphs, namely

K
(3)
3,4 .

Example 2.5. Let V1 = {0, 1, 2} and V2 = {0̄, 1̄, 2̄, 3̄}. The complete bipartite

3-uniform hypergraph K
(3)
3,4 whose vertex set is V1 ∪ V2 has 30 edges as follows:

{0, 0̄, 1̄}, {0, 0̄, 2̄}, {0, 0̄, 3̄}, {0, 1̄, 2̄}, {0, 1̄, 3̄}, {0, 2̄, 3̄}, {1, 0̄, 1̄}, {1, 0̄, 2̄}, {1, 0̄, 3̄},

{1, 1̄, 2̄}, {1, 1̄, 3̄}, {1, 2̄, 3̄}, {2, 0̄, 1̄}, {2, 0̄, 2̄}, {2, 0̄, 3̄}, {2, 1̄, 2̄}, {2, 1̄, 3̄}, {2, 2̄, 3̄},

{0, 1, 0̄}, {0, 1, 1̄}, {0, 1, 2̄}, {0, 1, 3̄}, {0, 2, 0̄}, {0, 2, 1̄}, {0, 2, 2̄}, {0, 2, 3̄}, {1, 2, 0̄},

{1, 2, 1̄}, {1, 2, 2̄}, {1, 2, 3̄}.

Note that {0, 1, 2}, {0̄, 1̄, 2̄}, {0̄, 1̄, 3̄}, {0̄, 2̄, 3̄} and {1̄, 2̄, 3̄} are not edges of K(3)
3,4 .

Later on, some researchers added more partite sets and try to set up a defi-

nition of a complete r-partite k-uniform hypergraph. However, the knowledge of

hypergraph is still dynamic. Thus, some literature may use different definitions of

a complete r-partite k-uniform hypergraph. In this work, we are interested in the

definition that was given by Kuhl and Schroeder [7] and by Boonklurb et al. [2].

Definition 2.6. [7] For k ≥ 2, a complete k-partite k-uniform hypergraph

K
(k)
k×m has a vertex set as k partite sets, V1, V2, V3, . . . , Vk, of equal size m and

E(K
(k)
k×m) is the set of all {v1, v2, v3, . . . , vk} such that {v1, v2, v3, . . . , vk} intersects

every partite set.

Example 2.7. Let V1 = {0, 1, 2}, V2 = {0̄, 1̄, 2̄} and V3 = {¯̄0, ¯̄1, ¯̄2}. The complete

tripartite 3-uniform hypergraph K
(3)
3×3 whose vertex set is V1∪V2∪V3 has 27 edges

as follows:

{0, 0̄, ¯̄0}, {0, 0̄, ¯̄1}, {0, 0̄, ¯̄2}, {0, 1̄, ¯̄0}, {0, 1̄, ¯̄1}, {0, 1̄, ¯̄2}, {0, 2̄, ¯̄0}, {0, 2̄, ¯̄1}, {0, 2̄, ¯̄2},

{1, 0̄, ¯̄0}, {1, 0̄, ¯̄1}, {1, 0̄, ¯̄2}, {1, 1̄, ¯̄0}, {1, 1̄, ¯̄1}, {1, 1̄, ¯̄2}, {1, 2̄, ¯̄0}, {1, 2̄, ¯̄1}, {1, 2̄, ¯̄2},

{2, 0̄, ¯̄0}, {2, 0̄, ¯̄1}, {2, 0̄, ¯̄2}, {2, 1̄, ¯̄0}, {2, 1̄, ¯̄1}, {2, 1̄, ¯̄2}, {2, 2̄, ¯̄0}, {2, 2̄, ¯̄1}, {2, 2̄, ¯̄2}.

Note that Definition 2.6 can be modified to a complete k-partite k-uniform

hypergraph whose partite sets have different sizes, K(k)
n1,n2,n3,...,nk

, and there are

n1n2n3 · · ·nk edges which each edge is still of the form e = {v1, v2, v3, . . . , vk},

where vi ∈ Vi for all i ∈ {1, 2, 3, . . . , k}.
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Notice that if a, b ∈ V1 and c ∈ V2, then {a, b, c} is not an edge of K(3)
n1,n2,n3

defined by Kuhl and Schroeder [7]. We give a remark here that the next definition

considers a more general complete r-partite k-uniform hypergraph in which {a, b, c}

is its edge even if a, b ∈ V1 and c ∈ V2.

Definition 2.8. [2] For k, r ≥ 2, a complete r-partite k-uniform hypergraph

K(k)
n1,n2,n3,...,nr

has a vertex set consisting of r partite sets V1, V2, V3, . . . , Vr such that

|V1| = n1, |V2| = n2, |V3| = n3, . . . , |Vr| = nr, k ≤ n1 + n2 + n3 + · · · + nr and

the edge set E(K(k)
n1,n2,n3,...,nr

) = {e : e ⊆ V (H), |e| = k and |e ∩ Vi| < k for all i ∈

{1, 2, 3, . . . , r}}.

From Definition 2.8, we notice that

|E(K(k)
n1,n2,n3,...,nr

)| =
(∑r

i=1 ni

k

)
−

r∑
i=1

(
ni

k

)
.

Next, we give an example of a complete tripartite 3-uniform hypergraph, namely

K
(3)
2,3,4.

Example 2.9. Let V1 = {0, 1}, V2 = {0̄, 1̄, 2̄} and V3 = {¯̄0, ¯̄1, ¯̄2, ¯̄3}. The complete

tripartite 3-uniform hypergraph K
(3)
2,3,4 whose vertex set is V1∪V2∪V3 has 79 edges

as follows:

{0, 0̄, ¯̄0}, {0, 0̄, ¯̄1}, {0, 0̄, ¯̄2}, {0, 0̄, ¯̄3}, {0, 1̄, ¯̄0}, {0, 1̄, ¯̄1}, {0, 1̄, ¯̄2}, {0, 1̄, ¯̄3}, {0, 2̄, ¯̄0},

{0, 2̄, ¯̄1}, {0, 2̄, ¯̄2}, {0, 2̄, ¯̄3}, {1, 0̄, ¯̄0}, {1, 0̄, ¯̄1}, {1, 0̄, ¯̄2}, {1, 0̄, ¯̄3}, {1, 1̄, ¯̄0}, {1, 1̄, ¯̄1},

{1, 1̄, ¯̄2}, {1, 1̄, ¯̄3}, {1, 2̄, ¯̄0}, {1, 2̄, ¯̄1}, {1, 2̄, ¯̄2}, {1, 2̄, ¯̄3}, {0, 1, 0̄}, {0, 1, 1̄}, {0, 1, 2̄},

{0, 1, ¯̄0}, {0, 1, ¯̄1}, {0, 1, ¯̄2}, {0, 1, ¯̄3}, {0, 0̄, 1̄}, {1, 0̄, 1̄}, {0̄, 1̄, ¯̄0}, {0̄, 1̄, ¯̄1}, {0̄, 1̄, ¯̄2},

{0̄, 1̄, ¯̄3}, {0, 0̄, 2̄}, {1, 0̄, 2̄}, {0̄, 2̄, ¯̄0}, {0̄, 2̄, ¯̄1}, {0̄, 2̄, ¯̄2}, {0̄, 2̄, ¯̄3}, {0, 1̄, 2̄}, {1, 1̄, 2̄},

{1̄, 2̄, ¯̄0}, {1̄, 2̄, ¯̄1}, {1̄, 2̄, ¯̄2}, {1̄, 2̄, ¯̄3}, {0, ¯̄0, ¯̄1}, {1, ¯̄0, ¯̄1}, {0̄, ¯̄0, ¯̄1}, {1̄, ¯̄0, ¯̄1}, {2̄, ¯̄0, ¯̄1},

{0, ¯̄0, ¯̄2}, {1, ¯̄0, ¯̄2}, {0̄, ¯̄0, ¯̄2}, {1̄, ¯̄0, ¯̄2}, {2̄, ¯̄0, ¯̄2}, {0, ¯̄0, ¯̄3}, {1, ¯̄0, ¯̄3}, {0̄, ¯̄0, ¯̄3}, {1̄, ¯̄0, ¯̄3},

{2̄, ¯̄0, ¯̄3}, {0, ¯̄1, ¯̄2}, {1, ¯̄1, ¯̄2}, {0̄, ¯̄1, ¯̄2}, {1̄, ¯̄1, ¯̄2}, {2̄, ¯̄1, ¯̄2}, {0, ¯̄1, ¯̄3}, {1, ¯̄1, ¯̄3}, {0̄, ¯̄1, ¯̄3},

{1̄, ¯̄1, ¯̄3}, {2̄, ¯̄1, ¯̄3}, {0, ¯̄2, ¯̄3}, {1, ¯̄2, ¯̄3}, {0̄, ¯̄2, ¯̄3}, {1̄, ¯̄2, ¯̄3}, {2̄, ¯̄2, ¯̄3}.

Note that {0̄, 1̄, 2̄}, {¯̄0, ¯̄1, ¯̄2}, {¯̄0, ¯̄1, ¯̄3}, {¯̄1, ¯̄2, ¯̄3} are not edges of K(3)
2,3,4. Next, let

us introduce a cycle of length q of a hypergraph H.
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Definition 2.10. [1] For q > 1, a cycle of length q of a hypergraph H is

defined to be a sequence (v1, e1, v2, e2, v3, e3, . . . , eq, vq+1) such that

1. v1, v2, v3, . . . , vq are all distinct vertices of H,

2. e1, e2, e3, . . . , eq are all distinct edges of H and

3. vk, vk+1 ∈ ek for k ∈ {1, 2, 3, . . . , q} and vq+1 = v1.

b

b

b

b

H :

v1

v2

v3

v4

e1
e4

e3
e2

Figure 2.3: The hypergraph H with cycle (v1, e2, v2, e1, v3, e3, v4, e4, v1).

For example, (v1, e2, v2, e1, v3, e3, v4, e4, v1) is a cycle of length 4 of the hyper-

graph H shown in Figure 2.3.

In general, the idea of the hypergraph is to generalize a graph. Also, in a

vertex coloring, there is a definition of hypergraph colorings which generalize the

respective graph concepts as follows.

Definition 2.11. [9] A λ-coloring of a hypergraph H is a labeling f : V (H) →

{1, 2, 3, . . . , λ} and a proper λ-coloring of a hypergraph H is a λ-coloring of a

hypergraph H such that no edge of H (besides singletons) has all vertices of the

same color. The chromatic number of a hypergraph H, denoted by χ(H), is the

minimum number λ for which a proper λ-coloring exists.

An edge of a hypergraph is said to be monochromatic if all its vertices have

the same color.

Example 2.12. K
(3)
10 has 10 vertices, {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}.
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Let f : V (K
(3)
10 ) → {1, 2, 3, 4, 5} be a labeling defined by f(vi) = 1 for i ∈

{1, 10}, f(vi) = 2 for i ∈ {2, 9}, f(vi) = 3 for i ∈ {3, 8}, f(vi) = 4 for i ∈ {4, 7}

and f(vi) = 5 for i ∈ {5, 6}. Because of all edges having size 3, there are no edges

being monochromatic. Then, K(3)
10 has a proper 5-coloring.

If we assign only four colors, then we can use the Pigeonhole principle to obtain

that there is a color class containing at least 3 vertices. Then, there is monochro-

matic edges. Thus, K(3)
10 has no proper 4-coloring. Therefore, χ(K(3)

10 ) = 5.

Example 2.13. Consider a complete 4-partite 3-uniform hypergraph K
(3)
2,2,3,3 of

which each edge has 3 vertices from at least 2 different partite sets.

Assign 4 colors to all vertices of K(3)
2,2,3,3 with only vertices of the same partite

set got the same color. Thus, K(3)
2,2,3,3 has a proper 4-coloring. Now, assign 3 colors

to K
(3)
2,2,3,3. Since K

(3)
2,2,3,3 has 10 vertices, there are one color class contains at least

4 vertices and such 4 vertices have at least two vertices from different partite sets.

Thus, there is a monochromatic edge and hence, K(3)
2,2,3,3 has no proper 3-coloring.

Therefore, χ(K(3)
2,2,3,3) = 4.

Example 2.14. Consider K(4)
2,2,2. Let V1 = {v1, v2}, V2 = {v̄1, v̄2} and V3 = { ¯̄v1, ¯̄v2}

be the partite sets of K(4)
2,2,2. Assign two colors to all vertices of K(4)

2,2,2 as follows.

Let f : V (K
(4)
2,2,2) → {1, 2} be a labeling defined by f(i) = 1 for i ∈ {v1, v2, v̄1}

and f(i) = 2 for i ∈ {v̄2, ¯̄v1, ¯̄v2}. Because of all edges having size 4, there are no

edges being monochromatic. Then, K(4)
2,2,2 has a proper 2-coloring. It is easy to see

that K
(4)
2,2,2 has no proper 1-coloring. Therefore, χ(K(4)

2,2,2) = 2.

These three examples leads to the following two lemmas.

Lemma 2.15. For n ≥ k ≥ 2. χ(K(k)
n ) =

⌈
n

k − 1

⌉
.

Proof. Assign
⌈

n

k − 1

⌉
colors to all n vertices of K(k)

n by coloring each color to at

most k−1 vertices. Since every edge of K(k)
n contains k vertices, K(k)

n has a proper⌈
n

k − 1

⌉
-coloring.
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Now, suppose that K(k)
n has a proper

(⌈
n

k − 1

⌉
− 1

)
-coloring. Since any k-

subset of V (K(k)
n ) is an edge, the number of vertices assigned the same colors must

be at most k − 1 vertices. Thus,
(⌈

n

k − 1

⌉
− 1

)
(k − 1) ≥ n.

Let n = (k − 1)q + r, where 0 ≤ r < k − 1.

If r = 0, then
⌈

n

k − 1

⌉
−1 = q−1 and

(⌈
n

k − 1

⌉
− 1

)
(k−1) = (q−1)(k−1) <

q(k − 1) = n, a contradiction.

If 0 < r < k−1, then
⌈

n

k − 1

⌉
−1 = q and

(⌈
n

k − 1

⌉
− 1

)
(k−1) = q(k−1) =

n− r < n, a contradiction.

Thus, K(k)
n has no proper

(⌈
n

k − 1

⌉
− 1

)
-coloring. Therefore, χ(K(k)

n ) =

⌈
n

k − 1

⌉
.

Lemma 2.16. Let k, r ≥ 2. χ(K(k)
n1,n2,n3,...,nr

) ≤ r, where K(k)
n1,n2,n3,...,nr

is the

hypergraph defined in Definition 2.8.

Proof. Assign r colors to all vertices of K(k)
n1,n2,n3,...,nr

with only vertices of the

same partite set got the same colors. Thus, K(k)
n1,n2,n3,...,nr

has a proper r-coloring.

Therefore, χ(K(k)
n1,n2,n3,...,nr

) ≤ r.

Note that if we consider the complete multipartite k-uniform hypergraph de-

fined in Definition 2.6, then we can also use the same idea to proof Lemma 2.16

to conclude that χ(K
(k)
k×m) ≤ k.

There are many research articles that studied coloring on hypergraphs. For

example, in 2013, Frieze and Mubayi [5] considered a simple k-uniform hypergraph

for an integer k ≥ 3 (a k-uniform hypergraph is simple if every two edges share

at most one vertex). They showed that there is a constant c depending only on

k such that every simple k-uniform hypergraph H with maximum degree △ has

chromatic number satisfying

χ(H) < c

(
△

log△

) 1
k−1

.

A defective coloring on a graph is one of the generalized idea of proper coloring

on a graph and it is one of the interesting concepts that has been studied by
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many researchers, see [3] and [4]. It can be used to solve the scheduling problem.

Some researchers added the condition that each color class of a defective coloring

is acyclic and found the defective chromatic number of this type. In the following

definition, we modify the definition of a defective coloring and a defective chromatic

number on graphs to a defective coloring and a defective chromatic number on

hypergraphs as follows.

Definition 2.17. Let d ≥ 0. A (λ, d)-defective coloring of a hypergraph H is

a λ-coloring of a hypergraph H in which there are at most d monochromatic edges.

If H admits a (λ, d)-defective coloring, then χ≤d(H) denotes the least integer λ.

Note that (λ, 0)-defective coloring of a hypergraph H is a proper λ-coloring of

such hypergraph.

Example 2.18. Consider a hypergraph K
(3)
10 from Example 2.12. We obtain that

a proper 5-coloring of a hypergraph K
(3)
10 has a (5, 0)-defective coloring of K(3)

10 .

Let d = 1. Since d = 1, there is at most 1 edge of K
(3)
10 being monochro-

matic. Then, we get immediately that K
(3)
10 has a (5, 1)-defective coloring. Now,

we suppose that K
(3)
10 has a (4, 1)-defective coloring. By Example 2.12, K(3)

10 has

no (4, 0)-defective coloring. Then, K(3)
10 has exactly one monochromatic edge con-

taining 3 vertices. Consider the other 7 vertices outside this monochromatic edge.

Since there are 3 colors left to be assigned, we use the Pigeonhole principle to

obtain that there is a color class containing at least
⌈
7

3

⌉
= 3 vertices, impossible.

Therefore, χ≤1(K
(3)
10 ) = 5.

Let d = 2. We show that K(3)
10 has a (4, 2)-defective coloring. Let f : V (K

(3)
10 ) →

{1, 2, 3, 4} be a labeling defined by f(vi) = 1 for i ∈ {1, 2, 3}, f(vi) = 2 for

i ∈ {4, 5, 6}, f(vi) = 3 for i ∈ {7, 8} and f(vi) = 4 for i ∈ {9, 10}. Since all edges

having size 3, there are exactly two edges being monochromatic. Thus, K(3)
10 has a

(4, 2)-defective coloring. Now, we suppose that K(3)
10 has a (3, 2)-defective coloring.

Since K
(3)
10 has no (4, 1)-defective coloring, we get immediately that K

(3)
10 has no

(3, 1)-defective coloring. Thus, K(3)
10 has exactly two disjoint monochromatic edges

of two different colors if two such edges are not disjoint, then it will occur at least
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4 monochromatic edges. Consider the other 4 vertices outside these two disjoint

edges. Since there is only one color left, we obtain that there is a color class

containing 4 vertices, impossible. Therefore, χ≤2(K
(3)
10 ) = 4. For d = 3, 4 and 5,

we obtain χ≤d(K
(3)
10 ) = 4 in a similar way.

Let d = 6. We show that K(3)
10 has a (3, 6)-defective coloring. Let f : V (K

(3)
10 ) →

{1, 2, 3} be a labeling defined by f(vi) = 1 for i ∈ {1, 2, 3, 4}, f(vi) = 2 for

i ∈ {5, 6, 7} and f(vi) = 3 for i ∈ {8, 9, 10}. Since all edges having size 3, there

are four edges containing all vertices of color 1 and the other two edges containing

all vertices of colors 2 and 3. Thus, there are six edges being monochromatic.

Hence, K(3)
10 has a (3, 6)-defective coloring. Now, If we assign only two colors, then

it occurs at least 20 monochromatic edges, impossible. Therefore, χ≤6(K
(3)
10 ) = 3.

From this example, we see that the chromatic number of a hypergraph H

decreases when the value of d is increasing.

Next, let us consider relation between a complete hypergraph and a complete

multipartite hypergraph as follows.

Theorem 2.19. Let r ≥ 2, n = n1 + n2 + n3 + · · · + nr ≥ k ≥ 2 and d ≥ 0. If(
n1

k

)
+

(
n2

k

)
+

(
n3

k

)
+ · · ·+

(
nr

k

)
≤ d, then χ≤d(K

(k)
n ) ≤ χ(K(k)

n1,n2,n3,...,nr
).

Proof. Let d ≥ 0 and χ(K(k)
n1,n2,n3,...,nr

) = t. Consider K(k)
n . Since n = n1 + n2 +

n3 + · · · + nr, we divide n vertices of K(k)
n into r parts, Vi where |Vi| = ni for all

i ∈ {1, 2, 3, . . . , r}. Now, we show that K(k)
n has a (t, d)-defective coloring. Since

K(k)
n1,n2,n3,...,nr

has a proper t-coloring, we can color r parts of K(k)
n similar to such

coloring of K(k)
n1,n2,n3,...,nr

. Next, consider a coloring in each part. Since K(k)
n is a

complete k-uniform hypergraph, there are edges containing vertices in each part.

Since each part has at most ni vertices assigned the same color, the number of

monochromatic edges is
(
n1

k

)
+

(
n2

k

)
+

(
n3

k

)
+ · · ·+

(
nr

k

)
≤ d. Thus, K(k)

n has

a (t, d)-defective coloring. Therefore, χ≤d(K
(k)
n ) ≤ χ(K(k)

n1,n2,n3,...,nr
).

Corollary 2.20. Let r ≥ 2, n = n1+n2+n3+· · ·+nr ≥ k ≥ 2 and d ≥ 0. If
(
n1

k

)
+(

n2

k

)
+

(
n3

k

)
+ · · ·+

(
nr

k

)
≤ d <

(
⌈ n
r−1

⌉
k

)
, then χ≤d(K

(k)
n ) = χ(K(k)

n1,n2,n3,...,nr
).
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Proof. By Theorem 2.19 and Lemma 2.16, χ≤d(K
(k)
n ) ≤ χ(K(k)

n1,n2,n3,...,nr
) ≤ r.

Let us assign r − 1 colors to all vertices of K(k)
n . Since K(k)

n has n vertices, by

the Pigeonhole principle, there are
⌈

n

r − 1

⌉
vertices assigned the same colors.

Since such
⌈

n

r − 1

⌉
vertices induce

(
⌈ n
r−1

⌉
k

)
monochromatic edges which is more

than d. Thus, in this case χ≤d(K
(k)
n ) > r − 1 and hence, r − 1 < χ≤d(K

(k)
n ) ≤

χ(K(k)
n1,n2,n3,...,nr

) ≤ r. Therefore, χ≤d(K
(k)
n ) = χ(K(k)

n1,n2,n3,...,nr
) = r.

Example 2.21. Consider K
(3)
13 and K

(3)
4,4,5.

Let d = 20. Since n = 13, n1 = 4, n2 = 4, n3 = 5,
(
n1

k

)
+

(
n2

k

)
+

(
n3

k

)
=(

4

3

)
+

(
4

3

)
+

(
5

3

)
= 4 + 4 + 10 = 18 and

(
⌈ n
r−1

⌉
k

)
=

(
⌈ 13
3−1

⌉
3

)
=

(
7

3

)
= 35.

Then,
(
n1

k

)
+

(
n2

k

)
+

(
n3

k

)
≤ d <

(
⌈ n
r−1

⌉
k

)
. By Corollary 5.4, χ≤20(K

(3)
13 ) =

χ(K
(3)
4,4,5) ≤ 3.

Now, we assign two colors to all vertices of K(3)
13 . Since there are 13 vertices

with two colors, we use the Pigeonhole principle to obtain that there is a color class

containing at least
⌈
13

2

⌉
= 7 vertices of the same colors and then those 7 vertices

induces
(
7

3

)
= 35 monochromatic edges which is more than d. Thus, K(3)

13 has no

(2, 20)-defective coloring and hence, 2 < χ≤20(K
(3)
13 ) ≤ χ(K

(3)
4,4,5) ≤ 3. Therefore,

χ≤20(K
(3)
13 ) = χ(K

(3)
4,4,5) = 3.

Example 2.22. Consider K
(3)
13 and K

(3)
4,4,5.

Let d = 56, that is, d ≥ max{
(
n1

k

)
+

(
n2

k

)
+

(
n3

k

)
,

(
⌈ n
r−1

⌉
k

)
}. From the

previous example, χ(K
(3)
4,4,5) = 3. By Theorem 2.19, χ≤56(K

(3)
13 ) ≤ χ(K

(3)
4,4,5) =

3. However, we can assign two colors to the vertices of K
(3)
13 by coloring 1 to 6

vertices and 2 to other 7 vertices. Then, it occurs
(
6

3

)
+

(
7

3

)
= 20 + 35 = 55

monochromatic edges which is less than d. Thus, K
(3)
13 has a (2, 55)-defective

coloring. Therefore, χ≤56(K
(3)
13 ) < χ(K

(3)
4,4,5).

From Theorem 2.19 and its corollary, we can see that the number of vertices in

K(k)
n determine the number of colors to be assigned.
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Theorem 2.23. Let k ≥ 3. If 0 ≤ d < k + 1, then there is an integer n such that

χ≤d(K
(k)
n ) = l for all l ∈ N.

Proof. Let 0 ≤ d < k + 1 and l ∈ N. Choose n = (l − 1)(k − 1) + kd. Consider

K(k)
n . Color all vertices of K(k)

n in such a way that there are at most d edges of

K(k)
n being monochromatic edges. Since d < k + 1, all of d monochromatic edges

of K(k)
n are pairwise disjoint. If all of d monochromatic edges are not pairwise

disjoint, then there are at least k + 1 vertices having the same color and such

k + 1 vertices form
(
k + 1

k

)
= k + 1 monochromatic edges which is more than

d. Now, we assign d colors to kd vertices by each color is assigned to exactly k

vetices. Then, there are d monochromatic edges of K(k)
n . Next, color other n− kd

vertices by using
⌈
n− kd

k − 1

⌉
colors. By Lemma 2.15, each edge form by these

n− kd vertices is not a monochromatic edge. Thus, χ≤d(K
(k)
n ) =

⌈
n− kd

k − 1

⌉
+ 1 =⌈

(l − 1)(k − 1) + kd− kd

k − 1

⌉
= (l − 1) + 1 = l.

Theorem 2.24. Let k ≥ 3. For any hypergraph H, if 0 ≤ d < k + 1, then

χ≤d(K
(k)
n ) =



⌈n
k

⌉
, if kd ≥ n,

⌈
n− kd

k − 1

⌉
+ d, if kd < n.

Proof. We know from the proof of Theorem 2.23 that if d < k+1, then d monochro-

matic edges are pairwise disjoint.

Case 1: kd ≥ n. Assign
⌈n
k

⌉
colors to n vertices in such a way that at most

k vertices having the same color. Since kd ≥ n, d ≥
⌈n
k

⌉
. Thus, K(k)

n has a(⌈n
k

⌉
, d
)

-defective coloring. Suppose that K(k)
n has a

(⌈n
k

⌉
− 1, d

)
-defective col-

oring. Since each monochromatic edge is pairwise disjoint, the number of vertices

assigned by the same color must be at most k. Thus,
(⌈n

k

⌉
− 1

)
k ≥ n.

Let n = kq + r where 0 ≤ r < k.

If r = 0, then
⌈n
k

⌉
= q and

(⌈n
k

⌉
− 1

)
k = (q− 1)k < qk = n, a contradiction.
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If 0 < r < k, then
⌈n
k

⌉
= q+1 and

(⌈n
k

⌉
− 1

)
k = (q+1−1)k = kq = n−r < n,

a contradiction.

Thus, χ≤d(K
(k)
n ) =

⌈n
k

⌉
.

Case 2: kd < n. Assign d colors to kd vertices in such a way that at most k

vertices having the same color. Since kd < n, there are n−kd vertices left to be

colored. Assign
⌈
n− kd

k − 1

⌉
colors to those left over vertices in such a way that at

most k−1 vertices having the same color. Thus, K(k)
n has a

(⌈
n− kd

k − 1

⌉
+ d, d

)
-

defective coloring.

Next, let us try to assign
⌈
n− kd

k − 1

⌉
+d−1 colors to each vertex of K(k)

n . If there

are d−i monochromatic edges where 0 ≤ i ≤ d, then those d−i monochromatic

edges contain k(d−i) vertices and then there are n−kd + ki vertices left to be

colored. Thus, there are other
⌈
n− kd

k − 1

⌉
+ (d − 1) − (d − i) =

⌈
n− kd

k − 1

⌉
+

(i − 1) colors that can be assigned to those n−kd + ki vertices and all edges

constructed from those vertices are not monochromatic. However, for a proper

vertex coloring, we need at least
⌈
n− kd+ ki

k − 1

⌉
colors. Since (k + i)−1 > 2,⌈

n− kd+ ki

k − 1

⌉
>

⌈
(n− kd+ ki)− (k + i) + 1

k − 1

⌉
=

⌈
n− kd

k − 1

⌉
+(i−1). Hence, K(k)

n

has no
(⌈

n− kd

k − 1

⌉
+ d− 1, d

)
-defective coloring. Thus, χ≤d(K

(k)
n ) =

⌈
n− kd

k − 1

⌉
+

d.

Theorem 2.24 indicate that if a k-uniform hypergraph contains a large com-

plete k-uniform hypergraph as its subhypergraph, then the number of colors to be

assigned need to be at least greater or equal to the number of vertices contained in

this induced subhyergraph. Now, let us introduce the clique number of a k-uniform

hypergraph as follows.

Definition 2.25. [1] Let k ≥ 2. For a k-uniform hypergraph H, a nonempty set

A ⊂ V (H) is defined to be a clique if either |A| < k or A is a complete k-uniform

subhypergraph of H. The clique number, denoted by ω(H), of a k-uniform

hypergraph H is the largest cardinality of a subset of V (H) inducing a complete

k-uniform hypergraph.
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Example 2.26. Let H be a 3-uniform hypergraph with 6 vertices, as follows.

b b

bb

v1 v2

v4 v3
bb

v5v6

We see that {v1, v2, v3, v4} induces K
(3)
4 and it is easy to see that 4 is the

largest number of a subset of V (H) inducing a complete 3-uniform hypergraph.

Thus, ω(H) = 4.

Example 2.27. Let H be a 3-uniform hypergraph with 8 vertices, as follows.

b

b

b

b b

b bb

v1 v2 v3

v4

v5v6v7

v8

We see that {v1, v2, v3} induces K
(3)
3 and it is easy to see that 3 is the largest

number of a subset of V (H) inducing a complete 3-uniform hypergraph. Thus,

ω(H) = 3.

Next, we study relation between χ≤d(H) and ω(H) for any k-uniform hyper-

graph and 0 ≤ d < k + 1.

Theorem 2.28. Let k ≥ 3. For any k-uniform hypergraph H, if 0 ≤ d < k + 1,

then

χ≤d(H) ≥



⌈
ω(H)

k

⌉
, if kd ≥ ω(H),

⌈
ω(H)− kd

k − 1

⌉
+ d, if kd < ω(H).

Proof. Let ω(H) = m. Then, H contains K(k)
m .

Case 1: Let kd ≥ ω(H). Since H contains K(k)
m , kd ≥ m and 0 ≤ d < k + 1, by
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Theorem 2.24,
⌈m
k

⌉
colors are required to color just the clique. Thus, χ≤d(H) ≥⌈

ω(H)

k

⌉
.

Case 2: Let kd < ω(H). Since H contains K(k)
m , kd < m and 0 ≤ d < k + 1, by

Theorem 2.24,
⌈
m− kd

k − 1

⌉
+ d colors are required to color just the clique. Thus,

χ≤d(H) ≥
⌈
ω(H)− kd

k − 1

⌉
+ d.

Example 2.29. Consider the 3-uniform hypergraph H from Example 2.26. The

hypergraph H has k = 3.

If d = 0, then kd = 0 < 4 = ω(H).

By Theorem 2.28, χ(H) ≥
⌈
ω(H)− kd

k − 1

⌉
+ d =

⌈
4− 0

2

⌉
+ 0 = 2.

If d = 1, then kd = 3 < 4 = ω(H).

By Theorem 2.28, χ≤1(H) ≥
⌈
ω(H)− kd

k − 1

⌉
+ d =

⌈
4− 3

2

⌉
+ 1 = 1 + 1 = 2.

If 2 ≤ d ≤ 4. Then, kd ≥ 4 = ω(H).

By Theorem 2.28, χ≤d(H) ≥
⌈
ω(H)

k

⌉
=

⌈
4

3

⌉
= 2.

Example 2.30. Consider a hypergraph K
(3)
10 . It is obvious that ω(K

(3)
10 ) = 10.

If d = 0, then kd = 0 < 10 = ω(K
(3)
10 ). By Theorem 2.28, χ(K

(3)
10 ) ≥⌈

ω(K
(3)
10 )− kd

k − 1

⌉
+ d =

⌈
10− 0

2

⌉
+ 0 = 5.

If d = 1, then kd = 3 < 10 = ω(K
(3)
10 ). By Theorem 2.28, χ≤1(K

(3)
10 ) ≥⌈

ω(K
(3)
10 )− kd

k − 1

⌉
+ d =

⌈
10− 3

2

⌉
+ 1 = 4 + 1 = 5.

If d = 2, then kd = 6 < 10 = ω(K
(3)
10 ). By Theorem 2.28, χ≤2(K

(3)
10 ) ≥⌈

ω(K
(3)
10 )− kd

k − 1

⌉
+ d =

⌈
10− 6

2

⌉
+ 2 = 2 + 2 = 4.

If d = 3, then kd = 9 < 10 = ω(K
(3)
10 ). By Theorem 2.28, χ≤3(K

(3)
10 ) ≥⌈

ω(K
(3)
10 )− kd

k − 1

⌉
+ d =

⌈
10− 9

2

⌉
+ 3 = 1 + 3 = 4.

If d = 4, then kd = 12 ≥ 10 = ω(K
(3)
10 ). By Theorem 2.28, χ≤4(K

(3)
10 ) ≥⌈

ω(K
(3)
10 )

k

⌉
=

⌈
10

3

⌉
= 4.

In 2016, for d ≥ 0, Muaengwaeng and Nakprasit [8] considered (λ, d)-defective

colorings on a graph and each color class induces a forest, i.e., each color class is
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acyclic. We also modify their idea as follows.

Definition 2.31. Let d ≥ 0. A (λ, d)-defective coloring without monochro-

matic cycle of a hypergraph H is a (λ, d)-defective coloring of a hypergraph of

which each color class which is a set of the same color vertices induces an acyclic

subhypergraph of H. If H admits a (λ, d)-defective coloring without monochro-

matic cycle, then χT
≤d(H) denotes the least integer λ. If d = 0, we use χT (H)

instead of χT
≤0(H).

Notices that if hypergraph H contains cycle, then χT
≤d(H) ̸= 1.

Example 2.32. K
(3)
5 has 5 vertices, {v1, v2, v3, v4, v5}, and 10 edges,

e1 = {v1, v2, v3}, e2 = {v1, v2, v4}, e3 = {v1, v2, v5}, e4 = {v1, v3, v4}, e5 = {v1, v3, v5},

e6 = {v1, v4, v5}, e7 = {v2, v3, v4}, e8 = {v2, v3, v5}, e9 = {v2, v4, v5} and

e10 = {v3, v4, v5}.

Let d = 4 and f : V (K
(3)
5 ) → {1, 2} be a labeling defined by f(vi) = 1 for

i ∈ {1, 2, 3, 4}, f(v5) = 2. Then, e1, e2, e4 and e7 are monochromatic. Thus, K(3)
5

has a (2, 4)-defective coloring. However, there is the cycle (v1, e1, v2, e2, v4, e4, v1),

that v1, v2 and v4 are assigned the same color, namely 1. Thus, this (2, 4)-defective

coloring does not satisfy Definition 2.31.

Example 2.33. The hypergraph H shown in Figure 2.4 has 8 vertices and 4 edges.

Let f : V (H) → {1, 2} be a labeling defined by f(vi) = 1 for i ∈ {3, 7, 8} and

f(vi) = 2 for i ∈ {1, 2, 4, 5, 6}.

Consider vertices in the color class 1, there is only one edge of H containing

v3, v7, v8. Thus, this color class is acyclic.

Now, consider color class 2, {v1, v2, v4, v5, v6}. This color class is an independent

set. Hence, {v1, v2, v4, v5, v6} induces an acyclic subhypergraph.
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b b b b

b

b

b

b

v1 v2 v3
v7

v8
v4

v5

v6

Figure 2.4: Hypergraph H.

Therefore, H has a (2, 1)-defective coloring in which each color class is acyclic.

It is obvious that we cannot assing (1, 1)-defective coloring for H. Thus, χT
≤1(H) =

2.

Example 2.34. Consider a hypergraph K
(3)
10 from Example 2.12.

Let d = 6. We show that K(3)
10 has a (4, 6)-defective coloring without monochro-

matic cycle. Let f : V (K
(3)
10 ) → {1, 2, 3, 4} be a labeling defined by f(vi) = 1 for

i ∈ {1, 2, 3}, f(vi) = 2 for i ∈ {4, 5, 6}, f(vi) = 3 for i ∈ {7, 8, 9} and f(v10) = 4.

Because of all edges having size 3, there are exactly three edges being monochro-

matic and then each color class does not induce a cycle. Thus, K(3)
10 has a (4, 3)-

defective coloring without monochromatic cycle. Also, K(3)
10 has a (4, 6)-defective

coloring without monochromatic cycle. Now, we suppose that K
(3)
10 has a (3, 6)-

defective coloring without monochromatic cycle. Note that if there is a color class

of size at least 4, then such color class induces a cycle. Thus, we allow at most 3

vertices labeled the same color. Hence, K(3)
10 has no (3, 6)-defective coloring without

monochromatic cycle because K
(3)
10 has 10 vertices. Therefore, χT

≤6(K
(3)
10 ) = 4.

Example 2.35. Consider a hypergraph K
(3)
2,2,3,3 of which each edge has 3 vertices

from at least 2 different partite sets.

Let d = 4. we show that K(3)
2,2,3,3 has a (4, 4)-defective coloring without monochro-

matic cycle. Since K
(3)
2,2,3,3 has 4 partite sets, we can assign different colors to ver-

tices of different partite sets. Since each edge has vertices from at least two partite

sets, no edges of K(3)
2,2,3,3 is monochromatic. K

(3)
2,2,3,3 has a (4, 4)-defective coloring
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without monochromatic cycle. Now, we suppose that K
(3)
2,2,3,3 has (3, 4)-defective

coloring without monochromatic cycle. If we assign three colors, then there are at

least one color class containing four vertices, v1, v2, v3 and v4. Since K
(3)
2,2,3,3 has no

partite set with four colors, these four vertices are contained in at least two par-

tite sets. Suppose that v1 and v2 are in different partite sets. There are different

edges e1 = {v1, v2, v3} and e2 = {v1, v2, v4}. Hence, these four vertices induce cycle

(v1, e1, v2, e2, v1), impossible. Therefore, χT
≤4(K

(3)
2,2,3,3) = 4.

From Examples 2.12, 2.18, 2.34 and 2.35, we can conclude the theorem as

follows.

Theorem 2.36. Let d > 0. For any hypergraph H, χ(H) ≥ χT
≤d(H) ≥ χ≤d(H).

Proof. Since a proper vertex coloring of the hypergraph H forces each color class

being an independent set, the chromatic number of H is greater than or equal

to the defective chromatic number of H of which each color class is acyclic, i.e.,

χ(H) ≥ χT
≤d(H).

Since χ≤d(H) is the minimum number λ for which a (λ, d)-defective coloring

exists and χT
≤d(H) is the minimum number λ for which a (λ, d)-defective coloring

without monochromatic cycle exists, χT
≤d(H) cannot be less than χ≤d(H). Thus,

χT
≤d(H) ≥ χ≤d(H).

Note that for d = 0, χ(H) = χ≤0(H). Thus, χ(H) = χT
≤0(H) = χ≤0(H).

Next, if we consider the proof of Theorem 2.24 and the proof of theorem 2.28,

then each pairwise disjoint monochromatic edges cannot form any monochromatic

cycle. Thus, we can conclude the following.

Theorem 2.37. Let k ≥ 3. For any hypergraph H, if 0 ≤ d < k + 1, then

χT
≤d(K

(k)
n ) =



⌈n
k

⌉
, if kd ≥ n,

⌈
n− kd

k − 1

⌉
+ d, if kd < n.
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Theorem 2.38. Let k ≥ 3. For any k-uniform hypergraph, if 0 ≤ d < k+1, then

χ≤d(H) ≥



⌈
ω(H)

k

⌉
, if kd ≥ ω(H),

⌈
ω(H)− kd

k − 1

⌉
+ d, if kd < ω(H).

The following theorems are some observations on χ(H) and χ≤d(H).

Theorem 2.39. For any hypergraph H in which each edge has only one vertex,

χ(H) = 1.

Proof. For a hypergraph H. Since each edge has only one vertex, we can use one

color to assign to all vertices. Thus, χ(H) = 1.

Theorem 2.40. Let d ≥ 0 and k > 1. For any hypergraph H in which each edge

has at least k vertices, χ≤d(H) = 1 if and only if d ≥ |E(H)|.

Proof. We get immediately that if d ≥ |E(H)|, then χ≤d(H) = 1.

Conversely, let χ≤d(H) = 1, that is, H has a (1, d)-defective coloring. Then,

all edges of H are monochromatic edges or singletons. Since k > 1, there is no

singleton. Thus, d ≥ |E(H)|.



CHAPTER III

DEFECTIVE COLORING ON COMPLETE BIPARTITE

k-UNIFORM HYPERGRAPH

In this chapter, we focus on a complete bipartite k-uniform hypergraph and

provide values of χ≤d(K
(k)
m,n) and χT

≤d(K
(k)
m,n), for d ≥ 0.

Throughout this chapter, we let V1 and V2 be partite sets of V (K(k)
m,n) with

|V1| = m, |V2| = n and we always assume that m ≤ n.

Theorem 3.1. For a hypergraph K(k)
m,n, let k > 1 and d ≥ 0. Then

χ≤d(K
(k)
m,n) =

1, if d ≥ |E(K(k)
m,n)|,

2, if d < |E(K(k)
m,n)|.

Proof. Case 1: d ≥ |E(K(k)
m,n)|. By Theorem 2.40, χ≤d(K

(k)
m,n) = 1.

Case 2: d < |E(K(k)
m,n)|. Assign all vertices of partite set V1 color a and assign the

other vertices color b. Since each edge has vertices from both partite sets, no edge

of K(k)
m,n is monochromatic. Thus, χ(K(k)

m,n) ≤ 2. By Theorem 2.36, χ≤d(K
(k)
m,n) ≤

χ(K(k)
m,n) ≤ 2. By Theorem 2.40, since k > 1 and |E(K(k)

m,n)| > d, χ≤d(K
(k)
m,n) ̸= 1.

Therefore, χ≤d(K
(k)
m,n) = 2.

Example 3.2. Let V1 = {0, 1, 2} and V2 = {0̄, 1̄, 2̄, 3̄} be two partite sets of vertex

set of K(4)
3,4 . Note that |E(K

(4)
3,4)| =

(
7

4

)
−

(
3

4

)
−
(
4

4

)
= 35− 0− 1 = 34.

(i) Let d = 35. Then, d > |E(K
(4)
3,4)|. We can use one color to assign to all

vertices of K(4)
3,4 and χ≤35(K

(4)
3,4) = 1.

(ii) Let d = 30. Then, d < |E(K
(4)
3,4)|. By Theorem 3.1, we can assign the color

a to all vertices in V1 and the color b to all vertices in V2. Since each edge has

vertices from both partite sets, no edges of K(4)
3,4 has all vertices of the same color
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and χ≤30(K
(4)
3,4) = 2.

Next, we find chromatic numbers of defective coloring on K(k)
m,n in which each

color class is acyclic.

Theorem 3.3. Let k ≥ 3.

(i) χT (K(k)
m,n) = 2.

(ii) For d ≥ 1, then

χT
≤d(K

(k)
m,n) =

1, if m+ n = k,

2, if m+ n > k.

Proof. (i) We know that χ(K(k)
m,n) = 2. Then, χT (K(k)

m,n) = χ(K(k)
m,n) = 2.

(ii) Case 1: m + n = k. Since K(k)
m,n is a k-uniform hypergraph and k ≥ 3,

there is one edge. Since |E(K(k)
m,n)| = 1 and d ≥ 1, we can only assign the vertices

by one color. Thus, χT
≤d(K

(k)
m,n) = 1.

Case 2: m+ n > k. We know that χ(K(k)
m,n) ≤ 2. By Theorem 2.36, χT

≤d(K
(k)
m,n) ≤

χ(K(k)
m,n) ≤ 2. Now, we show that χT

≤d(K
(k)
m,n) ̸= 1. If d < |E(K(k)

m,n)|, then we cannot

assign one color to this hypergraph. Suppose that d ≥ |E(K(k)
m,n|. Consider the

hypergraph K(k)
m,n with two partite sets V1 = {v1, . . . , vm} and V2 = {u1, . . . , un}.

Since K(k)
m,n is a complete bipartite k-uniform hypergraph and k ≥ 3, there are two

different edges containing both v1 and u1 , namely e1 and e2. Thus, K(k)
m,n contains

cycle (v1, e1, u1, e2, v1). Since K(k)
m,n contains a cycle, we cannot assign only one

color to this hypergraph. Thus, χT
≤d(K

(k)
m,n) ̸= 1. Therefore, χT

≤d(K
(k)
m,n) = 2.

Example 3.4. Let V1 = {0, 1, 2} and V2 = {0̄, 1̄, 2̄, 3̄} be two partite sets of vertex

set of K(4)
3,4 . Note that |E(K

(4)
3,4)| = 34.

Let d = 35. Then, d > |E(K
(4)
3,4)|. We can assign the color a to all vertices in V1

and the color b to all vertices in V2. Since each edge has vertices from both partite

sets, no edges of K(4)
3,4 are monochromatic and each color class is an independent

set. Thus, χT
≤35(K

(4)
3,4) = 2.

Example 3.5. Let d > 0 and let V1 = {0, 1, 2} and V2 = {0̄, 1̄, 2̄, 3̄} be two partite

sets of vertex set of K(7)
3,4 . Since m+ n = 3 + 4 = 7, χT

≤d(K
(7)
3,4) = 1.



CHAPTER IV

DEFECTIVE COLORING ON COMPLETE k-PARTITE

k-UNIFORM HYPERGRAPH

In this chapter, we focus on a complete k-partite k-uniform hypergraph of

which each edge contains vertices from k different partite sets according to Kuhl

and Schroeder [7] and provide values of χ≤d(K
(k)
n1,n2,n3,...,nk

) and χT
≤d(K

(k)
n1,n2,n3,...,nk

).

Note that |E(K(k)
n1,n2,n3,...,nk

)| = n1n2n3 · · ·nk.

Throughout this chapter, we assume that n1 ≤ n2 ≤ n3 ≤ · · · ≤ nk.

Theorem 4.1. For a hypergraph K(k)
n1,n2,n3,...,nk

, let k ≥ 2, d ≥ 0. Then

χ≤d(K
(k)
n1,n2,n3,...,nk

) =

1, if d ≥ |E(K(k)
n1,n2,n3,...,nk

)|,

2, if d < |E(K(k)
n1,n2,n3,...,nk

)|.

Proof. Case 1: d ≥ |E(K(k)
n1,n2,n3,...,nk

)|. By Theorem 2.40, χ≤d(K
(k)
n1,n2,n3,...,nk

) = 1.

Case 2: d < |E(K(k)
n1,n2,n3,...,nk

)|. Assign all vertices of one partite set color a

and then assign the other vertices color b. Since each edge has vertices from

all partites, no edge of this hypergraph has all vertices of the same color. Thus,

χ(K(k)
n1,n2,n3,...,nk

) ≤ 2. By Theorem 2.36, χ≤d(K
(k)
n1,n2,n3,...,nk

) ≤ χ(K(k)
n1,n2,n3,...,nk

) ≤ 2.

Since d < |E(K(k)
n1,n2,n3,...,nk

)|, by Theorem 2.40 χ≤d(K
(k)
n1,n2,n3,...,nk

) ̸= 1. Thus,

χ≤d(K
(k)
n1,n2,n3,...,nk

) = 2.

Example 4.2. Consider K
(7)
1,2,3,3,4,5,5.

(i) Let d = 1800. Then, d = |E(K
(7)
1,2,3,3,4,5,5)|. We can use one color to assign

to all vertices of K(7)
1,2,3,3,4,5,5 and χ≤1800(K

(7)
1,2,3,3,4,5,5) = 1.

(ii) Let d = 1234. Then, d < |E(K
(7)
1,2,3,3,4,5,5)|. By Theorem 4.1, we can assign

color a to all vertices in V1 and color b to all vertices in the other partite sets. Since
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each edge has vertices from all partite sets, no edges of K(7)
1,2,3,3,4,5,5 has all vertices

of the same color and χ≤1234(K
(7)
1,2,3,3,4,5,5) = 2.

Next, we find chromatic numbers of defective coloring on K(k)
n1,n2,n3,...,nk

in which

each color class is acyclic.

Theorem 4.3. Let k ≥ 3.

(i) χT (K(k)
n1,n2,n3,...,nk

) = 2.

(ii) For d ≥ 1,

χT
≤d(K

(k)
n1,n2,n3,...,nk

) =

1, if |E(K(k)
n1,n2,n3,...,nk

)| = 1,

2, if |E(K(k)
n1,n2,n3,...,nk

)| ≥ 2.

Proof. (i) We get from Theorem 4.1 that χ(K(k)
n1,n2,n3,...,nk

) = 2.

Then, χT (K(k)
n1,n2,n3,...,nk

) = χ(K(k)
n1,n2,n3,...,nk

) = 2.

(ii) Case 1: |E(K(k)
n1,n2,n3,...,nk

)| = 1. Since d ≥ 1, we can only assign the vertices

by one color. Thus, χT
≤d(K

(k)
n1,n2,n3,...,nk

) = 1.

Case 2: |E(K(k)
n1,n2,n3,...,nk

)| ≥ 2. We get from Theorem 4.1 that χ(K(k)
n1,n2,n3,...,nk

) =

2. By Theorem 2.36, χT
≤d(K

(k)
n1,n2,n3,...,nk

) ≤ χ(K(k)
n1,n2,n3,...,nk

) = 2.

Next, we show that χT
≤d(K

(k)
n1,n2,n3,...,nk

) ̸= 1. If d < |E(K(k)
n1,n2,n3,...,nk

)|, then we

cannot assign one color to this hypergraph. Suppose that d ≥ |E(K(k)
n1,n2,n3,...,nk

)|.

Consider the hypergraph K(k)
n1,n2,n3,...,nk

with k partite sets V1 = {v11, v12, . . . , v1n1},

V2 = {v21, v22, . . . , v2n2}, . . . , Vk = {vk1, vk2, . . . , vknk
}. Since K(k)

n1,n2,n3,...,nk
is a com-

plete k-partite k-uniform hypergraph and k ≥ 3, there are two different edges

containing both v11 and v21 , namely e1 and e2. Thus, K(k)
n1,n2,n3,...,nk

contains cy-

cle (v11, e1, v21, e2, v11). Since K(k)
n1,n2,n3,...,nk

contains a cycle, we can not assign

only one color to this hypergraph. Thus, χT
≤d(K

(k)
n1,n2,n3,...,nk

) ̸= 1. Therefore,

χT
≤d(K

(k)
n1,n2,n3,...,nk

) = 2.

Example 4.4. Consider K
(7)
1,2,3,3,4,5,5. Then, by Theorem 4.3, χT (K

(7)
1,2,3,3,4,5,5) = 2

and since 1× 2× 32 × 4× 52 ̸= 1, by Theorem 4.2, χT
≤d(K

(7)
1,2,3,3,4,5,5) = 2 for d > 0.



CHAPTER V

DEFECTIVE COLORING ON COMPLETE

TRIPARTITE 3-UNIFORM HYPERGRAPH

Throughout this chapter, we consider K
(3)
3×m, a complete tripartite 3-uniform

hypergraph, in which the vertex set V (K
(3)
3×m) consists of 3 partite sets V1, V2 and

V3 of the same size m, m ≥ 3, and each edge has 3 vertices from at least 2 different

partite sets.

Remark 5.1 Before finding the defective chromatic number of K(3)
3×m, we consider

vertex coloring in K
(3)
3×m which uses only two colors. Note that there are five

possible ways to assign two colors, namely a and b, to the vertices of K
(3)
3×m as

follows.

(i) Assign all vertices of partite sets V1 and V2 color a and then assign the other

vertices color b, see Figure 5.1. The number of monochromatic edges is

(
m

1

)(
m

2

)
+

(
m

2

)(
m

1

)
= m3 −m2

.

V1 V2 V3

a

a

a

a
...
a

a

a

a

a
...
a

b

b

b

b
...
b

Figure 5.1: The first colored assignment.

(ii) For 1 ≤ p ≤ m − 1, assign all vertices of partite set V1 and V2 color a and
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assign p vertices of V3 color a and then assign the rest m − p vertices of V3

color b, see Figure 5.2. The number of monochromatic edges is

pm2 +

(
m

1

)(
m

2

)
+

(
m

2

)(
m

1

)
+

(
m

1

)(
p

2

)
+

(
m

2

)(
p

1

)
+

(
m

1

)(
p

2

)
+

(
m

2

)(
p

1

)
= m3 + (2p− 1)m2 + (p2 − 2p)m.

V1 V2 V3

a

a

a

a
...
a

a

a

a

a
...
a

a

a

a

b
...
b

}
p

Figure 5.2: The second colored assignment.

(iii) For 1 ≤ p ≤ m − 1, assign all vertices of partite set V1 color a, and all

vertices of partite set V2 color b and then assign p vertices of V3 color a and

assign the rest m − p vertices of V3 color b, see Figure 5.3. The number of

monochromatic edges is

(
m

1

)(
p

2

)
+

(
m

2

)(
p

1

)
+

(
m

1

)(
m− p

2

)
+

(
m

2

)(
m− p

1

)
= m3 − (p+ 1)m2 + p2m.

V1 V2 V3

a

a

a

a
...
a

b

b

b

b
...
b

a

a

a

b
...
b

}
p

Figure 5.3: The third colored assignment.
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(iv) For 1 ≤ p, q ≤ m− 1, assign all vertices of the partite set V1 color a, assign q

vertices of V2 color a and assign the rest m− q vertices of V2 color b. Next,

assign p vertices of V3 color a and assign the rest m − p vertices of V3 color

b, see Figure 5.4. The number of monochromatic edges is

pqm+

(
m

1

)(
p

2

)
+

(
m

2

)(
p

1

)
+

(
m

1

)(
q

2

)
+

(
m

2

)(
q

1

)
+

(
p

1

)(
q

2

)
+

(
p

2

)(
q

1

)
+

(
m− p

1

)(
m− q

2

)
+

(
m− p

2

)(
m− q

1

)
= m3 − (p+ q + 1)m2 + (p2 + q2 + 3pq)m− 2pq.

V1 V2 V3

a

a

a

a
...
a

a

a

a

b
...
b

a

a

a

b
...
b

}
p

}
q

Figure 5.4: The fourth colored assignment.

(v) For 1 ≤ p, q, r ≤ m−1, for each partite set, assign r, q and p vertices of V1, V2

and V3 color a, respectively and assign the other vertices color b, see Figure

5.5.

V1 V2 V3

a

a

a

b
...
b

a

a

a

b
...
b

a

a

a

b
...
b

}
p

}
q

}
r

Figure 5.5: The fifth colored assignment.
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The number of monochromatic edges is

pqr +

(
r

1

)(
q

2

)
+

(
r

2

)(
q

1

)
+

(
r

1

)(
p

2

)
+

(
r

2

)(
p

1

)
+

(
p

1

)(
q

2

)
+

(
p

2

)(
q

1

)
+ (m− r)(m− q)(m− p) +

(
m− r

1

)(
m− q

2

)
+

(
m− r

2

)(
m− q

1

)
+

(
m− r

1

)(
m− p

2

)
+

(
m− r

2

)(
m− p

1

)
+

(
m− p

1

)(
m− q

2

)
+

(
m− p

2

)(
m− q

1

)
= 4m3 − (4p+ 4q + 4r + 3)m2 + (p2 + q2 + r2 + 2p+ 2q + 2r + 3pq)m

+ (3rp+ 3rq)m− (2rq + 2pq + 2rp).

Notice from these five cases that if we assign only two colors, then it must occur

some monochromatic edges.

Theorem 5.1. Let m ≥ 3, d > 0 and t =
⌊m
2

⌋
.

(i) χ(K
(3)
3×m) = 3.

(ii)

χ≤d(K
(3)
3×m) =


1, if d ≥ 4m3 − 3m2,

2, if 4m3 − 3m2 > d ≥ m3 − (t+ 1)m2 + t2m.

(iii) χ≤d(K
(3)
3×m) ≤ 3 if m3 − (t+ 1)m2 + t2m > d.

Proof. (i) Assign the color a to all vertices in the partite set V1, the color b to all

vertices in the partite set V2 and the color c to all vertices in the partite set V3.

Since each edge contains vertices from at least two partite sets, K
(3)
3×m admits a

proper 3-coloring. Thus, χ(K(3)
3×m) ≤ 3.

Now, we show that χ(K
(3)
3×m) ̸= 2. Assume that K

(3)
3×m is a proper 2-coloring.

From Remark 5.1, there is the edge whose contains all vertices with the same color.

Thus, χ(K(3)
3×m) ̸= 2. Therefore, χ(K(3)

3×m) = 3.
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(ii) Case 1: d ≥ 4m3 − 3m2. We know that |E(K
(3)
3×m)| = m3 +3!

(
m

2

)(
m

1

)(
m

0

)
= 4m3 − 3m2. Then, we can assign one color to K

(3)
3×m. Thus, χ≤d(K

(3)
3×m) = 1.

Case 2: 4m3 − 3m2 > d ≥ m3 − (t+1)m2 + t2m. Assign the color a to vertices in

partite set V1, the color b to vertices in partite set V2 and then divide the vertices

of partite set V3 into two groups of size t =
⌊m
2

⌋
and size m− t, the vertices of the

group of size t is assigned the color a and the vertices of another group is assigned

the color b.
V1 V2 V3

a

a

a

a
...
a

b

b

b

b
...
b

a

a

a

b
...
b

}
t

The number of edges being monochromatic is

(
m

1

)(
t

2

)
+

(
m

2

)(
t

1

)
+

(
m

1

)(
m− t

2

)
+

(
m

2

)(
m− t

1

)
.

Then,

(
m

1

)(
t

2

)
+

(
m

2

)(
t

1

)
+

(
m

1

)(
m− t

2

)
+

(
m

2

)(
m− t

1

)
= m

(
t

2

)
+ t

(
m

2

)
+m

(
m− t

2

)
+ (m− t)

(
m

2

)
= m

(
m

2

)
+m

(
t

2

)
+m

(
m− t

2

)
= m

m(m− 1)

2
+m

t(t− 1)

2
+m

(m− t)(m− t− 1)

2

=
m

2
(m2 −m+ t2 − t+m2 − tm−m− tm+ t2 + t)

=
m

2
(2m2 − 2(t+ 1)m+ 2t2)

= m3 − (t+ 1)m2 + t2m.
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Since d ≥ m3 − (t + 1)m2 + t2m, we can assign two colors to the vertices of

K
(3)
3×m. Thus, χ≤d(K

(3)
3×m) ≤ 2.

Next, we show that χ≤d(K
(3)
3×m) ̸= 1. Assume that K

(3)
3×m admits a (1, d)-

defective coloring. Since |E(K
(3)
3×m)| = 4m3 − 3m2 and d < 4m3 − 3m2, there must

be at least one edge which does not be monochromatic. Thus, we cannot assign

only one color to K(k)
m,n. Thus, χ≤d(K

(3)
3×m) ̸= 1. Therefore, χ≤d(K

(3)
3×m) = 2.

(iii) Let m3 − (t + 1)m2 + t2m > d. We know that χ(K
(3)
3×m) = 3. By Theorem

2.36, χ≤d(K
(3)
3×m) ≤ χ(K

(3)
3×m) = 3. Thus, χ≤d(K

(3)
3×m) ≤ 3.

Example 5.2. Consider K
(3)
3×7 which m = 7 and t =

⌊
7

2

⌋
= 3. Then,

4m3 − 3m2 = 4(73)− 3(72) = 1225

m3 − (t+ 1)m2 + t2m = 73 − (4)72 + (32)7 = 210.

Thus, by Theorem 5.1, we have

χ(K
(3)
3×7) = 3,

χ≤d(K
(3)
3×7) = 1 if d ≥ 1225,

χ≤d(K
(3)
3×7) = 2 if 1225 > d ≥ 210,

χ≤d(K
(3)
3×7) ≤ 3 if 210 > d > 0.

Example 5.3. Let d = 200. Consider K(3)
3×7 which m = 7 and t =

⌊
7

2

⌋
= 3. From

Example 5.2, we have χ≤200(K
(3)
3×7) ≤ 3. Assume that K

(3)
3×7 is (2, 200)-defective

coloring. From Remark 5.1, we can consider 5 cases as follow.

(i) Assign the color a to all vertices in partite sets V1 and V2 and then assign

the color b to all vertices in partite set V3. We can see that there are

(
7

1

)(
7

2

)
+

(
7

2

)(
7

1

)
= 294

monochromatic edges and more than d.

(ii) For 1 ≤ p ≤ 6, assign the color a to all vertices in partite set V1 and
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V2 and then assign the color a to p vertices of V3 and assign the color b to the

rest 7 − p vertices of V3. We can see that the number of monochromatic edges

is 49p +

(
7

1

)(
7

2

)
+

(
7

2

)(
7

1

)
+

(
7

1

)(
p

2

)
+

(
7

2

)(
p

1

)
+

(
7

1

)(
p

2

)
+

(
7

2

)(
p

1

)
=

73 + (2p− 1)72 + (p2 − 2p)7 = 294 + 84p+ 7p2 edges which is more than d.

(iii) For 1 ≤ p ≤ 6, assign the color a to all vertices in partite set V1, and the

color b to all vertices in partite set V2 and then assign the color a to p vertices of V3

and assign the color b to the rest 7− p vertices of V3. We can see that the number

of monochromatic edges is
(
7

1

)(
p

2

)
+

(
7

2

)(
p

1

)
+

(
7

1

)(
7− p

2

)
+

(
7

2

)(
7− p

1

)
=

73 − (p+1)72 + (p2)7 = 294− 49p+7p2 = 7(p− 7

2
)2 +208.25 edges which is more

than d.

(iv) For 1 ≤ p, q ≤ 6, assign the color a to all vertices in the partite set V1,

assign the color a to q vertices of V2 and assign the color b to the rest 7− q vertices

of V2. Next, assign the color a to p vertices of V3 and assign the color b to the

rest 7 − p vertices of V3. We can see that the number of monochromatic edges

is 7pq +

(
7

1

)(
p

2

)
+

(
7

2

)(
p

1

)
+

(
7

1

)(
q

2

)
+

(
7

2

)(
q

1

)
+

(
p

1

)(
q

2

)
+

(
p

2

)(
q

1

)
+(

7− p

1

)(
7− q

2

)
+

(
7− p

2

)(
7− q

1

)
= 73− (p+q+1)72+(p2+q2+3pq)7−2pq =

294 + 19pq − 49(p + q) + 7(p2 + q2) edges. For 1 ≤ p, q ≤ 6, all possible values of

294 + 19pq − 49(p+ q) + 7(p2 + q2) are

220, 225, 229, 230, 244, 254, 277,

292, 297, 324, 344, 354, 410, 425,

430, 510, 520, 624, 629, 752, 894

which they are more than d.

(v) For 1 ≤ p, q, r ≤ 6, for each partite set, assign the color a to r, q and p

vertices of V1, V2 and V3, respectively and assign the color b to the rest vertices of

each partite set. We can see that the number of monochromatic edges is pqr +(
r

1

)(
q

2

)
+

(
r

2

)(
q

1

)
+

(
r

1

)(
p

2

)
+

(
r

2

)(
p

1

)
+

(
p

1

)(
q

2

)
+

(
p

2

)(
q

1

)
+(7−r)(7−q)(7−

p)+

(
7− r

1

)(
7− q

2

)
+

(
7− r

2

)(
7− q

1

)
+

(
7− r

1

)(
7− p

2

)
+

(
7− r

2

)(
7− p

1

)
+(

7− p

1

)(
7− q

2

)
+

(
7− p

2

)(
7− q

1

)
= 4(73)− (4p + 4q + 4r + 3)72 + (p2 + q2 +
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r2 + 2p+ 2q + 2r + 3pq + 3rp+ 3rq)7− (2rq + 2pq + 2rp) = 1225 + 19(pq + pr +

qr)− 182(p+ q + r) + 7(p2 + q2 + r2) edges. For 1 ≤ p, q, r ≤ 6, all possible values

of 1225 + 19(pq + pr + qr)− 182(p+ q + r) + 7(p2 + q2 + r2) are

240, 245, 250, 254, 260, 265, 269,

270, 274, 282, 284, 289, 302, 312,

317, 322, 349, 364, 369, 374, 430,

440, 445, 525, 530, 634, 757

which they are more than d.

Therefore, K(3)
3×7 is not (2, 200)-defective coloring. Hence, χ≤200(K

(3)
3×7) = 3

Remark 5.2 Actually, for m3 − (t+ 1)m2 + t2m > d > 0, If we try to assign only

two colors for vertices of K(3)
3×m, then, according to Remark 5.1, there are five cases

as we can see in Example 5.3. We can generally prove that in cases (i) - (iv), the

number of monochromatic edges is more than m3 − (t + 1)m2 + t2m and hence,

more than d as follows.

Case 1: Since m ≥ t, tm ≥ t2. Then, −m2 ≥ −(t+1)m2+ t2m. Thus, m3−m2 ≥

m3 − (t+ 1)m2 + t2m.

Case 2: First, we claim that m3 + (2p − 1)m2 + (p2 − 2p)m > m3 − m2. Since

m3+(2p−1)m2+(p2−2p)m = (m3−m2)+(2pm2+p2m−2pm) and m3−m2 > 0,

it is sufficient to show that 2pm2 + p2m− 2pm > 0. The assertion is true because

2pm2 + p2m > 2pm2 > 2pm whenever m ≥ 3 and we obtain the claim. Next,

by Case 1, we can conclude that m3 + (2p − 1)m2 + (p2 − 2p)m > m3 − m2 ≥

m3 − (t+ 1)m2 + t2m.

Case 3: Let t =
⌊m
2

⌋
and 1 ≤ p ≤ m− 1. We consider two cases as follows.

Case 3.1: p ≤ t. Then, t+ p ≤ m and (t− p)(t+ p)m ≤ (t− p)m2.

Thus, m3 − (t+ 1)m2 + t2m ≤ m3 − (p+ 1)m2 + p2m.

Case 3.2: t < p. Then, p+ t ≥ m and (p+ t)(p− t)m ≥ (p− t)m2.

Thus, m3 − (p+ 1)m2 + p2m ≥ m3 − (t+ 1)m2 + t2m.

From both cases, we conclude that m3−(p+1)m2+p2m ≥ m3−(t+1)m2+t2m.

Case 4: Let t =
⌊m
2

⌋
and 1 ≤ p, q ≤ m− 1. We consider two cases as follows.
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Case 4.1: p+ q ≤ t. Then, t+ (p+ q) ≤ m and (t− (p+ q))(t+ (p+ q))m ≤

(t−(p+q))m2. Since m ≥ 3, we have (t2−(p+q)2)m−(m−2)pq < (t2−(p+q)2)m ≤

(t − (p + q))m2 = (t + 1 − (p + q + 1))m2. Thus, m3 − (t + 1)m2 + t2m <

m3 − (p+ q + 1)m2 + (p2 + q2 + 3pq)m− 2pq.

Case 4.2: t < p+ q. Then, (p+ q) + t ≥ m and ((p+ q)− t)((p+ q) + t)m ≥

((p+q)−t)m2. Since m ≥ 3, we have ((p+q)2−t2)m+(m−2)pq > ((p+q)2−t2)m ≥

((p+ q)− t)m2 = ((p+ q+1)− (t+1))m2. Thus, m3 − (p+ q+1)m2 + (p2 + q2 +

3pq)m− 2pq > m3 − (t+ 1)m2 + t2m.

From both cases, we conclude that m3−(p+q+1)m2+(p2+q2+3pq)m−2pq >

m3 − (t+ 1)m2 + t2m.

As we can see that in general these four cases can almost lead us to the conclu-

sion that χ≤dK
(3)
3×m = 3 for m3 − (t + 1)m2 + t2m > d > 0. Now, we consider the

last case. In this case, we want to show that 4m3−(4p+4q+4r+3)m2+(p2+q2+

r2 +2p+2q+2r+3pq+3pr+3qr)m− (2pq+2pr+2qr) > m3 − (t+1)m2 + t2m.

Since t =
⌊m
2

⌋
, we consider two cases as follows.

If t = m

2
, then 4m3− (4p+4q+4r+3)m2+(p2+ q2+ r2+2p+2q+2r+3pq+

3pr + 3qr)m− (2pq + 2pr + 2qr)− (m3 − (t+ 1)m2 + t2m) =
13

4
m3 − (4p+ 4q +

4r+ 2)m2 + (p2 + q2 + r2 + 2p+ 2q + 2r+ 3pq + 3pr+ 3qr)m− (2pq + 2pr+ 2qr).

We only know that for a sufficiently large m, 13
4
m3 − (4p+4q+4r+2)m2 +(p2 +

q2 + r2 + 2p+ 2q + 2r + 3pq + 3pr + 3qr)m− (2pq + 2pr + 2qr) > 0.

If t = m− 1

2
, then 4m3 − (4p+4q+4r+3)m2 + (p2 + q2 + r2 +2p+2q+2r+

3pq+3pr+3qr)m−(2pq+2pr+2qr)−(m3−(t+1)m2+ t2m) =
13

4
m3−(4p+4q+

4r+2)m2+(p2+q2+r2+2p+2q+2r+3pq+3pr+3qr− 1

4
)m− (2pq+2pr+2qr).

We only know that for a sufficiently large m, 13
4
m3 − (4p+4q+4r+2)m2 +(p2 +

q2 + r2 + 2p+ 2q + 2r + 3pq + 3pr + 3qr − 1

4
)m− (2pq + 2pr + 2qr) > 0.

Therefore, at this point, we can just conclude that 4m3−(4p+4q+4r+3)m2+

(p2+q2+r2+2p+2q+2r+3pq+3pr+3qr)m−(2pq+2pr+2qr) > m3−(t+1)m2+t2m

provided that m is large enough. We also implement a computer program and

varies several values of m and it confirm that the desire inequality holds.
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Next, we determine a chromatic number of defective coloring on K
(3)
3×m of which

each color class is acyclic.

Theorem 5.4. Let m ≥ 3. χT
≤d(K

(3)
3×m) = 3, for all d ≥ 0.

Proof. It is obvious that we can assign three colors. Thus, χT
≤d(K

(3)
3×m) ≤ 3. By

Remark 5.1, there are five cases to assign two colors. The cases each occurs a

color class which induces a cycle. Then, we cannot assign only two colors to this

hypergraph. Thus, χT
≤d(K

(3)
3×m) ̸= 2. Therefore, χT

≤d(K
(3)
3×m) = 3.

From Theorem 5.4, χT
≤d(K

(3)
3×m) = χ(K

(3)
3×m) = 3, we see that the value of d does

not affect the result.
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