DEVELOPMENT OF A METHOD TO MEASURE THE MODERATOR TEMPERATURE DISTRIBUTION IN A CANDU REACTOR

Ms. Maytinee Vatanakul

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2000

ISBN 974-334-133-1

Thesis Title: Development of a Method to Measure the Moderator

Temperature Distribution in a CANDU Reactor

By : Ms. Maytinee Vatanakul

Program: Petrochemical Technology

Thesis Advisors: Prof. Frank R. Steward

Prof. Somchai Osuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee:

(Prof. Frank R.Steward)

Frank R Steward

(Prof. Somchai Osuwan)

(Asst. Prof. Thirasak Rirksomboon)

ABSTRACT

4171017063: PETROCHEMICAL TECHNOLOGY PROGRAM

KEYWORD: CANDU / Temperature/ Distribution/ Moderator

Maytinee Vatanakul: Development of a Method to Measure the Moderator Temperature Distribution in a CANDU Reactor. Thesis

Advisors: Prof. Frank R. Steward and Prof. Somchai Osuwan 123

pp ISBN 974-334-133-1

CANDU, Canada Deuterium Uranium, represents the power reactor system using natural uranium as a fuel, and heavy water as a coolant and a moderator of the reactor. The moderator is used to slow neutrons to increase fission probability in the fuel, and act as a heat sink for reactor accident situation. Due to irradiative heating of any material present, the measurement of the temperature ability in reactor operation is difficult. The Vertical Flux Detector assembly (VFD) could be used to measure the moderator temperature. The experiments were carried out to determine the heat transfer characteristics of the VFD by using the test cell duplicated from a small section of the VFD with electrical heating to simulate the irradiative heating in the reactor core. A number of parameters were analyzed to determine their effects on the measurement technique. A numerical calculation using FLUENT was applied to determine the temperature profile in the VFD correlated with its heat transport characteristics. It was found that the temperature difference between the moderator and the positions in the detector wells of the electrical heaters was directly proportional to the internal heat generation rate. The temperature distribution along the detector wells could be used to determine the irradiative heating in the station reactor moderator.

บทคัดย่อ

เมทินี วัฒนะกุล : การพัฒนาวิธีการวัคค่าการกระจายอุณหภูมิของโมเคอเรเตอร์ในเตา ปฏิกรณ์ปรมาณูแคนคู (Development of a Method to Measure the Moderator Temperature Distribution in a CANDU Reactor) อ. ที่ปรึกษา : ศาสตราจารย์ คร. แฟรงค์ อาร์ สจ๊วต (Prof. Frank R. Steward) และ ศาสตราจารย์ คร. สมชาย โอสุวรรณ 123 หน้า ISBN 974-334-133-1

แคนค (CANDU) หรือแคนนาคา คิวทีเรียม ยเรเนียม (Canada Deuterium Uranium) เป็นเตา ปฏิกรณ์ปรมาณูสำหรับผลิตกระแสไฟฟ้าโดยใช้ยูเรเนียมธรรมชาติเป็นเชื้อเพลิง ใช้ติวทีเรียมเป็นสาร หล่อเย็นและใช้เป็นโมเคอเรเตอร์ (Moderator) ค้วย โมเคอเรเตอร์คือส่วนประกอบสำคัญทำหน้าที่ ชะลอการเคลื่อนตัวของนิวตรอนเพื่อเพิ่มอัตราการเกิดปฏิกิริยาฟิสชั่น และช่วยถ่ายโอนความร้อนเมื่อ ระบบของเตาปฏิกรณ์ไม่สามารถทำงานได้ตามปกติ การวัดค่าอุณหภูมิขณะที่เตาปฏิกรณ์กำลังทำงาน ทำ ได้ยากเนื่องจากมีความร้อนจากกับมันตภาพรังสีปริมาณสูง จึงได้มีการนำเครื่องเวอติเคิลฟลักดิเท็ก เตอร์ (Vertical Flux Detector) หรือวีเอ็ฟคี (VFD) มาใช้ในการวัคค่าอุณหภูมิของโมเคอเรเตอร์ การ คำเนินการทคลองนี้เพื่อศึกษาลักษณะการถ่ายโอนความร้อนของวีเอ็ฟดีโคยใช้เครื่องมือชื่อเทสเซล (Test Cell) ซึ่งเป็นแบบจำลองจากส่วนของวีเอ็ฟคีโคยการประยุกต์ใช้ความร้อนจากกระแสไฟฟ้าแทน ความร้อนจากกัมมันตภาพรังสึภายในเตาปฏิกรณ์ ควบคู่ไปกับการวิเคราะห์ผลของตัวแปรจำนวนหนึ่ง ที่มีต่อวิธีการวัดค่าอุณหภูมิ การคำนวณโดยโปรแกรมฟลูเอ็น (FLUENT) เพื่อศึกษาการกระจาย อุณหภูมิภายในวีเอ็ฟดีเปรียบเทียบกับลักษณะการถ่ายโอนความร้อนของวีเอ็ฟดี การทดลองแสดงให้ เห็นว่าการเปลี่ยนแปลงอุณหภูมิของโมเคอเรเตอร์เมื่อเปรียบเทียบกับอุณหภูมิภายในช่องตรวจวัด (Detector Wells) เพิ่มขึ้นเป็นสัคส่วนโคยตรงกับอัตราการเกิดความร้อน และการกระจายอุณหภูมิของ ช่องตรวจวัคสามารถใช้ในการศึกษาหาค่าความร้อนของการแผ่รังสีภายในโมเคอเรเตอร์ของเตา ปฏิกรณ์ในโรงงานผลิตกระแสไฟฟ้าได้

ACKNOWLEDGEMENTS

From the deepest of my heart, I would like to acknowledge all the help and trust that I have received during my years in Thailand and Canada.

First, I would like to express my graceful thank to Prof. Frank R. Steward, my advisor, for his endless help and guidance in all phases of my work. His suggestions were very valuable and appreciated. I also would like to thank his family for their warm concern since my first day in Canada.

I would like to express my gratitude to Prof. Somchai Osuwan, my Thai advisor, who supported me many valuable suggestions and gave me the precious chance doing my thesis in Canada. Thank Dr. Thirasak Rirksomboon for his useful information and his time for discussing and correcting my work.

I would like to express my special thanks to David Rouison, Elizabet Cruz, and Savaluxs Supa-amornkul, the special friends of mine, for their valuable help, understanding care and hospitality made my visit to Canada enjoyable.

My thanks are also extended to all the CNER staff, all of my friends in Canada and all of my friends in Thailand for their assistance and friendliness.

Finally, I would like to sincerely thank my family who loves and faithfully encourages me throughout my education.

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Abstract (in English)	iii
	Abstract (in Thai)	iv
	Acknowledgements	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	X
CHAPTER		
I	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Objectives	9
	1.3 Scope of Research Works	9
II	LITERATURE SURVEY	10
	2.1 Background	10
	2.1.1 Moderator Purification System	14
	2.1.2 Moderator Deuterium and De-Deuteration	
	System	14
	2.1.3 Moderator Cover Gas System	15
	2.1.4 Moderator D ₂ O Collection System	15
	2.1.5 D ₂ O Sampling System	15
	2.1.6 D ₂ O Supply System	16
	2.1.7 Liquid Poison System	16
	2.2 Development of CANDU System	17

CHAPTER		PAGE
	2.3 Loss of Coolant Accidents (LOCA)	19
	2.4 Moderator Temperature	23
III	EXPERIMENTAL	28
	3.1 Materials	28
	3.2 Equipment	28
	3.3 Experimental Methods	33
	3.3.1 Temperature Distribution Study in Steady S	tate
	Condition	33
	3.4 Mathematical Analysis	35
	3.4.1 One Dimensional Steady State Analysis	35
	3.4.1.1 For Radial Heat Transfer	35
	3.4.1.1.2 For Electrical Heating	37
	3.5 Numerical Analysis	39
	3.5.1 Introduction to Computational Fluid Dyna	mics 39
	3.5.2 Introduction of FLUENT	41
IV	RESULTS AND DISCUSSION	46
	4.1 Experimental	46
	4.1.1 General Condition	46
	4.1.2 Irradiative Heating (Gamma Cell)	47
	4.1.3 Electrical Heating	50
	4.2 Numerical	62
	4.2.1 General Condition	62
	4.2.2 Numerical Results	63

CHAPTEI	R	PAGE
V	CONCLUSIONS AND RECOMMENDATIONS	77
	5.1 Conclusions	77
	5.2 Recommendations	78
	REFERENCES	80
	APPENDICES	82
	CURRICULUM VITAE	120

LIST OF TABLES

ΓABLE		PAGE
3.1	Dimensions of test cell	32
4.1	Temperature difference of electrical heating at 2.8W, water	
	flow rate at 0.14 m/s, and heaters and strap at the center	57
4.2	Temperature difference of electrical heating at 2.8 W, water	
	flow rate at 0.14 m/s, heaters at bottom and strap at the center	57
4.3	Temperature difference of electrical heating at 2.8W, water	
	flow rate at 0.14 m/s, heater at bottom and strap at 2.5 cm from	n
	the top of cap	58
C.1.1	The data of test cell with electrical heating, electrical heaters a	ıt
	the bottom of the test cell	104
C.1.2	The data of test cell with electrical heating, electrical heaters a	ıt
	the bottom of the test cell and using pumped water	105
C.1.3	The data of test cell with electrical heating, electrical heaters,	
	strap at the center of the test cell	106
C.1.4	The data of test cell with electrical heating, electrical heaters,	
	strap at the center of the test cell and using pumped water	109
C.1.5	The data of test cell with electrical heating, electrical heaters	
	and strap at the center of the test cell, thermocouple at 1 cm	
	from top of test cell	110

LIST OF FIGURES

FIGUR	E	PAGE
1.1	Nuclear power plant	1
1.2	Internal structure of a CANDU reactor	3
1.3	CANDU reactor simplified diagram	4
1.4	Location of vertical assemblies of moderator	6
1.5	Cross section of vertical flux detector assembly	8
2.1	Basic reactor components	11
3.1	Diagram of test cell showing thermocouple placements	30
3.2	Experimental arrangement for steady state tests using the	
	electrical heaters	34
3.3	Representation of VFD for steady state analysis based on the	
	radial heat transfer	36
3.4	Relationship between pure experiment and pure theory	39
3.5	The model of test cell used in FLUENT 5	44
4.1	Result of gamma heating, 0.091 m/s velocity, thermocouple at	
	3 cm from top of cap, and strap at the center	48
4.2	Result of gamma heating, 0.516 m/s velocity, thermocouple at	
	3 cm from top of cap, and strap at the center	49
4.3	Result of electrical heating at 4.5 W, 0.27 m/s velocity and	
	thermocouples, heaters, and strap at the center	51
4.4	Result of electrical heating at 17.5 W, 0.27 m/s velocity and	
	thermocouples, heaters, and strap at the center	51
4.5	Result of electrical heating at 4.5 W, 0.96 m/s velocity and	
	thermocouples, heaters, and strap at the center	53
4.6	Result of electrical heating at 17.5 W, 0.69 m/s velocity and	
	thermocouples, heaters, and strap at the center	53

FIGURE	PAGE
4.7 Temperature difference of electrical heating at 4.5 and 17.5	W,
and heaters, thermocouples and strap at the center	55
4.8 Temperature difference of electrical heating at 17.5 W, and	
heaters, thermocouples and strap at the center	55
4.9 Temperature difference vs. the rate of heating for various	
thermocouples	59
4.10 Temperature difference of two levels of heat generation for	
different positions of thermocouples within test cell relative	2
to strap	61
4.11 Temperature profile for the small part of the test cell with	
electrical heating at 10 W and using air	64
4.12 Temperature profile for specifying at the strap of the test ce	:11
with electrical heating at 10 W and using air	64
4.13 Temperature profile for the small part of the test cell with	
gamma heating at 10 W and using air	65
4.14 Temperature profile specifying at the strap of the test cell w	ith
gamma heating at 10 W cell and using air	65
4.15 Temperature profile for the small part of the test cell with	
electrical heating at 10 W and using helium	66
4.16 Temperature profile for specifying at the strap of the test ce	ell
with electrical heating at 10 W and using helium	66
4.17 Temperature profile for the end part of the test cell with gar	mma
heating at 10 W and using helium	67
4.18 Temperature profile for specifying at the strap of the test ce	ell
with gamma heating at 10 W and using helium	67

IGUR	(L	PAGE
4.19	The temperature along the inside surface of the center tube,	
	(R ₁) for electrical heating at 10 W with using air	69
4.20	The temperature along the outside surface of the outer tube,	
	(R ₆) for electrical heating at 10 W with using air	69
4.21	The temperature along the inside surface of the center tube,	
	(R ₁) for electrical heating at 10 W with using helium	70
4.22	The temperature along the outside surface of the outer tube,	
	(R ₆) for electrical heating at 10 W with using helium	70
4.23	The temperature along the inside surface of the center tube,	
	(R ₁) for gamma heating at 10 W with using air	71
4.24	The temperature along the outside surface of the outer tube,	
	(R ₆) for gamma heating at 10 W with using air	71
4.25	The temperature along the inside surface of the center tube,	
	(R ₁) for gamma heating at 10 W with using helium	72
4.26	The temperature along the outside surface of the outer tube,	
	(R ₆) for gamma heating at 10 W with using helium	72
4.27	Temperature difference between the strap and the center	
	between two straps vs. heating rate with using air	75
4.28	Temperature difference between the strap and the center	
	between two straps vs. heating rate with using helium	75
A.3	Representation of VFD for steady state analysis, based on the	
	axial heat transfer	103
B.1	Experimental arrangement for steady state processes	103
C.2.	l Temperature profile for the small part of the test cell with	
	electrical heating at 5 W and using air	112
C.2.2	2Temperature profile for specifying at the strap of the test cell	
	with electrical heating at 5 W and using air	112

FIGURE	PAGE
C.2.3 Temperature profile for the small part of the test cell with	
gamma heating at 5 W and using air	113
C.2.4 Temperature profile for specifying at the strap of the test cell	
with gamma heating at 5 W and using air	113
C.2.5 Temperature profile for the end part of the test cell with	
electrical heating at 5 W and using helium	114
C.2.6 Temperature profile for specifying at the strap of the test cell	
with electrical heating at 5 W and using helium	114
C.2.7 Temperature profile for the end part of the test cell with	
gamma heating at 5 W and using helium	115
C.2.8 Temperature profile for specifying at the strap of the test cell	
with gamma heating at 5 W and using helium	115
C.2.9 The temperature along the inside surface of the center tube,	
(R ₁) for electrical heating at 5 W with using air	116
C.2.10The temperature along the outside surface of the outer tube,	
(R ₆) for electrical heating at 5 W with using air	116
C.2.11 The temperature along the inside surface of the center tube,	
(R ₁) for gammma heating at 5 W with using air	117
C.2.12The temperature along the outside surface of the outer tube,	
(R ₆) for gammma heating at 5 W with using air	117
C.2.13The temperature along the inside surface of the center tube,	
(R ₁) for electrical heating at 5 W with using helium	118
C.2.14The temperature along the outside surface of the outer tube,	
(R ₆) for electrical heating at 5 W with using helium	118
C.2.15The temperature along the inside surface of the center tube,	
(R ₁) for gamma heating at 5 W with using helium	119

FIGURE	PAGE
C.2.16 The temperature along the outside surface of the outer tube,	
(R ₆) for gamma heating at 5 W with using helium	119

FIGURE	PAGE

C.2.16 The temperature along the outside surface of the outer tube,
(R₆) for gamma heating at 0.555 W/g with using helium 120