OPTICAL FILMS BASED ON POLY(*P*-PHENYLENE VINYLENE) (PPV), PROTEIN EXTRACTED FROM THE SCALES OF SEABASS, AND THEIR NANOCOMPOSITES

Ms. Duangporn Saramas

A Thesis Submitted in Partial Fulfilment of the Requirements For the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University In Academic Partnership with The University of Michigan, The University of Oklahoma, And Case Western Reserve University 2003 ISBN 974-17-2317-2

1 21093736

Thesis Title:	Optical Films Based on Poly (p-phenylene vinylene) (PPV),			
	Protein Extracted from the Scales of Seabass, and their			
	Nanocomposites			
By:	Duangporn Saramas			
Program:	Polymer Science			
Thesis Advisors: Asst. Prof. Rathanawan Magaraphan				
	Assoc. Prof. David C. Martin			

5.

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyaluint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Kathanawan Mapangali

(Asst. Prof. Rathanawan Magaraphan)

1

(Assoc. Prof. David C. Martin)

Supa Hunnongbun.

(Asst. Prof. Supa Hannongbua)

. . . .

(Dr. Toemsak Srikhirin)

ABSTRACT

4472001063 : POLYMER SCIENCE PROGRAM
Duangporn Saramas: Optical Films Based on Poly(*p*-phenylene vinylene) (PPV), Protein Extracted from the Scales of Seabass, and their Nanocomposites.
Thesis Advisors: Asst. Prof. Rathanawan Magaraphan and Assoc. Prof. David C. Martin, 87 pp. ISBN 974-17-2317-2
Keywords : Poly(*p*-phenylene vinylene)/ Nanocomposites/ Light-emitting diodes/ Montmorillonite/ Color tunability/ Environmental stability

Nanocomposites of poly(p-phenylene vinylene) (PPV) and protein extracted from the scales of seabass were studied. The natural sodium-montmorillonite was cation exchanged with bis(hydrogenated tallowalkyl) dimethyl quaternary ammonium chloride. These polymer/layered silicate nanocomposites were synthesized and consisted of different organically-modified clays, proven by TGA, WAXD, FTIR, and TEM. Barrier properties and color tunability improved with increasing organophilic clay content. The rate of photoluminescence decay in polymer-clay nanocomposites drastically reduced compared to that of pristine polymer. Organic light-emitting diodes based on PPV, protein and their nanocomposites fabricated by spin-coating have demonstrated good operating The results showed important implications for enhanced lifetime of stability. polymer-clay nanocomposites based optoelectronic devices.

บทคัดย่อ

ดวงพร สาระมาศ : ไดโอคเปล่งแสงที่ทำจากสารพอลิพาราฟีนิลลึนไวนิลลึน, สารเรือง แสงสกัดจากเกล็ดปลากะพงขาวและพอลิเมอร์นาโนคอมพอสิต (Optical Films Based on Poly (*p*-phenylene vinylene) (PPV), Protein Extracted from the Scales of Seabass, and their Nanocomposites) อ. ที่ปรึกษา: ผศ.ดร. รัตนวรรณ มกรพันธุ์ และ รศ.ดร. เดวิด ซี มาร์ติน 87 หน้า ISBN 974-17-2317-2

อายุการใช้งานของไดโอดเปล่งแสงที่ทำจากพอลิพาราฟีนิลลีนไวนิลลีนและสารเรือง แสงซึ่งสกัดจากเกล็ดปลากะพงขาวได้ถูกพัฒนาให้มีประสิทธิภาพขึ้นโดยการผสมอนุภาคขนาด เล็กมากในหน่วยนาโนเมตรเข้าไปในสารตั้งด้น ดินซึ่งเป็นสารประกอบซิลิเกตได้ถูกปรับสภาพให้ มีคุณสมบัติกวามเป็นสารอินทรีย์มากขึ้นโดยอาศัยสารลดแรงดึงผิว พอลิเมอร์นาโนคอมพอสิต เหล่านี้ได้ถูกสังเคราะห์ขึ้นมาโดยใช้ปริมาณของดินที่อัตราส่วนแตกต่างกันและสามารถตรวจสอบ ได้ด้วยเทคนิก TGA, WAXD, FTIR และ TEM จากการทดลองพบว่าสารนาโนคอมพอสิตมีคุณ สมบัติกวามต้านทานต่อกวามชื้นและก๊าซรวมถึงกวามสามารถในการเปล่งแสงที่ความถี่ต่างกันก่อ ให้เกิดความหลากหลายของสีที่เปล่งออกมา นอกจากนี้พบว่าเมื่อปริมาณของคินเพิ่มมากขึ้น สาร พอลิเมอร์นาโนคอมพอสิตยังสามารถลดอัตราการเสื่อมสภาพของแสงที่เปล่งออกมาได้ดีกว่าพอลิ เมอร์บริสุทธิ์ ไดโอดเปล่งแสงที่ถูกสร้างขึ้นจากพอลิเมอร์นาโนคอมพอสิตส่งผลให้มีประสิทธิ ภาพในการใช้งานมากขึ้น จากผลการทดลองทั้งหมดที่กล่าวมาสามารถสรุปได้ว่าพอลิเมอร์นาโน กอมพอสิตเป็นอีกทางเลือกหนึ่งที่สามารถนำไปใช้ประโยชน์เพื่อพัฒนาประสิทธิภาพอายุการใช้ งานของเครื่องมือทางเทคโนโลยีอิเล็กโตรออปติกส์ด่อไป

ACKNOWLEDGEMENTS

Several individuals have contributed to my being able to attend graduate school. First and foremost, I would like to express my sincere gratitude to Asst. Prof. Rathanawan Magaraphan for her guidance, invaluable advice, supervision and encouragement throughout. I am deeply grateful to Assoc. Prof. David C. Martin from the University of Michigan, Ann Arbor, MI, USA for his constructive suggestions.

I wish to thank Dr. Toemsak Srikhirin from the Department of Physics, Mahidol University and Asst. Prof. Supa Hannongbua from the Department of Chemistry, Kasetsart University for their great help and being my thesis committee.

Seabass skinfish kindly supported by Assoc. Prof. Tharapong Vitidsant from the Department of Chemical Technology, Chulalongkorn University is much appreciated. I am also thankful to Dr. Boonsong Sutapan at National Electronics and Computer Technology Center (NECTEC) for his assistance in photoluminescence spectroscopy.

In addition, I am thankful for surfactant provided by Unilever Thai Holdings Co., Ltd. and ITO coated glass supported by Mr. Alex Wu from Thin Film Devices, Incorporated Taiwan.

Good Assistance throughout this work from Mr. Pirot Jaideaw, Mr. Pradit Pramotethana, C.P.O. Poon Arjpru, Ms. Sara Sarovart, and all of the college's staffs are gratefully acknowledged. This work is partially funded by Postgraduate Educationa and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

Finally, I would like to give my special thanks to all of my friends for their friendly help and suggestions. Especially, I am greatly indebted to my family for their love, sincere care and generous encouragement.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	X
List of Figures	xi
Abbreviations	xiv

PAGE

CHAPTER

Ι	INTRODU	JCTION	
	1.1 Proble	m Statement	1
	1.2 Backg	round	2
	1.3 Object	ives	12
II	LITERAT	URE SURVEY	
	2.1 Light-l	Emitting Diodes Based on Polymer	13
	2.2 Polym	er-Clay Nanocomposites	16
III	EXPERIM	IENTAL	19
	3.1 Materi	als	19
	3.2 Equipr	nent	20
	3.2.1	Wide Angle X-ray Diffractometer (WAXD)	20
	3.2.2	Fourier Transform Infrared	
		Spectrophotometer (FTIR)	20
	3.2.3	Atomic Absorption Spectrophotometer	
		(AAS)	21
	3.2.4	Thermogravimetric Analysis (TGA)	21

IV

3.2.5	Transmission Electron Microscope (TEM)	21
3.2.6	Photoluminescence Setup	22
3.2.7	Current-Voltage Source Unit	22
3.3 Meth	odology	23
3.3.1	Preparation of Organically Modified	
	Montmorillonite	23
3.3.2	Synthesis of Poly(<i>p</i> -phenylene vinylene)	
	(PPV)	25
3.3.3	Preparation of Protein Extracted from	
	the Scales of Seabass	25
3.3.4	Preparation of PPV/Layered Silicate	
	Nanocomposites	26
3.3.5	Preparation of Protein/Layered Silicate	
	Nanocomposites	26
3.3.6	Spin-Coating of Polymer/Layered Silicate	
	Nanocomposites	26
3.3.7	Sample Preparation for Color Tunability	
	and Environmental Stability Measurement	27
3.3.8	Sample Preparation for Water Absorption	
	Measurement	27
3.3.9	Fabrication of Light-Emitting Devices	28
RESULT	S AND DISCUSSION	29
4.1 Chara	cterization of Organically-Clay Filler	29
4.1.1	FTIR	29
4.1.2	WAXD	31
4.1.3	TGA	32
4.1.4	AAS	33
4.2 Chara	cterization of Poly(p-phenylene vinylene)	34
4.2.1	FTIR	34

 \mathbf{V}

4.2.2	UV-Vis and Photoluminescence	40		
4.3 Characterization of Protein Extracted from				
the Sca	41			
4.3.1	41			
4.3.2	4.3.2 UV-Vis and Photoluminescence			
4.4 Charac	cterization of Polymer-Clay Nanocomposites	46		
4.4.1	FTIR	48		
4.4.2	WAXD	50		
4.4.3	TEM	52		
4.5 Properties Measurement				
4.5.1	Color Tunability	53		
4.5.2	Water Absorption	55		
4.5.3	Environmental Stability	57		
4.5.4	Current-Voltage Characteristics			
	Measurement	59		
CONCLUSIONS 63				
REFERENCES				
APPENDI	CES	69		
Appendix .	A Determination of sodium ions in			
	Montmorillonite by Atomic			
	Absorption Spectrometry (AAS)	69		
Appendix	B Kjeldahl nitrogen determination			
	method	74		
Appendix	C TGA results of PPV, protein and			
	their nanocomposites	77		

viii

CHAPTER

Appendix D	Water absorption data of polymer/		
	layered silicate nanocomposites	81	
Appendix E Environmental stability test result			
	a function of time	82	

CURRICULUM VITAE

87

PAGE

LIST OF TABLES

TABLE

PAGE

1.1	Taxanomy of giant sea perch	6
1.2	The species in smectite clay group	7
4.1	FTIR absorption bands assignment of Na-MMT	30
4.2	FTIR absorption bands assignment of OH	30
4.3	FTIR absorption bands assignment of OH-MMT	31
4.4	FTIR absorption bands assignment of PPV	38
4.5	The suggested amino acids containing conjugated bonds	
	and aromatic rings that can function as chromophores	43
4.6	Basal spacing of PPV/layered silicate nanocomposites	
	with different percentage contents of organophilic-clay	48
4.7	Basal spacing of protein/layered silicate nanocomposites	
	with different percentage contents of organophilic-clay	50
4.8	The first and second decomposition temperatures of	
	PPV/OH-MMT	52
4.9	The first and second decomposition temperatures of	
	protein/OH-MMT	52

LIST OF FIGURES

FIGURE

1.1	Evolution of LEDs performance	2
1.2	Schematic drawing of a single-layer	
	electroluminescent device	3
1.3	Chemical structure of poly(p-phenylene vinylene) (PPV)	4
1.4	Synthetic route to PPV	4
1.5	Seabass or giant sea perch	5
1.6	Model of 2:1 type clay montmorillonite	8
1.7	Schematic illustrations of three possible types of polymer-	
	clay composites	9
1.8	Photodegradation mechanism	11
3.1	Chemical structure of <i>p</i> -xylylene	
	bis(tetrahydrothiophenium) chloride	19
3.2	Photoluminescence setup	22
3.3	Current/voltage source unit	23
3.4	Flow diagram of organically-modified MMT preparation	25
3.5	Spin-coater model P6708	27
3.6	Typical structure of a single-layer polymer light-emitting	
	device	28
4.1	FTIR spectra of (a) Na-MMT, (b) OH, and	
	(c) OH-MMT	29
4.2	WAXD patterns of (a) OH and (b) OH-MMT	32
4.3	TGA thermograms of (a) Na-MMT, (b) OH, and	
	(c) OH-MMT	33
4.4	Formation reaction	34
4.5	1,6-Elimination reaction	34
4.6	Addition reaction	35
4.7	FTIR spectrum of precursor polymer	35
4.8	Apperance of precursor polymer	36

PAGE

4.9	Thermal elimination to PPV	36
4.10	FTIR spectrum of PPV	37
4.11	Appearance of PPV	39
4.12	UV-Vis spectrum of PPV	40
4.13	Photoluminescence spectrum of PPV	41
4.14	FTIR spectrum of protein extracted from scales	
	of seabass	42
4.15	Appearance of protein extracted from the scales of seabass	44
4.16	UV-Vis spectrum of protein extracted from scales	
	of seabass	45
4.17	Photoluminescence spectrum of protein extracted	
	from scales of seabass	46
4.18	FTIR spectra of (a) PPV, PPV/OH-MMT (b) 30 wt %,	
	(c) 40 wt %, (d) 50 wt %, (e) 60 wt %, and (f) OH-MMT	46
4.19	FTIR spectra of (a) protein, protein/OH-MMT	
	(b) 30 wt %, (c) 40 wt %, (d) 50 wt %, (e) 60 wt %,	
	and (f) OH-MMT	47
4.20	WAXD patterns of (a) OH-MMT, PPV/OH-MMT	
	(b) 30 wt %, (c) 40 wt %, (d) 50 wt %, and (e) 60 wt %	48
4.21	WAXD patterns of (a) OH-MMT, protein/OH-MMT	
	(b) 30 wt %, (c) 40 wt %, (d) 50 wt %, and (e) 60 wt %	49
4.22	TEM of PPV/OH-MMT 40 wt %	50
4.23	TEM of protein/OH-MMT 30 wt %	50
4.24	Photoluminescence spectra of (a) PPV, (b) PPV-	
	clay 30% wt, (c) 40 wt %, (d) 50% wt, and (e) 60 wt %	53
4.25	Photoluminescence spectra of (a) protein, (b) protein-clay	
	30% wt, (c) 40 wt %, (d) 50% wt, and (e) 60 wt %	54
4.26	Effect of organophilic-clay on water absorption of PPV	55
4.27	Effect of organophilic-clay on water absorption of protein	
	extracted from scales of seabass	56
4.28	A model describing the difussion of water molecule	
	through polymer	56

4.29	The irradiation time dependence of photoluminescence	
	intensity of (a) PPV, PPV/OH-MMT (b) 30 wt %,	
	(c) 40 wt %, (d) 50 wt %, and (e) 60 wt %	58
4.30	The irradiation time dependence of photoluminescence	
	intensity of (a) protein, protein/OH-MMT (b) 30 wt %,	
	(c) 40 wt %, (d) 50 wt %, and (e) 60 wt %	58
4.31	Relationship between current and voltage of LEDs based	
	on (a) PPV, (b) PPV/OH-MMT 30 wt %, and	
	(c) PPV/OH-MMT 60 wt %	60
4.32	Relationship between current and voltage of LEDs based	
	on (a) protein, (b) protein/OH-MMT 30 wt %, and	
	(c) PPV/OH-MMT 60 wt %	60
4.33	Effect of organophilic-clay on the turn on voltage of LEDs	
	based on PPV-clay nanocomposites	61
4.34	Effect of organophilic-clay on the turn on voltage of LEDs	
	based on protein-clay nanocomposites	62

ABBREVIATIONS

CEC	=	Cation Exchange Capacity
EL	=	Electroluminescence
НОМО	=	Highest Occupied Molecular Orbital
Ι	=	Current
ITO	=	Indium Tin Oxide
LUMO	=	Lowest Unoccupied Molecular Orbital
LED	=	Light-Emittiing Diode
Meq	=	Milliquivalent
MMT	=	Montmorillonite
Na-MMT	=	Sodium Montmorillonite
OH-MMT	=	Bis(hydrogenated tallowalkyl) dimethyl quaternary
		ammonium chloride-montmorillonite
PL	=	Photoluminescence
PPV	=	Poly (p-phenylene vinylene)
V	-	Voltage