REFERENCES

- Bourrel, M., and Schechter, R.S. (Eds.). (1988). <u>Microemulsion and Related System.</u> New York: Marcel Dekker.
- Choi, S.J. and Choi, Y.H. (1996). Removal of direct red from aqueous solution by foam separation techniques of ion and adsorbing colloid flotation. <u>Separation Science and Technology</u>, 31(5), 2105-2116.
- Eckenfelder, W.W. (2000). Source and characteristic of industrial wastewater. <u>Industrial Water Pollution Control</u>, 3 rd Ed.; McGraw-Hill: New York, 1-50.
- Feng, D., Aldrich, C. (2000,13). Removal of diesel from aqueous emulsions by flotation. Separation Science and Technology, 35, 2159-2172.
- Freund, J. and Dobias, B. (1995). <u>Flotation science and engineering</u>, Marcel Dekker, Inc., New York.
- Kabil, M.A. and Ghazy, S.E. (1994). Separation of some dynes from aqueous solution by flotation. <u>Separation Science and Technology</u>, 29(18), 2533-2539.
- Koutlemani, M.M., Mavros, P., Zouboulis, A.I., and Matis, K.A. (1994). Recovery of Co²⁺ ions from aqueous solutions by froth flotation. <u>Separation Science and</u> <u>Technology</u>, 29(7), 867-886.
- Kubota, K. and Hayashi, S. (1997). The removal of sodium, cadmium and chromium ions from dilute aqueous solutions using foam fractionation. <u>Canadian</u> <u>Journal of Chemical Engineering</u>, 55(3), 286-292.
- Kubota, K., Kawanoue, H., and Hayashi, S. (1977). The removal of cationic metal from its dilute aqueous solutions by use of foam separation technique experimental surface excess equilibrium relationships for Mg-DBSNa-Water system. <u>Canadian Journal of Chemical Engineering</u>, 55(1), 101-104.
- Leu, M.H., Chang, J.E., and Ko, M.S. (1994). Removal of heavy metals from a chelated solution with electrolyte foam separation. <u>Separation Science and</u> <u>Technology</u>, 29(17), 2245-2261.

- Matis, K.A. and Zouboulis, A.I. (1995). An overview of the process. K.A. Matis (Eds.) Flotation Science and Engineering (pp.1-39). New York: Marcel Dekker.
- Martin, E.J., Oppelt, E.T., and Smith, B.P. (1992), <u>Chemical, Physical and Biological</u> Treatment, New York: Wiley, 130-133.
- Pal, R. and Masliyah, J. (1990). Oil recovery from oil in water emulsion using a flotation column. <u>Canadian Journal of Chemical Engineering</u>, 68, 959-967.
- Phoochinda, W. (1997). <u>Removal of emulsified oil from wastewater using froth</u> <u>flotation.</u> M.S. Thesis in the Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Ponstabodee, S., Scamehorn, J.F., Chavadej, S., Saiwan, C., and Harwell, J.H. (1998). Removal ortho-dichlorobenzene by froth flotation under Winsor's type III coditions. Separation Science and Technology., 33(4), pp 591-609.
- Porter, M.R. (1994). <u>Handbook of Surfactants.</u> 2nd Ed. London: Blackie Academic&Professional.
- Ratanarojanatam, (1995). <u>Clean-up of oily wastewater by froth flotation:effect of</u> <u>microemulsion formation by surfactant mixture.</u> M.S. Thesis in the Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Rosen, M.J., (1988). Surfactants and interfacial phenomena. New York: John Wiley.
- Scamehorn, J.F., and Harwell, J.H. (Eds.). (1989). <u>Surfactant-Based Separation</u> Process. New York: Marcel Dekker.
- Sebba, F., (1989). Novel Separation Using Aphrons. In Scamehorn, J.F., and Harwell, J.H.(Eds.), <u>Surfactant-Based Separation Process.</u> pp.92-117, Newyork: Marcel Dekker.
- Somasundaran, P., and Ramachandran, R. (1988). Surfactants In Flotation In Darsh, T., Martin, E. and Dinesh, O. (Eds.). <u>Surfactants In Chemical Process</u> <u>Engineering.</u> Pp.195-235, New York: Marcel.
- Tharapiwattananon, N., Scamehorn, J.F., Osuwan, S., Harwell, J.F., Haller, K.J. (1996). Surfactant recovery from water using foam fractionation. Separation Science and Technology, 31(9), 1233-1258.

- Winsor, P.A. (1954). <u>Solvent Properties of Amphiphhilic Compounds</u>. London: Butterworth.
- Wungrattanasopon, S., Scamehorn, J.F., Chavadej, S., Saiwan, C., and Harwell, J.H (1996). Use of foam flotation to remove tert-butylphenol from water. <u>Separation Science and Technology</u>, 31(11), pp 231-245.
- Wu, B., Harwell, J.H., Sabatini, D.A., Bailey, J.D. (2000) Alcohol-free diphenyl oxide disulphonate middle-phase microemulsion systems. <u>Journal of</u> <u>Surfactants and Detergents</u>, 3(4), 465-474.

WWW.EPA.COM

APPENDIX A

EXPERIMENTAL DATA OF MICROEMULSION FORMATION

1. Solubilization parameter (SP)

The solubilization parameter of oil (SP_o) and water (SP_w) are designed as:

$$SP_o = \frac{V_o}{M_s}$$
 and $SP_w = \frac{V_w}{M_s}$ (A.1)

where

Vo = volume of oil solubilized Ms = weight of surfactant Vw = volume of water solubilized

2. Interfacial tension (IFT)

The interfacial tension of each phase of microemulsion is calculated by the following formulation:

$$IFT = e(Vd)^3 n^2 \Delta \rho \tag{A.2}$$

where	$\sigma = interfacial tension (mN/m)$
	n = number of revolution (rpm)
	$e = 3427 \text{ x } 10-7 \text{ (mN cm}^3 \text{ min}^2/\text{m g mm}^3)$
	$V = 0.31 \ (mm/sdv)$
	d = measured drop diameter (sdv)
	$\Delta \rho$ = density difference of two liquids (g/cm ³)

3. Experiment data of Solubilization parameter (SP)

Table A-1 Volume fractions of water, middle, and oil phases and solubilization parameter of oil and water phases in microemulsion formation with 3 wt % AOT and 2 wt % Dowfax at different NaCl concentrations and initial oil to water ratio = 1:1.

Mixture of 3 wt % AOT and 2 wt % Dowfax										
NaCl conc			SPw	Spo						
(wt %)	Excess water	(ml/g)	(ml/g)							
2	0.54	0.00	0.46	19.99	1.73					
4	0.58	0.00	0.42	20.00	3.34					
5	0.36	0.26	0.38	5.58	4.91					
6	0.39	0.24	0.36	4.25	5.54					
7	0.41	0.24	0.35	3.47	5.98					

Table A-2 Volume fractions of water, middle, and oil phases and solubilization parameter of oil and water phases in microemulsion formation with 4 wt % AOT and 2 wt % Dowfax at different NaCl concentrations and initial oil to water ratio = 1:1.

Mixture of 4 wt % AOT and 2 wt % Dowfax									
NaCl conc		Volume fraction		SPw	Spo				
(wt %)	Excess water	Middle phase	Excess oil	(ml/g)	(ml/g)				
0.5	0.54	0.00	0.46	16.66	1.33				
1	0.56	0.00	0.44	16.67	1.88				
2	0.62	0.00	0.38	16.67	3.93				
3	0.30	0.38	0.31	6.54	6.28				
4	0.38	0.00	0.62	3.89	16.66				
5	0.39	0.00	0.61	3.51	16.67				

Table A-3 Volume fractions of water, middle, and oil phases and solubilization parameter of oil and water phases in microemulsion formation with 5 wt % AOT and 2 wt % Dowfax at different NaCl concentrations and initial oil to water ratio = 1:1.

Mixture of 5 wt% AOT and 2 wt % Dowfax										
NaCl conc		Volume fraction								
(wt %)	Excess water	(ml/g)	(ml/g)							
1.0	0.62	0.00	0.38	14.29	3.48					
1.3	0.66	0.00	0.34	14.29	4.67					
1.5	0.73	0.00	0.27	14.29	6.48					
1.7	0.16	0.60	0.24	9.57	7.55					
2.0	0.26	0.52	0.22	6.65	8.08					

3. Experiment data of interfacial tension (IFT)

- 3.1 Single surfactant concentration
- Table A-4Interfacial tension of each phase in microemulsion formation with 0.3 wt% AMA at different NaCl concentrations and initial oil to water ratio =1:1.

AMA	NaCl	Upper	Lower	Upper	Lower	Speed	IFT
conc	conc	density	density	level	level	(rpm)	(mN/m)
(wt %)	(wt %)	(g/cm^{3})	(g/cm ³)	(sdv)	(sdv)		
0.3	2	0.854	1.031	26.41	19.62	8.82	0.373
	3	0.869	1.040	24.73	21.29	8.86	0.046
	4	0.864	1.025	25.19	20.65	8.06	0.121
	5	0.868	1.046	25.57	20.47	7.15	0.242
	6	0.871	1.057	25.90	20.28	6.13	0.460
	7	0.872	1.063	26.20	20.04	6.13	0.622

Table A-5Interfacial tension of each phase in microemulsion formation with 1 wt%AMA at different NaCl concentrations and initial oil to water ratio =1:1.

AMA	NaCl	Upper	Lower	Upper	Lower	Speed	IFT
conc	conc	density	density	level	level	(rpm)	(mN/m)
(wt %)	(wt %)	(g/cm^3)	(g/cm^3)	(sdv)	(sdv)		
1.0	2	0.855	1.009	26.31	19.81	11.63	0.164
	3	0.861	1.011	25.29	20.69	18.13	0.023
	4	0.871	1.030	25.45	20.44	11.07	0.085
	5	0.869	1.045	25.37	20.43	6.93	0.231
	6	0.877	1.041	25.64	19.93	6.54	0.374
	7	0.860	1.040	25.94	19.78	6.13	0.587

Table A-6Interfacial tension of each phase in microemulsion formation with 2 wt% AMA at different NaCl concentrations and initial oil to water ratio =1:1.

AMA	NaCl	Upper	Lower	Upper	Lower	Speed	IFT
conc	conc	density	density	level	level	(rpm)	(mN/m)
(wt %)	(wt %)	(g/cm^3)	(g/cm^3)	(sdv)	(sdv)		
2.0	2	0.844	1.011	26.44	20.40	11.08	0.157
	3	0.851	1.022	25.41	21.35	12.82	0.036
	4	0.850	1.026	26.39	20.55	11.79	0.132
	5	0.850	1.035	26.35	20.41	7.66	0.346
	6	0.850	1.055	26.42	20.27	7.20	0.482
	7	0.850	1.059	26.37	20.18	6.15	0.687

Table A-7Interfacial tension of each phase in microemulsion formation with 3 wt% AMA at different NaCl concentrations and initial oil to water ratio =1:1.

AMA	NaCl	Upper	Lower	Upper	Lower	Speed	IFT
conc	conc	density	density	level	level	(rpm)	(mN/m)
(wt %)	(wt %)	(g/cm^3)	(g/cm^3)	(sdv)	(sdv)		
3.0	2	0.850	1.023	26.31	19.54	13.92	0.145
	3	0.850	1.030	25.49	20.41	18.40	0.037
	4	0.850	1.037	25.26	20.59	8.14	0.151
,	5	0.850	1.050	25.41	20.48	6.13	0.334
	6	0.850	1.048	25.63	20.41	6.12	0.394
	7	0.850	1.054	26.05	20.08	6.12	0.607

3.2 Mixed surfactant concentration

Table A-8Interfacial tension of each phase in microemulsion formation with 3 wt%AOT and 2 wt % Dowfax at different NaCl concentrations and initial oilto water ratio = 1:1.

System	NaCl	Upper	Lower	Upper	Lower	Speed	IFT _{w/m}	IFT _{o/m}
	conc	density	density	level	level	(rpm)	mN/m	mN/m
	(wt%)	(g/cm ³)	(g/cm ³)	(sdv)	(sdv)			
AOT 3	4	0.8555	0.9990	4.387	3.232	1700	-	0.0065
wt% and	5	0.8495	0.9660	4.217	2.888	1123	0.0010	0.0034
Dowfax		0.9660	1.0220	4.022	3.132	1552		
2 wt%	6	0.8440	0.9550	4.440	3.095	1222	0.0024	0.0029
		0.9550	1.0310	4.167	3.352	2804		
	7	0.8475	0.9330	4.158	3.032	1092	0.0065	0.0020
		0.9330	1.0460	4.015	3.025	2443		
	8	0.8470	0.9090	4.147	3.088	816		0.0011
		0.9090	1.0530	4.180	2.927	2031		

Table A-9 Interfacial tension of each phase in microemulsion formation with 4 wt % AOT and 2 wt % Dowfax at different NaCl concentrations and initial oil to water ratio = 1:1.

System	NaCl	Upper	Lower	Upper	Lower	Speed	IFT _{w/m}	IFT _{o/m}
	conc	density	density	level	level	(rpm)	mN/m	mN/m
	(wt%)	(g/cm^3)	(g/cm^3)	(sdv)	(sdv)			
AOT 4	3.0	0.8402	0.9460	4.175	2.955	994	0.0009	0.0019
wt% and		0.9460	1.0050	4.050	3.025	1154		
Dowfax	3.3	0.8435	0.9400	4.217	3.080	995	0.0009	0.0013
2 wt%		0.9400	1.0070	4.215	3.147	1117		
	3.5	0.8425	0.9290	4.463	3.260	723	0.0015	0.0011
		0.9290	1.0100	4.235	3.103	1293		
	4.0	0.8490	0.9090	4.317	3.050	557	0.0023	0.0007
		0.9090	1.0030	4.138	3.095	1881		

~

Table A-10Interfacial tension of each phase in microemulsion formation with 5 wt% AOT and 2 wt % Dowfax at different NaCl concentrations and initialoil to water ratio = 1:1.

System	NaCl	Upper	Lower	Upper	Lower	Speed	IFT _{w/m}	IFT o/m
	conc	density	density	level	level	(rpm)	mN/m	mN/m
	(wt%)	(g/cm^3)	(g/cm ³)	(sdv)	(sdv)			
AOT 5	1.3	0.8295	0.9660	3.889	3.286	2021	0.0006	0.0018
wt% and		0.9660	1.0200	3.767	3.329	1848		
Dowfax	1.5	0.8280	0.9500	3.917	3.323	1979	0.0008	0.0011
2 wt%		0.9500	1.0330	3.865	3.497	1653		
	1.7	0.8330	0.9560	3.997	3.312	1892	0.0013	0.0008
		0.9560	1.0090	3.900	3.048	3019		
	2.0	0.8410	0.9340	4.122	3.177	1617	0.0015	0.0007
		0.9340	1.0130	3.865	3.378	2968		

APPENDIX B

EXPERIMENTAL DATA OF FROTH FLOTATION EXPERIMENT

1. Dynamic oil removal

The oil removal was calculated by the following equation:

Oil removal (%) =
$$\frac{(C_t - C_i)}{C_i} * 100$$
 (B.1)

where

 C_t = concentration of oil in a solution at time t C_i = concentration of oil in a solution at time zero

2. Dynamic surfactant removal

The surfactant removal was calculated by the following equation:

Surfactant removal (%) =
$$\frac{(C_{s,t} - C_{s,i})}{C_{s,i}} * 100$$
 (B.2)

where $C_{s,t}$ = concentration of surfactant in a solution at time t $C_{s,i}$ = concentration of surfactant in a solution at time zero

3. Enrichment ratio

The enrichment ratio was calculated by the following equation:

Enrichment ratio =
$$\frac{C_f}{C_i}$$
 (B.3)

where

 C_f = concentration of oil in the collapsed foam solution C_i = concentration of oil in the feed solution

4. Effective parameter on froth flotation efficiency

4.1 Effect of surfactant concentration

Table B-1 Summary results for the system containing 0.3 wt % AMA with 3 wt % NaCl at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

System	Time	interval	l (min)	Oil removal	Surfactant removal	Enrichment	Foam wetness	Foam flowrate
				(%)	(%)	Tutto	(g/mL)	(mL/min)
AMA0.3N3	30		35	46.46	16.05	1.022	0.964	2.488
	60	-	65	70.95	47.80	1.502	0.936	3.595
	75	-	78	82.11	64.40	1.602	0.945	4.575
	90	-	92	99.55	81.13	1.763	0.930	8.078

System	Time	interv	val (min)	Oil removal	Surfactant removal	Enrichment ratio	Foam wetness	Foam flowrate
				(%)	(%)		(g/mL)	(mL/min)
AMA1N3	60	-	70	14.07	25.15	0.074	1.037	0.684
	120	-	130	11.86	50.15	0.250	1.025	0.736
	180	-	190	23.48	63.79	0.526	1.001	0.939
	240	-	250	35.39	84.15	0.922	0.960	1.642
	300	-	310	87.71	99.09	1.814	0.911	0.719

Table B-2 Summary results for the system containing 1 wt % AMA with 3 wt% NaCl at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

Table B-3 Summary results for the system containing 2 wt % AMA with 3 wt % NaCl at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

				Oil	Surfactant		Foam	Foam
System	Time interval (min)		removal	removal	Enrichment ratio	wetness	flowrate	
				(%)	(%)		(g/mL)	(mL/min)
AMA2N3	60	-	70	46.14	8.44	0.773	1.001	0.628
	120	-	130	59.74	17.65	0.826	0.987	0.589
	180	-	190	72.34	18.40	0.708	1.000	0.662
	210	-	220	65.43	23.49	1.442	0.968	0.669
	240	-	250	48.08	33.90	1.233	0.961	0.733

Table B-4	-4 Summary results for the system containing 3 wt % AMA with 3 wt %	NaCl at air flow rate of 300 mL/min and initial oil to
	water ratio = $1:1$.	

System	Time	interv	al (min)	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
AMA3N3	60	-	70	0.29	37.18	0.084	1.058	0.632
	120	-	130	33.31	39.26	0.124	1.018	0.690
	180	-	190	24.07	59.14	0.360	1.002	0.701
	240	-	250	28.12	69.79	0.395	0.971	0.644
	300	-	310	46.56	81.47	0.358	0.986	1.188

4.2 Effect of NaCl concentration

1

Table B-5 Summary results for the system containing 2 wt % NaCl with 0.3 wt % AMA at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

System	Time	interva	l (min)	Oil removal (%)	Surfactant Removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
AMA0.3N2	90	-	100	1.19	38.46	1.231	0.953	1.258
	210	-	220	12.78	69.88	0.923	0.962	0.273
	313	-	337	40.59	82.94	1.339	0.941	0.175

Table B-6Summary results for the system containing 3 wt % NaCl with 0.3 wt % AMA at air flow rate of 300 mL/min and initial oil towater ratio = 1:1.

System	Time	interval	(min)	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
AMA0.3N3	30	-	35	46.46	16.05	1.022	0.964	2.488
	60	-	65	70.95	47.80	1.502	0.936	3.595
	75	-	78	82.11	64.40	1.602	0.945	4.575
	90	90 - 92		99.55	81.13	1.763	0.930	8.078

4.3 Effect of air flowrate

System	Time i	interva	l (min)	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
AMA0.3N3	30	-	35	52.45	30.40	0.380	0.939	1.205
	60	-	65	57.75	35.82	0.584	0.930	1.017
	75	-	78	76.87	75.04	0.464	0.928	0.928
	90	-	92	86.63	82.22	0.706	0.919	1.949

Table B-7Summary results for the system containing 0.3 wt % AMA and 3 wt % NaCl at air flow rate of 200 mL/min and initial oil towater ratio = 1:1.

Table B-8 Summary results for the system containing 0.3 wt % AMA and 3 wt % NaCl at air flow rate 250 mL/min and initial oil to water ratio = 1:1.

System	Time i	nterva	l (min)	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
AMA0.3N3	30	-	35	54.38	34.71	0.193	0.973	1.378
	60	-	65	63.29	54.40	0.605	0.943	1.996
	75	-	78	86.05	85.31	0.559	0.929	2.946
	90 - 92			89.27	96.74	0.762	0.940	5.622

Table B-9 Summary results for the system containing 0.3 wt % AMA and 3 wt % NaCl at air flow rate of 300 mL/min, and initial oil to water ratio = 1:1.

System	Time i	interval	(min)	Oil removal	Surfactant removal	Enrichment ratio	Foam wetness	Foam flowrate (mL/min)
AMA0.3N3	30	-	35	46.46	16.05	1.022	0.964	2.488
	60	-	65	70.95	47.80	1.502	0.936	3.595
	75	-	78	82.11	64.40	1.602	0.945	4.575
	90	-	92	99.55	81.13	1.763	0.930	8.078

Table B-10 Summary results for the system containing 0.3 wt % AMA and 3 wt % NaCl at air flow rate of 350 mL/min and initial oil to water ratio = 1:1.

System	Time i	interva	l (min)	Oil removal	Surfactant removal	Enrichment	Foam wetness	Foam flowrate
				(%)	(%)	Tatio	(g/mL)	(mL/min)
AMA0.3N3	30	-	35	59.99	14.67	0.132	1.009	2.287
	60	-	63	73.58	40.26	0.496	0.957	3.677
	75	-	77	79.14	93.29	0.547	0.929	7.100
90		-	91	97.42	88.52	0.988	0.927	10.334

.

4.4 Effect of equilibration time

Table B-11 Summary results for the equilibrium system with 2 wt % NaCl and 0.3 wt % AMA at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

System	Time	interva	l (min)	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
Eq-AMA0.3N2	20	-	22	52.87	15.57	0.545	0.922	3.589
	40	-	42	67.00	28.17	0.942	0.911	3.234
	70	-	72	61.49	45.77	1.181	0.904	2.399
	90	-	92	65.42	53.96	1.020	0.928	2.279
	110	-	112	99.29	63.18	1.020	0.921	1.990

 Table B-12
 Summary results for the induced-equilibrium system with 2 wt % NaCl and 0.3 wt % AMA at air flow rate of 300 mL/min

 and initial oil to water ratio = 1:1.
 Oil
 Surfactant

System	Tim	ie interv	'al	Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
Induced-Eq	12	1	15	37.82	25.45	0.710	0.938	2.279
AMA0.3N2	25	25 - 28			29.68	1.018	0.920	1.961
	35	-	40	27.50	47.29	1.099	0.919	1.241
	70	12	74	83.84	56.57	0.968	0.914	1.399
	150	-	155	87.79	64.39	1.153	0.911	1.321

Table B-13 Summary results for the non-equilibrium system with 2 wt % NaCl and 0.3 wt % AMA at air flow rate of 300 mL/min and initial oil to water ratio = 1:1.

System	Time interval (min)			Oil removal (%)	Surfactant removal (%)	Enrichment ratio	Foam wetness (g/mL)	Foam flowrate (mL/min)
Non-Eq						-		
AMA0.3N3	30	-	35	46.46	16.05	1.022	0.964	2.488
	60	-	65	70.95	47.80	1.502	0.936	3.595
	75	-	78	82.11	64.40	1.602	0.945	4.575
	90	-	92	99.55	81.13	1.763	0.930	8.078

APPENDIX C

ANALYTICAL METHOD

1. GC-Headspace conditions used for analysis

- Substance : Ethylbenzene
- Injector temperature : 70 °C
- Oven temperature : 100 °C
- Detector temperature : 250 °C
- Carrier gas : N₂
- Flowrate of carrier gas: 4 mL/min

2. Titration method [ASTM D1681-92 (1997)]

This titration method used for finding the amount of anionic surfactant

- Material : cationic surfactant, indicator, and chloroform
- Cationic surfactant : Hyamine or CPC 0.02 N
- Indicator
 4 mL of Methylene blue chloride
- Chloroform 1.5 mL
- Sample : 2 mL (but can be changed)

The amount of anionic surfactant was calculated by the following equation:

$$N_1 V_1 = N_2 V_2$$
 (C.1)

where	N_1 = normality of cationic surfactant at initial time (N)					
	V_1 = volume of sample at any time (mL)					
	N_2 = normality of cationic surfactant at time t(N)					
	V_2 = volume of sample at any time (mL)					

CURRICULUM VITAE

Name:	Ms. Anuradee Withayapanyanon
Date of Birth:	May, 23, 1979
Nationality:	Thai
University Education:	

 Bachelor Degree of Engineering in Chemical Engineering (Second class honors), Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

Presentations:

1. Withayapanyanon, A., Yanatatsaneeyajit, U., Chavadej, S, and Scamehorn, J. F. Submitted paper to First International Symposium on Process Intensification and Miniaturization., 18-21 August., 2003, England.

.