STUDY OF A SYNTHETIC METHOD AND APPLICATION OF HIGH SURFACE AREA TITANIA AND TS-1 ZEOLITE IN PHOTOCATALYTIC MEMBRANE REACTOR

Nopphawan Phonthammachai

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnerships with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2004 ISBN 974-9651-76-6

I 22243033

Thesis Title:	Study of a Synthetic Method and Application of High Surface
	Area Titania and TS-1 zeolite in Photocatalytic Membrane
	Reactor
By:	Ms. Nopphawan Phonthammachai
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit
	Prof. Alexander M. Jamieson
	Prof. Erdogan Gulari

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Nantaya Janunet. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantaya Janunet (Chairperson)

(Assoc. Prof. Nantaya Yanumet)

whe egsim

(Assoc. Prof. Sujitra Wongkasemjit)

Gon

(Prof. Erdogan Gulari)

(Prof. Alexander M. Jamieson)

Anualdowal

(Assoc. Prof. Anuvat Sirivat)

Kanti I Phalas

(Dr. Kanokrot J. Phalakornkul)

ABSTRACT

4482002063: Polymer Science Program
Nopphawan Phonthammachai: Study of a Synthetic Method and Application of High Surface Area Titania and TS-1 Zeolite in Photocatalytic Membrane Reactor
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Prof. Alexander M. Jamieson and Prof. Erdogan Gulari, 174 pp. ISBN 974-9651-76-6
Keywords: Photocatalyst / Rheology / Sol-gel Process / Titanium Dioxide /

Titanium Silicate-1 / Mixed Matrix Membrane

A much milder, simpler and more straightforward reaction to titanium glycolate or titanium triisopropanolamine products is successfully investigated using low cost starting materials via the oxide one pot synthesis (OOPS) process. XRD patterns of pyrolyzed product show the morphology change from anatase to rutile as increasing calcination temperature from 500° to 1100°C, while at 300°C totally amorphous phase is formed. The mesoporous nanocrystalline titanium dioxide is prepared via the sol-gel technique using titanium glycolate as precursor in 1M HCl solution at various HCl:H₂O ratios. XRD analysis indicates the anatase phase form at calcination temperatures in the range 600°-800°C. The highest specific surface area (BET) obtained is 125 m^2/g at the HCl:H₂O ratio of 0.28. The material calcined at 800°C is found to be consist primarily of spherical particles with diameters smaller than 1 μ m. Application of the Winter rheological criteria for the gel point indicates that the gelation time increases with an increase of the HCl:H₂O volume ratio. The fractal dimension of the critical gel cluster decreases with acid ratio, whereas the gel strength increases with acid ratio. Thus, the increase of acidity leads to a less dense but stronger network structure. From the rheological study of different ceria gelling system using HCl:alkoxide molar ratios of 0.8, 0.9, 1.0 and 1.1, the viscoelastic properties are investigated. As evaluated by Winter et al., the gelation time increases as increasing of HCl:alkoxide molar ratio. The gel strength increases as a function of acid ratio and the fractal dimension determined from the frequency scaling exponent of the modulus at the gel point indicates a tight structure at low acid ratio.

TS-1 with high Ti loading is successfully synthesized using moisture-stable precursors, viz. titanium glycolate and silatrane. The microwave instrument is used as a heating source for synthesis. The effects of the compositions (TPA⁺, NaOH, H_2O) and conditions (aging time, reaction temperature, reaction time) are studied. The Si:Ti molar ratio and the ability of Ti incorporated into the zeolite framework are studied. Small amount of extra-framework titanium dioxide is also identified at 5.0 Si:Ti molar ratio. The photocatalytic decomposition of 4-NP is used to test the activity of TS-1 samples and the results of all samples showed high efficiency in PCD.

In addition, photocatalytic membranes are successfully prepared using an efficient, high surface area TiO_2 catalyst, dispersed into different polymeric matrices, viz. cellulose acetate, polyacrylonitrile and polyvinyl acetate. The catalyst is directly synthesized using titanium triisopropanolamine as the precursor. We find that polyacrylonitrile provides the most effective matrix, showing the highest stability and the lowest permeate flux. The amount of TiO_2 loaded in the membrane is varied between 1, 3 and 5 wt% to explore the activity and stability of membranes in the photocatalytic reaction of 4-NP. As expected, the higher the TiO_2 loading, the higher the resulting catalytic activity.

บทคัดย่อ

นพวรรณ พรธรรมชัย: การศึกษาวิธีการสังเคราะห์และการประยุกต์ไททาเนียที่มีพื้นที่ ผิวสูงและซีโอไลท์ ทีเอส-1 ในปฏิกรณ์ที่ใช้คะตะลิสต์ (Study of a Synthetic Method and Application of High Surface Area Titania and TS-1 zeolite in Photocatalytic Menbrane Reactor) อ. ที่ปรึกษา: รศ. คร. สุจิตรา วงศ์เกษมจิตต์ ศ. อเล็กซานเดอร์ เอ็ม เจไมสัน และ ศ. เออโดแกน กูรารี่ 174 หน้า ISBN 974-9651-76-6

งานวิจัยนี้ได้มีการสังเคราะห์สารประกอบโลหะอัลคอกไซด์ คือ สารไททาเนียมไกลโค เลตและสารไททาเนียมไตรไอโซโพรพาโนลามีนจากวัตถุดิบที่หาง่ายและราคาถูกด้วยกระบวน การสังเคราะห์สารประกอบออกไซด์ขั้นตอนเดียวที่เรียกกันว่า Oxide One Pot Synthesis โดยสารที่สังเคราะห์ได้มีสมบัติที่เป็นเอกลักษณ์ที่มีความสำคัญมากในกระบวนการ (OOPS) โซล-เจล จากการวิเคราะห์สารตัวอย่างด้วยเครื่อง XRD พบว่า สาร ที่ผ่านการเผาด้วยอุณหภูมิสูง จะมีการเปลี่ยนแปลงของโครงสร้างผลึกจากชนิดอนาเทส (anatase) เป็นรูไทค์ (rutile) เมื่อ เปลี่ยนแปลงอุณหภูมิในการเผาจาก 500 องศาเซลเซียสไปจนถึง 1000 องศาเซลเซียส โคยพบว่า ที่ อุณหภูมิ 300 องศาเซลเซียสนั้น สารไม่ก่อตัวเป็นโครงสร้างผลึกดังกล่าว ในกระบวนการผลิต สารไททาเนียมที่มีผลึกระดับนาโนและมีรพรนขนาดกลางโดยกระบวนการโซล-เจลนั้น สารตั้ง ด้นที่ใช้เป็นไททาเนียมไกลโคเลตในสภาวะที่มีองค์ประกอบเป็นน้ำและกรด ผลการวิเคราะห์จาก เครื่อง XRD พบโครงสร้างผลึกชนิดอนาเทสที่อุณหภูมิการเผาสารในช่วง 600-800 องศาเซลเซียส และมีพื้นที่ผิวสูงถึง 125 ตารางเมตรต่อกรัม ที่อัตราส่วนโดยปริมาตรระหว่างกรดไฮโดรคลอริก ้ และน้ำเท่ากับ 0.28 โดยพบว่า สารไททาเนียมที่เผาที่อุณหภูมิ 800 องศาเซลเซียสนั้น มีลักษณะเป็น ทรงกลมที่มีขนาคเล็กประมาณ 1 ในครอน จากการศึกษาทางค้านรีโอโลจีของสารไททาเนียมไกล ้โคเลตโดยวิธีการของวินเตอร์พบว่า เวลาในการเกิดเจลนั้นขึ้นอยู่กับอัตราส่วนของกรคไฮโครคลอ ริกและน้ำ ความแข็งแรงของเจลนั้นเพิ่มขึ้นเมื่ออัตราส่วนของกรคและน้ำสูงขึ้น คังนั้น สามารถ กล่าวได้ว่า การเพิ่มความเป็นกรคจะส่งผลให้ความแข็งแรงของโครงสร้างเพิ่มขึ้นและไม่ก่อให้เกิด การยุบตัว จากการศึกษารี โอ โลจีของไททาเนียมไกล โคเลตเจลที่อัตราส่วน โคย โมลของกรคไฮ โคร คลอริกและสารอัลคอกไซค์เท่ากับ 0.8 0.9 1.0 และ 1.1 พบว่า เวลาในการเกิดเจลแปรผันตาม ้อัตราส่วนโดยโมลของกรดและสารอัลกอกไซด์รวมทั้งกวามแข็งแรงของเจลที่เตรียมได้ขึ้นอยู่กับ อัตราส่วนของกรคเช่นกับ

ในงานวิจัยนี้ ยังได้ประสบความสำเร็จในการสังเคราะห์สารซีโอไลต์ชนิดทีเอส-วัน (TS-1) ที่มีปริมาณไททาเนียมในโครงสร้างของซีโอไลต์สูงโดยใช้วัสดุที่เสถียรต่อโมเลกุลของน้ำ ในอากาศ ได้แก่ สารไททาเนียมไกลโคเลตและไซลาเทรน โดยใช้คลื่นไมโครเวฟเป็นแหล่งให้ กวามร้อนในการทำปฏิกิริยา งานวิจัยนี้ได้มีการศึกษาผลกระทบจากองค์ประกอบในการ สังเคราะห์สาร คือ ปริมาณ TPA⁺ โซเดียมไฮดรอกไซด์ และน้ำ รวมทั้งสภาวะต่างๆ เช่น เวลาใน การเกิดปฏิกิริยาอุณหภูมิในการทำปฏิกิริยา และเวลาที่ตั้งสารไว้ที่อุณหภูมิห้อง จากการศึกษา พบว่า ไททาเนียมสามารถเข้าทำปฏิกิริยาและเป็นองค์ประกอบในโครงสร้างของสารซีโอไลต์ได้ ด้วยปริมาณสูง โดยมีปริมาณไททาเนียมส่วนน้อยที่แยกตัวออกจากโครงสร้างของสารซีโอไลต์ ซึ่ง พบในตัวอย่างที่มีอัตราส่วนของซิลิกอน/ไททาเนียมเท่ากับ 5.0 จากการทดสอบความสามารถใน การแตกสลายสาร4-ไนโตรฟีนอลโดยใช้สารทีเอส-วันเป็นตัวเร่งปฏิกิริยาพบว่า ความสามารถใน

การแตกสถายสาร4-ในโตรฟีนอลสูงขึ้นตามปริมาณของไททาเนียมในโครงสร้างซีโอไลด์ นอกจากนั้นได้มีการศึกษาการแตกสถายของสาร4-ในโตรฟีนอลโดยการเตรียมเป็นเยื่อ เลือกผ่าน โดยมีสารไททาเนียมไดออกไซด์ที่มีพื้นที่ผิวสูงกระจายอยู่ในพอลิเมอร์ชนิดต่างๆ คือ เซลลูโลสอะซิเตด โพลีอะคลีโลไนไตร และโพลีไวนิลแอลกอฮอล์ สารไททาเนียมไดออกไซด์ที่ ใช้เป็นตัวเร่งปฏิกิริยานั้นเตรียมจากสารอัลคอกไซด์ชนิดไททาเนียมไตรไอโซโพพาโนลามีน จาก การศึกษาพบว่า เยื่อเลือกผ่านที่เตรียมจากโพลีอะคลิโลไนไตรนั้นเสถียรที่สุดและมีอัตราการไหล ของสารผ่านพื่นที่ผิวเยื่อเลือกผ่านน้อยที่สุดด้วย การศึกษาความเสถียรและความสามารถในการ เร่งปฏิกิริยาจองสารไททาเนียมในเยื่อเลือกผ่านและทดสอบกับปฏิกิริยาการแตกสลายของ4-ใน โตรฟีนอลพบว่า ที่ปริมาณการใส่สารไททาเนียมมากขึ้นส่งผลให้ความสามารถในการเร่งปฏิกิริยา

ACKNOWLEDGEMENTS

I would like to thank Associate Professor Sujitra Wongkasemjit, my advisor, for a very good chance to study Ph.D. in PPC. I thank you for all of her love, understanding, recommendations, suggestion and all opportunities for me to express my ideas including a chance to learn how to solve the problems. For everything that she gives me, I always appreciate and will not forget through all of my life. Moreover, the other two people that I could not forget how important they contribute in this work are Professor Alexander M. Jamieson and Professor Erdogan Gulari. I would like to thank Professor Gulari for all of his kindness in giving me knowledge in catalytic field. I would like to thank Professor Jamieson for his kindness to give me opportunity to stay and work in his laboratory in Case Western Reserve University, USA, and giving me the valuable knowledge in rheology, all of his recommendations and suggestions that can widen me to truly understand this field. The other one that could also not be forgotten of his importance in this work is Associate Professor Anuvat Sirivat. I would like to give him a special thank for his kindness in training how to use the liquid rheology instrument and giving valuable suggestions and comments on the practicality of this work. I would like to thank Assistant Professor Mark Derguire for his kindess allowing me to use the furnace and his suggestions in catalytic field. I would like to thank the Postgraduate Education and Research Program in Petroleum and Petrochemical Technology (ADB) Fund, Ratchadapisakesompoch Fund, Chulalongkorn University and the Thailand Research Fund (TRF).

I would like to thank Associate Professor Anuvat Sirivat and Dr. Kanokrot J. Phalakornkul for being my thesis committee. Their suggestions and comments are very valuable for me and this work.

I would like to thank Associate Professor Kunchana Bunyakiat and Associate Professor Nantaya Yanumet for allowing me to study Ph.D. and thank you for trusting me and see my attention.

Three years in the Petroleum and Petrochemical College, Chulalongkorn University give me a great experience to learn how to solve the problems, to study many interesting courses and learn how to organize my life. I would like to thank all of my friends, seniors, juniors and PPC staffs for all of their kindness, support and encouragement. I would like to give a special thank to Mr. Tossaporn Chairassameewong for all of his help and friendship. Moreover, I would like to thank Thai students at Case Western Reserve University for their friendship and help.

Last but not least, throughout twenty years of study, I am deeply indebted to my family for their forever and unconditional love, understanding, encouragement and support me all the time. Their loves are a great power for me to fight with everything and go forward. Half of my success I would like to give to my lovely family.

TABLE OF CONTENTS

PAGE

Title page	ii
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of contents	ix
List of Tables	xiv
List of Figures	xvi

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	5
	2.1 Synthesis of Metal Alkoxides	5
	2.2 Sol-gel Process of Metal Alkoxides	7
	2.3 The Rheological Study of Metal Alkoxides	10
	2.4 The Synthesis of TS-1 Zeolite	11
	2.5 The Photocatalytic Membrane Reactor	14
III	EXPERIMENTAL	18
	3.1 Materials	18
	3.2 Instrumental	19
	3.2.1 Thermogravimetric Analysis (TGA)	19
	3.2.2 Nuclear Magnetic Resonance Spectroscopy (NMR)	19
	3.2.3 Elemental Analysis (EA)	19
	3.2.4 FAB ⁺ -MS Spectroscopy (MS)	19
	3.2.5 Fourier Transform Infrared Spectroscopy (FTIR)	20
	3.2.6 X-Ray Diffraction (XRD)	20

	3.2.7 Scanning Electron Microscopy (SEM)	20
	3.2.8 Rheometric Measurement	20
	3.2.9 BET Surface Area Measurement	20
	3.2.10Diffuse Reflectance Ultraviolet-Visible Spectroscopy	
	(DR-UV)	21
	3.3 Methodology	21
	3.3.1 Synthesis of Titanium Alkoxides	21
	3.3.2 Sol-gel Processing of Titanium Glycolate	23
	3.3.3 Rheological Measurement	23
	3.3.4 Synthesis and Photocatalytic Reaction of Titanium	
	Silicate-1 (TS-1)_Zeolite	24
	3.3.5 Photocatalytic Membrane Reactor	25
IV	OXIDE ONE POT SYNTHESIS OF A NOVEL TITANIUM	
	GLYCOLATE AND ITS PYROLYSIS	27
	4.1 Abstract	27
	4.2 Introduction	28
	4.3 Experimental	30
	4.4 Results and Discussion	31
	4.5 Conclusions	32
	4.6 Acknowledgements	32
	4.7 References	33
v	STRUCTURAL AND RHEOLOGICAL ASPECT OF	
	MESOPOROUS NANOCRYSTALLINE TIO2 SYNTHESIZI	ED
	VIA SOL-GEL PROCESS	40
	5.1 Abstract	40
	5.2 Introduction	41

5.3 Experimental425.4 Results and discussion45

5.5 Conclusions	49
5.6 Acknowledgements	49
5.7 References	50

VI	STRUCTURAL AND CRYSTALLIZATION OF HIGH Ti-		
	LOADED TS-1 ZEOLITE	66	
	6.1 Abstract	66	
	6.2 Introduction	67	
	6.3 Experimental	68	
	6.4 Results and Discussion	71	
	6.5 Conclusions	75	
	6.6 Acknowledgements	76	
	6.7 References	76	

VIIHIGH SURFACE AREA AND THERMALLY STABLE TiO2SYNTHESIZED DIRECTLY FROM TITANIUMTRIISOPROPANOLAMINE PRECURSOR947.1 Abstract947.2 Introduction95

7.2 Introduction	95
7.3 Experimental	96
7.4 Results and discussion	97
7.5 Conclusions	99
7.6 Acknowledgements	100
7.7 References	100

VIII	PHOTOCATALYTIC MEMBRANE REACTOR OF A		
	NOVEL HIGH SURFACE AREA TIO2	113	
	8.1 Abstract	113	
	8.2 Introduction	114	
	8.3 Experimental	115	

CHAPTER		PAGE	
	8.4 Results an	d discussion	119
	8.5 Conclusio	ns	122
	8.6 Acknowle	dgements	123
	8.7 Reference	S	123
IX	VISCOELAS	TIC PROPERTIES OF CERIA GELS	145
	8.1 Abstract		145
	8.2 Introduction	on	146
	8.3 Experimen	ntal	146
	8.4 Results an	d discussion	148
	8.5 Conclusion	ns	150
	8.6 Acknowle	dgements	150
	8.7 References	S	150
X	CONCLUSIO	NS AND RECOMMENDATIONS	158
	REFERENCE	CS	160
	APPENDICE	S	167
	Appendix A	The SEM micrographs of pyrolysed titanium	
		glycolate at different temperatures with	
		magnification of 1000	167
	Appendix B	XRD patterns of titania powder calcined at	
		different temperatures and different hydrochlorid	с
		acid and water ratios, a) 0.28, b) 0.33, c) 0.39 an	d
		d) 0.45	168
	Appendix C	SEM micrographs of titania powder calcined at	
		different temperatures and different hydrochlorid	С

	acid and water ratios, a-c) 0.28 ratio, 600° to	
	800 °C, d-f) 0.33 ratio, 600° to 800°C,	
	g-i) 0.39 ratio, 600° to 800 °C, j-l) 0.45 ratio,	
	600° to 800°C.	170
Appendix D	The frequency scan of G' and G" of titanium	
	glycolate gel at different hydrochloric acid and	
	water ratios, a) 0.28, b) 0.33, c) 0.39 and d) 0.45	172
Appendix E	The frequency scan of tand of titanium glycolate	
	gel at different hydrochloric acid and water ratios	5,
	a) 0.28, b) 0.33, c) 0.39 and d) 0.45.	174

CURRICULUM VITAE

176

LIST OF TABLES

TABL	TABLE	
	CHAPTER IV	
4.1	Percent elements of titanium glycolate	38
4.2	The proposed structure and the pattern of fragmentation of	
	titanium glycolate	39
	CHAPTER V	
5.1	BET surface area (S _{BET} , m^2/g) of titania at various HCl:H ₂ O	
	volume ratios and calcinations temperature	51

		• -
5.2	Summary of viscoelastic exponent, fractal dimension and	
	gelation time(s) at various HCl:H ₂ O volume ratios	52

CHAPTER VI

6.1	The TS-1 samples at varies Si:Ti molar ratios and reaction time (h)	78
6.2	The photocatalytic degradation of 4-nitrophenol	79

CHAPTER VII

7.1	The proposed structure of the synthesized titanium triisopropano	
	lamine	102
7.2	The specific surface area of calcined TiO_2 at various	
	calcination temperature rates	103
7.3	The specific surface area of calcined TiO_2 at various holding times	104
7.4	The specific surface area of calcined TiO_2 at various	
	calcination temperatures	105

CHAPTER VIII

8.1	The proposed structure of the synthesized titanium triisopropano	
	lamine	126
8.2	The stability tests of the prepared membranes	127

.

CHAPTER IX

9.1 The summary of the result of viscoelastic exponent (n), fractal dimension (d_f), and gelation time at different HCl:alkoxide molar ratio

152

LIST OF FIGURES

FIGURE

PAGE

CHAPTER IV

4.1	IR spectrum of titanium glycolate	34
4.2	¹³ C-NMR spectrum of titanium glycolate	35
4.3	TGA profile of titanium glycolate	36
4.4	XRD patterns of titanium glycolate calcined at different	
	temperatures a.) titanium glycolate without calcination, b.)	
	300°C, amorphous, c.) 500°C, anatase, d.) 700°C, anatase,	
	e.) 900°C, anatase and f.) 1100°C, rutile	37

CHAPTER V

5.1	The FT-IR spectra of titania gel at HCl:H ₂ O volume ratio of	
	a.) 0.28, b.) 0.33, c.) 0.39 and d.) 0.45	54
5.2	XRD patterns of uncalcined and calcined titanium glycolate	
	precursor at different temperatures	55
5.3	XRD pattern of titania gel using the HCl:H ₂ O volume ratio of	
	0.28 calcined at a). 600°C, b). 700°C and c). 800°C	56
5.4	The average grain sizes of the particles prepared at different	
	volume ratios of HCl:H ₂ O (0.28, 0.33, 0.39, 0.45, respectively)	
	and different calcination temperatures (600°, 700° and 800°C)	57
5.5	The nitrogen adsorption-desorption isoterm for mesoporous	
	titania (a.) and Pore size distribution (b.) for the material	
	obtained from 0.28 HCl:H ₂ O volume ratio and calcined at	
	600°C	58
5.6	SEM micrograph for titania powder at volume ratio 0.33 of	
	HCl:H ₂ O calcined at a.) 600°C, b.) 700°C and c.) 800°C	59

PAGE

5.7	The plots of tan δ with time(s) at HCl:H ₂ O volume ratio of	
	0.45	60
5.8	The plot of the apparent exponents, the storage moduli (n')	
	and the loss moduli (n") during the course of gelation for	
	the 0.45 acid ratio	61
5.9	The frequency dependence curves of G' (ω) and G" (ω) at	
	(λ) pregel stage(B = 3),(v) gel point,and (B = 0),and (σ)	
	postgel stage (B = 3) of a.) 0.28 , b.) 0.33 , c.) 0.39 and	
	d.) 0.45 HCl:H ₂ O ratio.	62
5.10	The plot of gel strength parameter S at the gel point as a	
	function of HCl:H ₂ O volume ratio : 0.28 (\blacklozenge), 0.33 (\blacksquare),	
	0.39(-) and $0.45(-)$	63
5.11	The plot of fractal dimension of the critical gel ccluster as a	
	function of acid ratio	64
5.12	The effect of frequency on the complex viscosity at pregel	
	stage, gel point, and postgel stage of a.) 0.28, b.) 0.33, c.)	
	0.39 and d.) 0.45 HCl:H ₂ O volume ratio	65
5.13	The time evolution of the complex viscosity (at fixed	
	frequency of 0.4 rad/s) of a.) 0.28, b.) 0.33, c.) 0.39 and	
	d.) 0.45 HCl:H ₂ O volume ratio	66

CHAPTER VI

6.1	The XRD pattern of calcined TS-1 sample	80
6.2	The FT-IR spectra of calcined TS-1 sample	81
6.3	The DR-UV spectra of calcined TS-1 sample	82
6.4	The XRD pattern of TS-1 samples at varies reaction	
	temperature a.) 120°, b.) 150° and c.) 170°C	83
6.5	The SEM micrograph of TS-1 sample at varies reaction	
	temperature a.) 120°, b.) 150° and c.) 170°C	84

PAGE

6.6	The SEM micrograph of TS-1 samples at varies reaction time	
	a.) 5, b.) 10, c.) 15 and d.) 20h	85
6.7	The SEM micrograph of TS-1 samples at varies aging time	
	a.) 20, b.) 60, c.) 70, d.) 90, e.) 110, f.) 130, g.)	
	150 and h.) 170h	86
6.8	The SEM micrograph of TS-1 samples at varies NaOH:Si	
	molar ratios	
	a.) 0.1, b.) 0.3, c.)0.4, d.) 0.5, e.) 0.7 and f.) 1.0	87
6.9	The SEM micrograph of TS-1 samples at varies TPA:Si	
	molar ratios a.) 0.05, b.) 0.1, c.) 0.2, d.) 0.3, e.) 0.4 and	
	f.) 0.5	88
6.10	The SEM micrograph of TS-1 samples at varies H ₂ O:Si	
	molar ratios a.) 80, b.) 114, c.) 140, d.) 170 and e.) 200	89
6.11	The FT-IR spectra of TS-1 sample at varies Si:Ti molar	
	Ratios a.) 100.00, b.) 33.33, c.) 20.00, d.) 14.29, e.) 10.00,	
	f.) 7.69, g.) 5.88 and h.) 5.00	90
6.12	The DR-UV spectra of TS-1 sample at varies Si:Ti molar	
	ratios a.) 100.00, b.) 33.33, c.) 20.00, d.) 14.29, e.) 10.00,	
	f.) 7.69, g.) 5.88 and h.) 5.00	91
6.13	The XRD pattern of TS-1 sample at varies Si:Ti molar ratios	
	a.) 100.00, b.) 33.33, c.) 20.00, d.) 14.29, e.) 10.00, f.) 7.69,	
	g.) 5.88 and h.) 5.00	92
6.14	The SEM micrograph of TS-1 sample at varies Si:Ti molar	
	ratios a.) 100.00, b.) 33.33, c.) 20.00, d.) 14.29, e.) 10.00,	
	f.) 7.69, g.) 5.88 and h.) 5.00	93

CHAPTER VII

7.1	The FT-IR spectrum of titanium triisopropanolamine	106
7.2	The TGA thermograms of a). titanium triisopropanolamine,	
	b). TiO ₂ calcined at holding time 1h, c). TiO ₂ calcined at	

	holding time 2h and d.) TiO_2 calcined at 500°C	107
7.3	XRD pattern of TiO ₂ at 0.25°C /min calcinations rate,	
	2h holding time and 600°C calcination temperature	108
7.4	The SEM micrograph of TiO_2 at 0.25°C /min calcinations	
	rate, 2h holding time and 600°C calcination temperature	109
7.5	The nitrogen adsorption-desorption isoterm of the obtained	
	mesoporous TiO ₂ at 0.25°C /min calcinations rate,	
	2h holding time and 600°C calcination temperature	110
7.6	XRD patterns of TiO_2 at the temperature of; a.) 300°, b.)	
	500°, c.) 600°, d.) 700°, e.) 800° and f.) 900°C	111
7.7	The SEM micrographs of TiO_2 at the temperature of; a.)	
	300°, b.) 500°, c.) 600°, d.) 700°, e.) 800° and f.) 900°C	112

CHAPTER VIII

8.1	The schematic diagram of photocatalytic membrane reactor	
	(F, flowmeter; R, reactor; R_p , permeate reservoir; R_t ,	
	recirculating tank and P, peristaltic pump)	126
8.2	The FT-IR spectrum of titanium triisopropanolamine	127
8.3	The TGA thermogram of a.) titanium triisopropanolamine	
	and b.) the prepared TiO_2 catalyst calcined at 600°C for 2h	128
8.4	The XRD pattern of the anatase phase of the prepared TiO_2	
	catalyst calcined at 600°C for 2h	129
8.5	The SEM micrograph of the anatase phase of the prepared	
	TiO ₂ catalyst calcined at 600°C for 2h	130
8.6	The nitrogen adsorption-desorption isoterm for the prepared	
	mesoporous titania calcined at 600 °C	131
8.7	The TGA thermogram of a.) polyvinyl acetate, b.) cellulose	
	acetate and c.) polyacrylonitrile membranes prepared	
	with 1wt%TiO ₂	132

8.8	The SEM micrograph of mixed matrix membranes using	
	a.) cellulose acetate, b.) polyacrylonitrile and c.) polyvinyl	
	acetate	133
8.9	The SEM micrographs of polyacrylonitrile membranes at	
	various percentages of TiO ₂ ; a.) 1wt%TiO ₂ , b.)	
	3wt%TiO ₂ and c.) 5wt%TiO ₂	134
8.10	The permeate flux versus reaction time of all three types of	
	the prepared membranes	135
8.11	The SEM micrograph showing the defect of polyvinyl acetate	
	membrane after the reaction	136
8.12	The degradation of 4-NP with the reaction time of	
	polyacrylonitrile and cellulose acetate membranes	137
8.13	The permeate flux versus reaction time of polyacrylonitrile	
	membranes at various percentages of TiO ₂	138
8.14	The degradation of 4-NP with the reaction time of	
	Polyacrylonitrile membranes at various percentages of TiO_2	139
8.15	The comparison between polyacrylonitrile membranes with	
	1wt% of prepared TiO ₂ and commercial TiO ₂ on the	
	degradation of 4-NP	140
8.16	The degradation of 4-NP with the reaction time of	
	polyacrylonitrile membranes at initial pH value of 4-NP	
	solution equal to 7 and 3	141
8.17	The UV spectra of 4-NP concentration in permeate at	
	different reaction time of $1 wt\% TiO_2$ and $pH = 3$	142

CHAPTER IX

9.1	The plots of tan δ with time(s) at HCl:alkoxide molar ratio	
	0.9	153
9.2	The plot of the apparent exponents, the storage moduli (n')	
	and the loss moduli (n") during the course of gelation for the	

	HCl:alkoxide molar ratio 0.9	154
9.3	The frequency dependence curves of (λ) G' (ω) and (\bigcirc)	
	G" (ω) at pregel stage(B = -3), gel point, and (B = 0), and	
	postgel stage $(B = 3)$: a.) 0.8, b.) 0.9, c.) 1.0, and	
	d.) 1.1 molar ratio	155
9.4	The plot of gel strength parameter S at the gel point as a	
	function of HCI:alkoxide molar ratio	156
9.5	The plot of complex viscosity (η^*) with ω (rad/s) at pregel	
	stage gel point, and postgel stage of 0.9 molar ratio	157