1. Knoll G.F. Radiation Detection and Measurement. John Wiley \& son. 1979
2. Canberra Nuclear. Nuclear Instruments Cataloa. 9 ${ }^{\text {th }}$ ED. Canberra
3. EG\&G ORTEC. Detetors \& Instraments for Nuclear Spectroscopv. 1991/1992 : 3-172
4. Nicholson P.W.. Line-Carrier Modem. John wiley \& son. 1974
5. ↔สฤกษร เนีมออทร์. การผพนาแผนวงจรเซ่อมโยงสณญาณเอนกปรัะสงค์สาหรับระบบวดฉิวเคสยร. วทยาฉิพนธ์บณิตตวทยาสย จฬฬาลงกรโมหาวทยาสย. 2535
6. Nichols K.. Line-Carrier Modem. Radio Electronic No 7, July 1988, 87-91
7. สุรชาต กงวารจิตต์. เครีองรับสงวทยและระบบวิทยส่อสาร. บรษทช่เฮดยเคช่นจํกด 2532
8. ETT. CP/AT-32 User's manual. ETT Co.. LTD,
9. David F. Stout/Milton K. Handbook of Operational Amplifier

Circuit Desion. McGraw-Hill Book Company. 1976

ภาคผนวก ก.
-

รายละ เ ฮยดการคานวนคาอุปกรณ์ท่ใ\%ในวงจร
-

จุฬาลงกรณ์มหาวิทยาลัย

เสอกใช้วงจร ไมโครของ EXAR No. XR-2206 จากวงจรแบบ sinusoidal FSK generator ตังรูป ก. 1 และใช XR-2211 ในการ demodulator ตังรุป ก. 2

รูศ่ ก. 1 วงจร modulation ของ IC เบอร XR-2206

ก.1) การคำนวนคาท่ใซในวงจร FSK modulation

ในการออกแบบไศ้กำหนดความเร็วในการสงสญญญาณ ศอ Baud Rate ไว้ศ ความเร็ว 1200 bps . และกำหนคใหสสญาณลองก $\mathrm{High}(1)$ ให้เบ็น f , ในขณะท่กำหนด สัญญาณลอจก $\operatorname{Low}(0)$ ใหเธ็น $\mathrm{f}_{\text {? }}$ กรณมหาวทยาลยย

กำหนดให้ $f_{1}=2 \times$ Baud rate

$$
\begin{aligned}
& =2 \times 1200 \\
& =2400 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{2}=3000 \mathrm{~Hz} \\
& \text { คา } \mathrm{C}=0.1 \mu \mathrm{~F} \\
& \text { จะ ไคศคา } \mathrm{R}_{1} \text { จากสุตร } \mathrm{f}_{1}=1 / \mathrm{R}_{1} \mathrm{C} \\
& \\
& \begin{aligned}
\mathrm{R}_{1} & =1 /\left(2400 \times 0.1 \times 10^{-6}\right) \\
& =4.1 \mathrm{k} \Omega \text { ใษ } 5 \mathrm{k} \Omega
\end{aligned}
\end{aligned}
$$

ในทำนองเศยวกน

$$
\begin{aligned}
R_{2} & =1 /\left(3000 \times 0.1 \times 10^{-6}\right) \\
& =3.3 \mathrm{k}
\end{aligned}
$$

แต่การใ\%่งานได้ใษ R_{1} และ R_{2} แบบปรับค่าได้เผ่อใชในการปร้บแตงสัญญาณ

> ก.2) การคำนวนคาห่ใซในวงจร FSK demodulator

รูทก่ ก. 2 วงจร demodulator ของวงจรเบอร $\mathrm{XR}-2211$

ในการคำนวนสชันตอนตงตอไปณ้

$$
\text { หา } \begin{aligned}
\mathrm{f}_{i} & =\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right) / 2 \quad ; \mathrm{f}_{\mathrm{i}}=\text { PLL Center Frequency } \\
\mathrm{f}_{1} & =2400 \mathrm{~Hz} \quad ; \text { จาก FSK modulation } \\
\mathrm{f}_{2} & =3000 \mathrm{~Hz} \\
\mathrm{f}_{\mathrm{i}} & =(2400+3000) / 2 \\
& =2700 \mathrm{~Hz}
\end{aligned}
$$

เสอกคา R_{0} ต่อยู่ระหวาง $10 \mathrm{k} \Omega$ ถึ $100 \mathrm{k} \Omega$ แต่ท่ฉยมใซึนคอ $20 \mathrm{k} \Omega$

$$
\begin{aligned}
& \text { หาศา } C_{0} \text { จาก } C_{i 1}=1 /\left(R_{0} F_{0}\right) \\
& C_{i}=1 /\left(20 \times 10^{3} \times 2700\right) \\
& =0.018 \mu \mathrm{~F} \text { เสอกใช้คา } 0.022 \mu \mathrm{~F} \\
& \text { หาคา } R \text {. ซ่งหามาจากความส่ MARK และ SPACE ของ FSK } \\
& R_{1}=R_{j} \times f_{0} /\left(f_{2}-f_{i}\right) \\
& R_{1}=20 k \times 2700 /(3000-2400) \\
& =90.0 \mathrm{k} \Omega
\end{aligned}
$$

ก. 3 การออกแบบวงจรกรองความถ่[9]

เนื่องจากระบบศึ่ท่าการออกแบบใช้ความส่ในการมอจเลตสะยูาณโดยที่ลอจก 0
 3 MHz แตหสงจากกึ่เครื่องสงรับสญญาณมาแสววางเอาห์ัุตจะ มสญญาณรบกวนสงจงต้องทาการ กรองความส่โดยเสือกเฉฑาะษวง 2 kHz กง 3 kHz เทาส้น ฉะนี้ดจึงตองมการออกแบบ วงจรกรองความส แบบ วand pass filter ชงสัช้นตอนการออกแบบตัะสี้

รปศ่ ก. 3 วงจร band pass flter

```
กำหนดให \(f_{\dot{v}}=2500 \mathrm{~Hz}\)
    \(H=10\) [gain]
    \(C=f_{i} / \Delta f=2500 / 1000=2.5\)
    \(V_{i \dot{i}}=1 \mathrm{~V}\)
    \(A_{v}\left(\mathrm{f}_{\mathrm{i})}=1(2500 \mathrm{~Hz})=2500\right.\)
    \(I_{b}=10^{-8} \mathrm{~A}\)
    १ท \(C_{1}=C_{2}=0.01 \mu \mathrm{~F}\)
จากสตร \(R_{3}=2 Q / 2 \pi f_{0} \mathrm{CH}\)
        \(=(2 \times 2.5) /\left(2 \times \pi \times 2500 \times 10^{-8}\right.\)
        \(=31.8 \mathrm{k} \Omega\)
และ
    \(\mathrm{R}_{1}=Q / 2 \pi f_{0} \mathrm{CH}=2.5 /\left(2 \times \pi \times 2500 \times 0.01 \times 10^{-6} \times 10\right)\)
\(=1.59 \mathrm{k}\)
    ตงก้้น \(R_{2}=Q /\left(2 \pi f_{\rho} C\right)\left(2 Q^{2}-H\right)\)
        \(=2.5 /\left(2 \pi \times 2500 \times 0.01 \times 10^{-6}\right)\left[2(2.5)^{2}-2.5\right]\)
        \(=1.59 \mathrm{k} \Omega\)
    ทดสอบค่า \(V_{\mathrm{iit}}\)
ให \(I_{b}=10^{-8} \mathrm{~A}\)
จากสตร \(\quad V_{\dot{\mathrm{u}}}=I_{0} R_{3}\)
        \(=10^{-8} \times 31.8 \times 10^{3}\)
\(=0.3 \mathrm{mV}\)
```


คาาศ่กำหนดไว้

```
เมื่อ
fu}= resonent frequency of circui
\Deltaf = frequency difference between -3 dB
H = voltage gain of circuit at :
Q = quali=y factor of circuit
I
V
```

ภาคผนวก ข.

สกษณะ เฉพาะ ของอปกรณห่ใช

จุฬาลงกรณ์มหาวิทยาลัย Chulalongiorn University

Fast, Complete 12-Bit A/D Converter with Microprocessor Interface

FEATURES

Complete 12-Bit A/D Converter with Reference and Clock
Full 8- or 16-Bit Microprocèssor Bus Interface
250ns Bus Access Time
Guaranteed Linearity Over Temperature 0 to $+70^{\circ} \mathrm{C}$ - AD574AJ. AK, AL
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - AD574AS, AT, AU
No Missing Codes Over Temperature
Fast Successive Approximation Conversion - $25 \mu \mathrm{~s}$
Buried Zener Reference for Long-Term Stability and Low Gain T.C. 10ppm/ ${ }^{\circ} \mathrm{C}$ max AD574AL
$12.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max A 5574AU
Low Profile 28-Pin Ceramic DIP
Low Power: 390 mW

PRODUCT DESCRIPTION

The ADS74d is a complete 12 -bit successive-approximation analog-to-digutai zonverter xith ミ-state output buffer circuitry for direct interiace to an 8- 12-or 16 -bit microprocessor bus. The ADSith design is implemented with two LSI chips each containing boch analog and digital curcuitry, resulting in the maximum performance and flexibility at the lowest cost.
One chip is the high periormance AD565.A 12-bit DAC and voltage reference. It contains the high speed current output switching circuitry, laser-trimmed thin film resistor network low T.C. buried zener reference and the precision input scaling and bipolar offset resistors. This chip is laser-trimmed at the wafer stage (LWT) to adjust ladder network linearity, voliage reference tolerance and temperature coefficient. and the calibration accuracy of input scaling and bipolar offset resistors
The second Enip uses the proven LCl linear-compatible integrated iniection logic; process to provide the low-power $I^{2} L$ successiveapproximation register, converter control circuirro, clock, bus interface. and the high performance latchine comparator. The precision. iow-drift comparator :s adiusted for intial input offset error at the wafer stage by the "zener-rap" technique which trims the comparator input stage : 01 iO LSB typical error This form of trimming, while cumoersume tor complex ladder netwurks. is an attractive alternative to :hin film recistor irimmine for a sumpie ofise: adiustment ind ci:m.:nates the nete for thin lilm processing ior this portion of the circuitry
The ADSTAA is available in six different grades. The ADSi4AJ, $A K$, and $A L$ grades are specified for ope:ation over the 0 to $-70^{\circ} \mathrm{C}$ temperature range. The ADS-AAS. AT and AL are specified for the -550 C to -1250 range All grades are packayed in a low-protile. 0.600 inch xide. $\$$ - $\$$-p hermetically-sealed ceramic DIP

ADS74A FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. The ADS74A interfaces to most popular microprocessors with an 8-, 12 -, or 16 -bit bus :sithout external buifers or peripheral interface controllers. Multiple-mode three-state output buffers connect directly to the data bus while the read and convert commands are taken from the control bus. The 12 -bits of outpur data can be red either as one 12 -bit word or as two 8 -bit bytes (one with 8 data bits, the outher with 4 data bits and 4 (railing zeros).
2. The precision, laser-trimmed scaling and bipolar offset resistors provide four calibrated ranges. 0 to +10 and 0 to +20 volts unipolar. or $-510+5$ and -10 to +10 volts bipolar. Typical bipolar offset and full scale calibration of $\pm 0.1 \%$ can be trimmed to zero with one external component each.
3. The internal buried zener reference is trimmed to 10.00 volts with 1% maximum error and $15 \mathrm{ppm}:{ }^{\circ} \mathrm{C}$ rypical T.C. The reference is available externally and can drive up to 1.5 mA beyond that required for the reference and bipolar offset resistors

Moded	ADS74］			adsitax			ADSTAL			Units
	Min	Tsp	Mas	Min	Tr_{p}	Mar	Min	Jor	Mar	
RESOLUTION			12			12			12	Biu
LINEARTTY ERROR $25 C(\max)$ $\mathrm{T}_{\text {－}} \mathrm{LO}_{\text {I－}}$			$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 12 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSE } \\ & \text { LSE } \end{aligned}$
```DIFFERENTIALINNEARTTY ERROR (Minumum0 resolarion for which bo mictine coderamegmarnoted) 25% T-LT一```	$\begin{aligned} & 11 \\ & 11 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \end{aligned}$			$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$			Bia Bia
UNIPOLAR OFFSET（max）（Adiuseable to zero）			$\pm 2$			$\pm 2$			$\pm 2$	LS：
bipoLir OFFSET（mar）（Adjusenble to mro）			$\pm 10$			$=4$			＝ 4	LS
FLLISCALECALTBRATIONERROR   （ （rith fined son remeor from REF OLT TO REF N N）   ：Adiustable zo гего） $25^{\circ} \mathrm{C}$（max）   $T_{\text {＿}}$ io $T_{\text {＿＿r }}$（Without Initial Adjumenent）   ．Wish Iaitid Adjustomen		$\begin{aligned} & 0.47 \\ & 0.22 \end{aligned}$	$\text { . } 2$		$\begin{aligned} & 0.37 \\ & 0.12 \end{aligned}$	0.35		$\begin{aligned} & 0.30 \\ & 0.05 \end{aligned}$	1．25	Kor F．S． Xof FS Wof F．S
TEMPERATURERANGE	0		40	0		＋ 70	0		－ 70	${ }^{\circ}$
TEMPERATURE COEFFICIENTS（UMag intormal reference） Tー $10 \mathrm{~T}_{\text {－}}$   Unipolar Ofrizer   Bipoler Offer   Full Scale Calibration			$\begin{aligned} & \pm 2 \\ & 10 \\ & =2 \\ & 10 \\ & \pm 9 \\ & 50 \end{aligned}$			$\begin{aligned} & \pm 1 \\ & 5 \\ & \pm 1 \\ & 5 \\ & \pm 5 \\ & 27 \end{aligned}$			$\begin{aligned} & =1 \\ & s \\ & =1 \\ & s \\ & \pm 2 \\ & 0 \end{aligned}$	LSB   pparc   LSB   pporc   LSB   คロッ～
POXER SLPPPLYREJECTION   Mar chagage an Foll Scale Calibracon $\begin{aligned} & -13.5 \leq V_{C C} \leq+16.5 V_{o r}-11 . A V^{\leq} \leq V_{C C} \leq-12.6 \mathrm{~V} \\ & -4.5 \leq v_{\text {LOCIC }} \leq-5.5 V \\ & -16.5 \leq V_{E I} \leq-13.5 V_{\text {or }}-12.6 V \leq V_{E E} \leq-11.4 V \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 12 \\ & \pm 2 \end{aligned}$			$\begin{aligned} & =1 \\ & \pm 1 / 2 \\ & \pm 1 \end{aligned}$					$\begin{aligned} & =1 \\ & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ANALOG NNPLT leput Ragga Bipolas   Cimpolas		$\begin{aligned} & 310+8 \\ & 1010+ \\ & 0=10 \\ & 0 \cdot 20 \end{aligned}$		$\begin{aligned} & -5 \omega+5 \\ & -1010+10 \\ & 010+10 \end{aligned}$			$\begin{aligned} & -510+5 \\ & -10 t 0+10 \end{aligned}$			Vole   Volts   Volis   Valus
Input Inapedance 10 Volt Span 20 Volt Span			$\begin{aligned} & 7 \\ & 14 \end{aligned}$		$\begin{aligned} & s \\ & -10 \end{aligned}$	14	3	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 7 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
POWER SUPPLIES   Operating Range   $V_{\text {Lor，ic }}$   $V_{C r}$   $V_{E}$   Operatang Current   ILOCI．   Lec   $V_{E E}$	$\begin{aligned} & -4.5 \\ & -11 . \\ & -11 . \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \\ & 18 \end{aligned}$	－ 3.5   － 16.   － 16.5   $+0$   5   30	$\begin{aligned} & -45 \\ & -11 \\ & -11 . \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \\ & 18 \end{aligned}$	－ 5.5   $+16.5$   $-16.5$   40 5   30	$\begin{aligned} & +4.5 \\ & +11 . \\ & -11 . \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \\ & 18 \end{aligned}$	$\begin{aligned} & -5.5 \\ & -16.5 \\ & -16.5 \\ & 50 \\ & 5 \\ & 30 \end{aligned}$	Vols   Voles   Voles   $m 4$   mA   mA
PODER DISSIPATION		390	725		390	725		390	725	$\pm \infty$
INTERNAL REFERENCE VOLTAGE Outpul current（anilade for exter：si loads． External load sbould por change dunas con version．		10.0	$\begin{aligned} & 10.1 \\ & 1.9 \end{aligned}$	9.9	100	$\begin{aligned} & 10.1 \\ & 1.5 \end{aligned}$	9.9	10.0	$\begin{aligned} & 10.1 \\ & 1! \end{aligned}$	$\begin{aligned} & \text { Voits } \\ & \text { mal } \end{aligned}$
PACKAGEOPTION ${ }^{2}$   （D28A）－Coramic DIP	ADS74AJD			ADS74AKD			ADS74ALD			

Notes

See Section 19 lor packure outhac insorsavion
speaficaluoar rubioa to change mibloul nouce．


oun and mas mpeaficioont ate guranied，altbougt oniv hore shown is
bmadiace are ested on al production ivi：！


DIGITALCHARACTERISTICS ${ }^{1}$ (Allgrades, $\mathrm{T}_{-\infty}-\mathrm{T}_{\text {mea }}$ )

	Min	Tpp	Max	
Logic Inpus ${ }^{2}$ ( $C E, \overline{C S}, \mathrm{R} \overline{\mathrm{C}}, \mathrm{A}_{0}$ )			4	
Voltages				
Logic " 1 "	+2.0V		+5.5V	
Logic "0"	-0.5V		$+0.8 \mathrm{~V}$	
Curreat	$-50 \mu \mathrm{~A}$		$+50 \mu \mathrm{~A}$	
Capacitance	$5 p^{5}$			
Logic Outputs (DB11-DB0, STS)				
Logic "0"				$\mathrm{I}_{\text {SINK }} \leq 1.6 \mathrm{~mA}$
Logic " 1 "				$\mathrm{I}_{\text {source }} \leq 500 \mu \mathrm{~A}$
Leakage (When in high-Z state) Capacicance				DB11-DB0 Only

'Dearibed Timing Spocificioions appear in the Digital Lnterface Servion.
${ }^{2} 128$ Input is poe TTL -comparible and muar be bard. Fired ro V Locic or DIGITAL COMMON.


AD574A Block Diagram and Pin Configuration

ABSOLUTE MAXIMUM RATINGS   (Specifications apply to all grades, except where noted)	20 V in to Analog Common	. $\pm 24 \mathrm{~V}$
$V_{\text {cce }}$ to Digital Common . . . . . . . . . . . . 0 to +16.5V	REF OUT	Indefinite shor to common
$\mathrm{V}_{\mathrm{EE}}$ to Digital Common . . . . . . . . . . . . 0 to - 16.5 V		Momentary short to $\mathrm{V}_{\mathrm{CC}}$
$V_{\text {LoGic }}$ to Digital Common . . . . . . . . . . . 0 to +7 V	Chip Temperature (J, K, L grades)	$100^{\circ} \mathrm{C}$ $50^{\circ} \mathrm{C}$
Analog Common to Digital Common . . . . . . . . $\pm$ IV	(S, T, C grades)	$150^{\circ} \mathrm{C}$ 000 mW
Control Inputs (CE, $\overline{C S}, A_{0}, 12 \overline{8}, \mathrm{R} \overline{\mathrm{C}}$ ) to	Power Dissipauon .......	$300^{\circ} \mathrm{C}, 10 \mathrm{sec} .$
Digital Common . . -0.5 V to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$	Storage Temperature	$\begin{aligned} & 300^{\circ} \mathrm{C}, 10 \mathrm{sec} . \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
dnalog Inputs (REF IN, BIP OFF, $10 \mathrm{~V}_{\text {(N, }}$ ) to	Starage Temperature	

ADS74A ORDERING GUIDE

			Resolution	Max
		Linearity Error	No Missing Codes	Full Scale
Model	Temp. Range	Max ( $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ )	( $\mathrm{T}_{\min }$ to $\mathrm{T}_{\text {m... }}$ )	T.C. (ppow ${ }^{\circ} \mathrm{C}$ )
ADS74.jD	0 to $+70^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	11 Bits	50.0
ADS74AKD	$010+70^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$	12 Biss	27.0
.ADSTALD	$010 \div 70^{\circ} \mathrm{C}$	$=1: 2 \mathrm{LSB}$	12 Bits	10.0
. D SiriaSD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$=1 \mathrm{LSB}$	11 Bits	50.0
dDsitatD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	12 Bits	25.0
ADSiAALD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$=1 \mathrm{LSB}$	12 Bits	12.5

# THE ADS74A OFFERS GUARANTEED MAXIMUM LINEARTTY ERROR OVER THE FULL OPERATING TEMPERATURE RANGE 

## DEFINTIIONS OF SPECIFICATIONS

## LINEARTTY ERROR

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale". The point used as "zero" occurs K 2 LSB ( 1.22 mV for 10 volt span) before. the first code transition (all zeros to only the LSB "on"). "Full scale" is defined as a level 1 KILSB beyond the last code transition (to all ones). The deviation of a code from the trie stright line is measured from the middle of each particular code.

The AD574AK, AL, AT, and AU grades are guaranteed for maximum nonlinearity of $\pm 1 / 2$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital outpur code. Values nearer the upper or lower transition of the code width may produce the nert upper or lower digial output code. The AD574AJ and AS grades are guaranteed to $\pm$ ILSB max error. For these grades, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one.

Note that the iinearity error is not user-adiustable.

## DIFFERENTIAL LINEARITY ERROR (NO IUSSING

 CODES)A specifiction which guarantees no missing codes requires that every code combination appear in a monotonic increasing sequence as the analog inpur level is increased. Thus every code must have a finite width. For the ADS74AK, AL, AT, and AU grades. which guaranter no missing codes to 12 -bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The AD574AJ and AS grades guarantee no missing codes to 11 -bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice very few of the 12 -bit codes are missing.

## UNIPOLAR OFFSET

The first transition should occur at a level thLSB abuve analug common. Linipolar offset is defined as the deviation of the actual transition írom that point. This offiset can be adiusted as disciussed on the foilowing two pages. The unipolar offset temperature coefficient specifies the maximum change of the transition peunt over tempe:ature. with or withour external adiustment

BIPOL.AR UFFSET
Similarly. in the bipolar mode. the majur carry transition . 0111 11111111 to 10000000000 ) should occur for an analug value $1 / 2 L S B$ below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature

## QUANTIZATION UNCERTAINTY

Analog-to-digital converters exhibit an inherent quadrization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of given resolution.

## LEFT-JUSTIFIED DATA

The data format used in the ADS7td is left-justified. This means that the data represents the analog input as a fraction of full-scale, ranging from 0 to $\frac{+095}{+096}$. This implies a binary point to the left of the MSB

## FLll SCale calibration ERROR

The bast transition (from 1111 11111110 to 11111111 1111) should occur for an analog value $11 / 2$ LSB below the nominal full scale ( $9.995^{3} 3$ volts for 10.000 volts full scale). The full scale calibration errer is the deviation of the actual level at the last transition from the ideal level. This error, which is rypically 0.05 to $0.1 \%$ oz full scale. can be trimmed out as shown in Figures 3 and - . The iull scaic calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the fall scale gain from the initial value using the internal 10 volt reference.

## TEMPERATURE COEFFICIENTS

The temperature coefficients for full-scale calibration. unipolar uffect. and bipolar offsel specify the maximum change from the initial $\left(25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {mun }}$ or $\mathrm{T}_{\text {mas }}$

## P()WER SLPPLY REJECTION

The standard specifications ior the ADS74A assume use of -5.00 and $=15.00$ or $=12.00$ volt supplies. The only effect of puwer supply error on the performance of the device will be a small change in the iull scale calibration. This will result in a linear change in all lower order codes. The specifications show he maximum change in cal:eration trom the initial value with :ne supplies at the variohs limits

## (ODE WIDTH

1 :undamental yuarl:te ier i $D$ wnerte: - pecifications is the
 ter which a gisen digital outful coise will weicur. The nominal value ol a code width is equivalent to l least sıgnificant bit I.SB, of the ful scale range or $2.4 \mathrm{~m} /$ out of 10 volts for a 12 bil $A D C$.

## CIRCUTT OPERATION

The ADS74A is a complete 12 -bit AND converter which requires no erternal components to provide the complete successive-approximation analog-to-digital conversion function. A block diagram of the AD574A is shown in Figure 1. The device consists of two chips, one containing the precision 12-bit DAC with voltage reference, the other containing the comparator, successiveapproximation register, clock, output buffers and control circuitry.


Figure 1. Block Diagram of AD574A 12-Bit A-to-D Converter
When the control section is commanded to initiate a conversion (as described later), it then enables the clock and resets the suceessive-approximation register ( $S \lambda R$ ) to all zeros. Once a conversion cycle has begun, it cannot be stopped or re-started and data is not available from the outpur buffers. The SAR, timed by the clock, will then sequence tirough the conversion cycle and return an end-of-conver flag to the control section. The control section will then disable the clock, bring the ourpur status nag low, and enable control functions to allow data read functions by external command.
During the conversion cycle, the internal 12 -bit current output DAC is sequenced by the SAR from the most-significant-bit (MSB) to least-significant-bit (LSB) to provide an output current which accurately balances the input signal current through the $5 \mathrm{k} \Omega$ (or $10 \mathrm{k} \Omega$ ) input resistor. The comparator determines whecher the addition of each successively-weighted bit current causes the DAC current sum to be greater or less than the input current; if the sum is less, the bit is left on; if more, the bit is turned oif. After testing all the bits, the SAR contains a 12 -hit binary conde which accurately represents the input sigral to within $\pm^{1 / 2}$ ILS 8 .
The temperature-compensated buried Zener reference provides the primary voltage reference to the D.AC and guarantees excellen: stability with both time and temperature. The reference is trimmed to 10.00 volts $=1 \%$ : it can supply up to 1 . Sm.t in an exteràa: load in addition to that required to drave the reference input resistor $(0.5 \mathrm{~mA})$ and bipolar offel resistor ( 1 mA ) when the $\mathrm{ADS74A}$ is powered from $=15 \mathrm{~V}$ supplies. If the $\mathrm{ADS74A}$ is used with $=12 \mathrm{~V}$ supplies, or if external current must be supplied over the full temperature range. an external buffer amplifier is recommended. Any exterrai load on the ADSi4A reierence must remain constant during conversion. The thin film application resistors are trimmed to match the full scalc output current of the DAC. There are two $5 k \Omega$ input, caling resistors to allow either a 10 :ult or 20 volt span The lok! hipular offset iecistur
is grounded for unipolar operation or connected to the 10 volt reference for bipolar operation.

## DRIVING THE AD574A ANALOG INPUT

The ADS74A is a successive-approximation type analog-to-digital converter. During the conversion cycle, the ADC input current is modulated by the DAC test current at approximately a 500 kHz rate. Thus it is important to recognize that the signal source driving the ADS74A must be capable of holding a constant output voltage under dynamically-changing load conditions.


Figure 2. Op Amp-AD574A Interface
The closed !oop output impedance of an op amp is equal to the open loop output impedance (usually a few hundred ohms) divided by the loop gain at the frequency of interest. It is often assumed that the 'oop gain of a iollower-connected op amp is sufficiently dign to reduce the closed loop vutput impedance to a negligibly small value, particularly if the signal is low frequency. However, the amplifier jriving an. ADSit.A must either have sufficient locp gain at 500 kHz to reduce the closed loop output impedance to a low value or have luw open loop output impedance.
This can be accomplished either by using a wideband op amp or by placing a discrete-transistor or integrated buifer inside the amplifier's feedback loop.

## SUPPLY DECOUPLING AND LAYOUT

CONSIDERATIONS
It is critically important that the $A D S i+\lambda$ power supplies be filtered, well-regulated. and free from high frequency noise. Use of notsy supplies will cause unstable output codes to be generated. Switching power supplies are nut recommended for circuits jitempuing to achie:e 12 -bit accuracy unless great care is used in filtering any sditiching spikes present in the output. Remember that a few milli:nits of noise represer.ts several counts of error in a 12-bit ADC
Decoupling capac:tors should be used on all power supply pins; :he - 51 supfl: se t-iling aractior shuuld be conneesed
 and - Ve: pir.s shuuld or deroupled directly to analog common (pin 9). A suitabic Jecoupling capacitor is a $47 \mu \mathrm{~F}$ tantalum type in parallel with a $0.1 \mu \mathrm{~F}$ disc ceramie wpe
Circuit lavout shruld attempt to locate the AD574A, associated
 from logic circult: Fur this reasun. tac ase of wire-wrap circuit construction is not recommended. C.istetul printed-circuit ionuruction is pre:ce:ci

## AD574A Analog Circuit Details

UNIPOLAR RANGE CONNECTIONS FOR THE ADS74A The ADS74A contains ill the sective components required to pertorm a complete 12-bir AD conversion. Thus, for moss simations, all that is necessury in condecion of the power supplies ( $+5,+12+15$ and $-121-15$ volts), the analog input, and the conversion initiation command, as discrassed on the next page. Analog input coanections and calibration are eaxily accomplished; the unipolar operating mode is shown in Figure 4.


Figure 3. Unipolar Input Connections

All oi the thin ülm appication resistors of the ADS74A are trimmed for absolute calibration. Therefore, in many applications, no calibration trimming will be required. The absolute accuracy for each grade is given in the specification tables. For example, if no crims are used, the ADS74AK guarantoes $\pm 2 \mathrm{LSB}$ max zero offset error and $=0.25 \%$ (10LSB) max full scale error. (Typical full scale error is $\pm 2$ LSB.) If the offset trim is not required, pin 12 an be connected directly to pin 9; the two resistors and tnmmer for pin 12 are then not needed. If the full scale trim is not needed, a $50 \Omega \pm 1 \%$ metal film resistor should be connected berween pin 8 and pin 10 .
The analog input is connected berween pin 13 and pin 9 for a 0 to -10 V input range, between 14 and pin 9 for a 0 to +20 V input range. The ADSita easily accommodates an input signal beyond the supplies. For the 10 volt span input, the LSB has a nominal value of 2.44 mV , for the 20 volt span, 4.88 mV . If a 10.24 V range is desired (nominal 2.5 mV /bit), the gain urimmer (R2) should be replaced by a $50 \Omega$ resistor, and a $200 \Omega$ trimmer insered in serics with the analog input to pin 13 (for a full scale range of 20.48 V ( 5 mV .bit), use a $500 \Omega$ trimmer into pin 14). The gain trim described below is now done with these trimmers. The nominal input impedance into pin 13 is $5 \mathrm{k} \Omega$. and $10 k \Omega$ into pin it
UNIPOLAR CALIBRATION
The ADSTAA is intended to have a nominal $1 / 2 L S B$ offset so that the exact analog input for a given code will be in the middle of that code 'halfway between the transitions to the codes above
and below it). Thus; when properly calibrated, the first transition (from 000000000000 to 000000000001 ) will occur for 20 input leved of $+1 / 2 \mathrm{LSB}(1.22 \mathrm{mV}$ for 10 V range).
If pin 12 is connected to pin 9 , the unir typically will behave in this manner, within specifications. If the offset trim (RI) is used, in should be trimmed as above, although a different offset cain be set for a parricular system requirement. This circuit will give approximately $\pm 15 \mathrm{mV}$ of offset trim range.
The full scale trim is done by applying a signal $11 / 2$ LSB below the nominal full scale ( 9.9963 for a 10 V range). Trim R2 to give the last transition ( 111111111110 to 11111111 1111).
BIPOLAR OPERATION
The connections for bipolar ranges are shown in Figure 4. Again, as for the unipolar ranges, if the offset and gain specifications are sufficient, one or boch of the trimmers shown can be replaced by a $50 n \pm 1 \%$ fixed resistor. The analog input is applied as for the unipolar ranges. Bipolar calibration is similar to unipolar calibration. First, a signal $1 / 2$ LSB above aegative full scale ( -4.9988 V for the $\pm 5 \mathrm{~V}$ range) is applied and R1 is trimmed to give the first transition (0000 00000000 to.0000 00000001 ). Then a signal $11 / 2 L S B$ below positive fuli scale ( +4.9963 V for the $\pm S V$ range) is applied and $R 2$ trimmed to give the last transition (1111 11111110 to 111111111111 ).


GROUNDING CONSIDERATIONS
The analog common at pin 9 is the ground reterence point lor the internal reference and is thus the "high quality" ground for the ADSi4A; it should be connected directly to the analog reference point of the isstem. In order to achieve all of the high accuracy performance . Nailarile !erm the .iDS?A. in an environment of high digital notse content. it is rec̣aired that the analog and digital commons be cunnected togethe: at the package. In some situations, the digital common at pin 15 can be connected to the most conveasent ground reierence point; analog power return is preferred.

## CONVERSION START/DATA READ CONTROL LOGIC

The ADS74A corrains oo-chip logic to provide conversion initiation and data read operations from signals commonly avilable in microprocessor systems. Figure 5 shows the internal logic circuitry of the ADS74A.


Figure 5. AD574A Control Logic
The control signals $C E, \overline{C S}$, and $R \bar{C}$ control the operation of the converter. The state of $R / \overline{\mathrm{C}}$ when CE and $\overline{\mathrm{CS}}$ are boch asseried determines whether a data read ( $R / \overline{\mathrm{C}}=1$ ) or a convert ( $R / \overline{\mathrm{C}}=$ 0 ) is in progress. The register control inpurs $A_{0}$ and $12 / \frac{18}{8}$ control conversion length and data format. The io line is usually ried to the least significant bit of the address bus. If a conversion is started with $\Lambda_{0}$ low, a full 12-bit conversion cycle is initiated. If $A_{0}$ is high during a convert start, a shorter 8 -bit conversion cycle results. During data read operations, Ao determines whether the three-state buffers containing the 8 MSBs of the conversion result ( $A_{0}=0$ ) or the $4 \operatorname{LSBs}\left(\Lambda_{0}=1\right)$ are enabled. The $12 / 8$ pin determines whether the output data is to be organized as two 8 -bit words ( $12 \overline{8}$ tied to DIGITAL COMMON) or a single 12 -bit word ( $12 / \overline{8}$ tied to VLOGIC). The $12 / \overline{8}$ pin is not TTLcompatible and must be hard-wired to either VLOGIC or DIGITAL COMMON. In the 8 -bit mode, the byte addressed when $A_{0}$ is high contains the 4 LSBs from the conversion followed by four trailing zeroes. This organization allows the data lines to be overiapped for direct interface to 8 -bit buses without the need for external three-state buffers.

It is not recommended that $\mathrm{A}_{0}$ change state during 2 data read operation. Asymmetrical enable and disable times of the three-state buffers could cause internal bus contention resuluing in potential damage to the ADS74A.
An output signal, STS, indicates the status of the converter. STS goes high at the beginning of a conversion and returns low when the conversion cycle is complete.

CE	CS	$\mathrm{R} / \overline{\mathrm{C}}$	$12 / \overline{8}$	$A_{0}$	Operation
0	X	x	X	X	. one
X	1	X	X	X	None
1	0	0	X ${ }^{\prime \prime}$.	0	Initiate 12-Bit Conversion
1	0	0	X	1	Initiate 8-Bit Conversion
1	0	1	Pin 1	X	Enable 12-Bit Parallel Output *
1	0	1	Pin 15	0	Enable 8 Most Significant Bits
1	0	1	Pin 15	1	Enable +LSBs + 4 Trailing Zerne,
Table 1. AD57as Truth Table					

[^0]
## TIMING

The ADS74A is easily interfaced to a wide variety of microprocessors and other digital systems. Discussion of the riming requirements of the ADS74A control signals will provide the system designer with useful insight into the operation of the device.
Figure 6 shows a complete ciming diagram for the AD574A convert start operation. $\mathrm{R} \overline{\mathrm{C}}$ should be low before both CE and $\overline{\mathrm{CS}}$ are asserted; if $\mathrm{R} \overline{\mathrm{C}}$ is high, a read operation will momentarily occur, possibly resulting in system bus contention. Either CE or $\overline{\mathrm{CS}}$ may be used to initiate a conversion. As shown in Figure 6,


Figure 6. Conver Start Timing
$C E$ is used. If $\overline{C S}$ is used to trigger conversion or if the specified set-up times are not met, appropriately longer pulses are necessar: (to provide at least 200ns when $R^{\prime} \bar{C}, C E$, and $\overline{C S}$ are all valid). Note that CE includes one less propagation delay than $\overline{\mathrm{CS}}$ and is therefore the faster input.
Once a conversion is starred and the STS line goes high, convert start commands will be ignored unul the conversion cycle is complete. The output data buffers cannot be enabled during conversion.


Figure 7 shows the timing for Jata read operations. The AD5ith differs from the original ADSI design in that the three-state output buffers feature faster $\downarrow$ eess ime ind inorter data !atene


## AD574A Digital Circuit Details

cimes. This speed improvement simplifies the interface to faster microprocessors. During dan read operations, scoess time is measured from the point where CE and RĒ boch are high (assuming $\overline{C S}$ is already low). If $\overline{C S}$ is used to conable the device, access time is errended by 100 as.
In the 8-bit bus interfice mode ( $12 \sqrt{8}$ input wired to DIGITAL COMMON), the address bit, Aor must be wable at leas 150ns prior to $\overline{C E}$ going high and muss remain sable daring the eatire read cycle. If $A_{0}$ is allowed to change, damage to the $\mathrm{ADS74A}$ output buffers may result.

## READ TUMING-FULLCONTROLMODE

Symbol	Parameta	Min	Tro	Mas	Unim
'00'	Acocre Time (from CE)		210	250	$\infty$
'no	Dat Vatid atter CE Low	ช			$\underset{\sim}{0}$
$\mathrm{trax}^{2}$	Ourpui Flani Doday		110	150	$\pm$
isse	CS cocts Serup	150			$\pm$
isua	RC己to CE Setop				$\pm$
Isa	$\mathrm{A}_{0}$ tocte Semp	150			$\stackrel{\square}{\text { a }}$
tices	CS Valid Afua CE Lom	so			$\pm$
tran	RU己 High Ater CE Lom	0			$\pm$
trum	do Vald Aftec CE Low	so			$\pm$


a. High-Z to Logic 1


Figure 8. Load Circuit for Access Time Test

a. Logic 1 to High-Z

b. Logic O to High-Z

Figure 9. Load Circuit for Output Foat Delay Test
"STAND-ALONE" OPERATION
The ADS74A can be used in a "stand-alone" mode, which is useful in systems with dedicated input ports available and thus not requining full bus interface capabiliry.
In this mode, CE and $12 / \overline{8}$ are wired high. $\overline{\mathrm{CS}}$ and Av are wired low, and conversion is controlled by RUC. The three-state buffers are enabled when $R / \bar{C}$ is high and a conversion starts when $R / \bar{C}$ goes low. This gives rise to two possible control signals-a high pulse or a low pulse. Operaion with a low pulse is shown in Figure 10. In this case, the outputs are forced into the high-


Figure 10. Low Pulse for R/C-Outputs Enabled After Conversion
impednnce stase in response to the falling edge of $R \bar{C}$ and recurn to valid logic levels after the conversion cycle is completed. The STS line goes high 500 ss after R/ $\overline{\mathrm{C}}$ goes low and returas low 300 as afrer dare is valid.
If conversion is initisted by a high pulse as shown in Figure 11, the dave lines are enabled during the time when $R / \overline{\mathrm{C}}$ is high. The falling edge of $R \bar{C}$ starts the nert conversion and the data lines return to chree-sate (and remain three-state) unil the next high palse of R/ㄷ.


Figure 11. Low Pulse for $R \bar{C} \bar{C}$ - Outputs Enabled While $R \cdot \bar{C}$ High, Otherwise High-Z

## STAND-ALONE MODE TIMING

Symbol Parameter Min Typ Max Units

thrl	Low R $\bar{C}$ Pulse Width	350			ns
${ }_{\text {d }}$ D	STS Delay from R $\bar{C}$			500	ns
tron	Data Valid After RUC̄ Low	25			ns
$\mathrm{I}_{\mathrm{HL}}$	Output Flozt Delay		110	150	ns
$t \mathrm{~ms}$	STS Delay After Data Valid	300		1000	ns
IHRH $^{\text {Hen }}$	High R/̄ Pulse Width	250			s
${ }^{\text {s }}$ DDR	Data Access Time			250	ns

INTERFACING THE ADS74A TO MICROPROCESSORS
The control logic of the ADS74A makes direct connectuon to most microprocessor system buses possible. While it is impossible to describe the details of the interface connecuons for every microprocessor rype, several representative examples will ve described bere.

## GENERAL ADD CONVERTER INTERFACE

CONSIDERATIONS
Analog-to-digital converters. like any I. O vevice, may ine intertaied to mucroprocessors by several methods. These metinues inc.utic (but are not limited to) direct memory access. isolated or dicumulator IOO, and memory-mapped 1 OO. Direct memon a...e.(DMA) is the fastest, since conversions recur autumatazatix in in data updates inte memory are transparen! at the prosicisur
 specialized hardware.
Mernory-mapped and accumulator L/O are mure often used anc somewhat easier to understand Memory-mapped 1:0 assigns
 the micruprocessor. This tecinnique has the advantag: : :at: 7c fuli range of memory reference instructions may be used :o operate on the data. The porential disadrantages inc!ecte amm:n: the memory space available for program and data memor:somewhat more complex address decoding ind more .11:: 1 :-ili isolation of device select pulses for system ucougging $\therefore$ lans processors olfer only memury-mapped 1.0
 and different irom the memory cuntrul ugrals. There wittia signals, combined with the address bus, veric to deñici a ulali:

## AD574A Digital Circuit Details

times. This speed improvement simplifies the interface to faster microprocessors. During data read operations, access time is measured from the point where CE and RX Z both are high (assumming $\overline{C S}$ is already low). If $\overline{C S}$ is used to enable the device, access time is erased by 100 as.
In the 8 -bit bus interface mode ( $12 \sqrt{8}$ input wired to DIGITAL COMMON), the address bit, $A_{0}$, must be stable at least 150ns prior to $\overline{C E}$ going high and must remain stable during the entire read cycle. If $\Lambda_{0}$ is allowed to change, damage to the ADS74A output buffers may result.

## READ TIMNG-FUKLCONTROL MODE






a. High-Z to Logic 1

b. High-Z to Logic 0

Figure 8. Load Circuit for Access Time Test

a. Logic 1 to High-Z
figure 9. Load Circuit
"STAND-ALONE" OPERATION
The ADS74A can be used in a "stand-alone" mode, which is useful in systems with dedicated input ports available and thus not requiring full bus interface capability.
In this mode, CE and $12 / \overline{8}$ are wired high, $\overline{\mathrm{CS}}$ and .to are wired low, and conversion is controlled by RC. The three-state buffers are enabled when $R^{\prime} \bar{C}$ is high and a conversion starts when $R / \bar{C}$ goes low. This gives rise to two possible control signals-a high pulse or a low pulse. Operation with a low pulse is shown in Figure 10. In this case, the outputs are forced into the high-


Figure 10. Low Pulse for R/ $\bar{C}$ - Outputs Enabled After Conversion
impedance state in response to the falling edge of $R \bar{C}$ and return to valid logic levels after the conversion cycle is completed. The STS line goes high 500 ns after $R \bar{C}$ goes low and returns low 300 os after data is valid.
If conversion is initiated by a high pulse as shown in Figure 11, the data lines are enabled during the time when $R / \overline{\mathrm{C}}$ is high. The filling edge of $\mathrm{R} \overline{\mathrm{C}}$ starts the next conversion and the data lines return to three-state (and remain threestate) until the next high pulse of $R \bar{C} \bar{C}$.


Figure 11. Low Pulse for R/ $\bar{C}$-Outputs Enabled While R. $\bar{C}$ High. Otherwise High-Z
STAND-ALONE MODE TIMING


INTERFACING THE AD574A TO MICROPROCESSORS
The control logic of the ADS74A makes direct connecuon to most microprocessor system buses possible. While it is impossible to describe the details of the interface coanecuons for ever: microprocessor type, several representative examples will be described here.

## GENERAL ADD CONVERTER INTERFACE

 CONSIDERATIONSAnalog-to-digital converters. like any l.() device, may re interldice to inicroprocessors by several methods. These meinuis in. .uric (but are not limited to) direct memory akees. isolated or dicumulator loO. and memory-mapped io Direct: meson dives: (DMA) is the fastest, since conversions incur autumat:cati and data updates into memory: are transparen: in the ferniciout DMA logic is very processur-dependent and makes use in ueci:id:c:: specialized hardivare
Memory-mapped and accumulator $1 / 0$ are mure often used and somewhat easier to understand. Memory-mapped 1:O assign y the $1 / O$ device to one or more locations is the memory: spa: : the microprocessor. This technique has the advantage : is : full range of memory reference instructions may be used: :0 operate on the data. The potential disadvantages inctecte .amt:at the mernury space available tor program and data memoir: somewhat mure complex address decoding ind more nlitial: isolation of device select pulses tor system: debugging . 113 n v processors offer only memury-mapped i ©
Accumulator 10 uses a set of control shenel :which afc àsi:i:c: and different from the memory consul Mynas. These - rit it signals, combined with the address bus, aerie to denise, 'oral:
separate VO address space. This architecture is simpler from a bardware standpoint, since address decoding requirements are less severe and distinct עO read and write pulses are more eacily located for system debugging parposes. However, processors using accumulator IN generally can only send data to an output device from the accumulator. This can make the software more cumbersome, since processor-controlled transfers of VO device data to a memory location cannot be accomplished in a single instruction.
A typical ADD converter interface routine involves several operations. First, a write to the ADC address initiates a conversion. The processor must then wait for the conversion cycle to complete, since most integrated circuit ADCs take longer than one instruction cycle to complete a conversion. Valid data can, of course, only be read after the conversion is complete. The ADS74A provides an output signal (STS) which indicates when a conversion is in progress. This signal can be polled by the processor by reading it through an external three-state buffer (or ocher input port): The STS signal can also be used to generate an interrupt upon complecion of conversion, if the system timing requirements are critical (bear in mind that the maximum conversion time of the ADS74A is only 35 microseconds) and the processor has other tasks to perform during the ADC conversion cycle. Another possible time-out method is to assume that the ADC will take 35 microseconds to convert, and insert a sufficient number of "do-nothing" instructions to ensure that 35 microseconds of processor time is consumed.
Once it is established that the converter is-done with its cycle, the data can be read. If the case of an ADC of 8 -bit resolution (or less), a single data read operation is sufficient. In the case of converters with more data bits than are available on the bus, a choice of data formats is required, and multiple read operations are aeeded. The ADS74A includes internal logic io permir direcr interface to 8 -bit or 16 -bit data buses, selected by connection of the $12 / \overline{8}$ input. In 16 -bit bus applications ( $12 / \overline{8}$ high) the data lines (DB11 through DB0) may be connected to either the 12 most significant or 12 least significant bits of the data bus. The remaining four bits should be masked in software. The interface to an 8 -bit data bus ( $12 / \overline{8} \mathrm{low}$ ) is done in a left-justified format. The even address (AO low) contains the 8MSBs (DBII through DB4). The odd address (A0 high) contains the 4LSBs (DB3 through DBO) in the upper half of the byte, followed by four trailing zeroes, thus eliminating bit masking instrucuions.


Figure 12. AD574A Data Format for 8-Bit Bus
It is not possible to rearrange the $\mathrm{ADSi4A}$ data lines for right-jusuified 8 -bit bus interface.
The ADS74A three-state buffers feature accers times and data latency times comparable to presently-available memory devices. Therefore, the ADSitA can interface directly to many processor buses without the need for wizit states or external data buffers.

## SPECIFIC PROCESSOR INTERFACE EXAMPLES

6800/6502-Type Systems
The control signals and bus architeciure of the 6800 series and 6502 series microprocessors are very similar. In each, the state of the $R / \sqrt{W}$ signal at the rising edge of the 82 ior equivalent) clock establishes whether a memory read or write is in progress. The memory address being exercised is signaled by decoding the address bits to (usually) an active low signal.

This concrol seructure is directly compatible with the ADS74A. The $R \bar{W}$ line an bet used for $R \bar{C}$, the active-low decoded base address (the ADS74A occupies two memory locations) is applied to $\overline{C S}$, and 92 is used for CE. The least-significant address line ties to the ADS74A A0 input.
In this interface, the processor can write to one address (A0 low) to start a full 12-bit conversion or anocher address (AO high) to start a short 8 -bit conversion. The contents of the data bus are meaningless during these writes. After sufficient time has passed for the conversion to complete, the processor can read the data in the two memory bocations occupied by the AD574A. The even location (AO low) contains the eight MSBs and the odd location contains the four LSBs and four trailing seroces.
The AD574A may be used directly with 6800 series processors runoing at clock speeds up to 1.5 MHz .


Figure 13. AD574A-6800/6502 Interface Connections
8085A Interface
The 8085A microprocessor uses a multiplexed addressdata bus. At the begianing of a machine cycie, this bus contains the low byle of the address being exercised. The ALE output signal is available to strobe a latch to hold the low address byte. For the rest of the machine cycle, this bus carries data to or from the CPU.
The 8085 A can use either accumulator $1 / \mathrm{O}$ or memory-mapping for $1 / O$ devices. The system $\overline{R D}$ and $\overline{W R}$ are gated with $10 i \bar{M}$ to provide distinct $1 / \mathrm{O}$ read and write signals and memory read and write signals. The control signals required for the ADSith are easily derived from the 8085 A control bus. $\overline{\mathrm{CS}}$ is taken from an address decoder on the high-order address bits. R: $\overline{\mathrm{C}}$ can be taken from $\overline{W R}$ (either I:O write or memory write), AO is tied to the LSB of the address bus, anc CE is taken irom the outful of a NAND gate driven from $\overline{R D}$ and $\overline{W R}$. All bus access and float delay requirements are met for direct bus interface for 8085A clock rates up to 3.11 Hz


Figure 14. AD574A-8085A Direct Bus Interface
separate I/O address space. This architecture is simpler from a hardware standpoint, since address decoding requirements are less severe and distinct 10 read and write pulses are more easily located for system debugging purposes. However, processors using accumulator I/O generally can only send data to an output device from the accumulator. This can make the software more cumbersome, since processor-controlled transfers of עO device data to a memory location cannot be accomplished in a single instruction.
A typical A/D converter interface routine involves several operations. First, a write to the ADC address initiates a conversion. The processor must then wait for the conversion cycle to complete, since most integrated circuit ADCs rake longer than one instruction cycle to complete a conversion. Valid data can, of course, only be read after the conversion is complete. The ADS74A provides an output signal (STS) which indicates when a conversion is in progress. This signal can be polled by the processor by reading it through an external three-state buffer (or other input porn): The STS signal can also be used to generate an intertupt upon completion of conversion, if the system timing requirements are critical (bear in mind that the maximum conversion time of the AD574A is only 35 microseconds) and the processor has other tasks to perform during the ADC conversion cycle. Another possible time-out method is to assume that the ADC will take 35 microseconds to convert, and insert a sufficient number of "do-nothing" instructions to ensure that 35 microseconds of processor time is consumed.

Once it is estabiished that the eonverter is-done with its cycle, the data can be :ead. In the case of an ADC of 8 -bit resolution (or less), a singie data read operation is sufficient. In the case of converers with more data bits than are aveilable on the bus, a choice of data formats is required, and muluple read operations are needed. The AD574A includes internal logic to permit direct interface to 8 -bit or 16 -bit data buses, selected by connection of the $12 \overline{8}$ input. In 16 -bit bus applications ( $12 / \overline{8} \mathrm{bigh}$ ) the data lines (DB11 through DBO) may be connected to either the 12 most significant or 12 least significant bits of the data bus. The remaining four bits should be masked in software. The interface to an 8 -bit data bus ( $12 \sqrt{8}$ low) is done in a left-justified format. The even address (A0 low) contains the 8MSBs !DB11 through DB4). The odd address (A0 high) contains the 4LSBs (DB3 through DBO) in the upper half of the byre, followed by four trailing zeroes, thus eliminating bit masking instructions.


Figure 12. AD574A Data Format for 8 -Bit Bus
It is not possible to rearrange the $A D 574 \mathrm{~A}$ data lines for right-juscified 8 -bit bus interface.
The ADS74A tbree-state buffers feature access umes and data latency times comparable to presendy-available memory devices. Therefore, the ADS74A can interface directly to many processor buses withour the need for wait states or external data buffers.

## SPECIFIC PROCESSOR INTERFACE EXAMPLES

6800/6502-Type Systems
The control signals and bus arcinteciure of the 6800 series and 6502 series microprocessors are very similar. In each, the state of the R/X' signal at the rising edge of the 82 or equivalent) clock establishes whether a memory read or write is in progress. The memory address being exercised is signaled by decoding the address bits to (usually) an active low signal

This control structure is directly compatible with the ADS74A. The $R \bar{W}$ line can bet used for $R \bar{C}$, the acrive-low decoded base address (the ADS74A occupies nwo memory locaions) is applied to $\overline{C S}$, and $\boldsymbol{\Omega}$ is used for CE. The least-significant address line ties to the ADS74A A0 input.
In this interface, the proceasor can write to one address (A0 low) to stan a full 12 -bit conversion or anocher address (AO high) to start a short \&-bit conversion. The contents of the data bus are meaningless during these writes. After sufficient time has passed for the conversion to complete, the processor an read the data in the two memory locavions occupied by the ADS74A. The even location (AO low) contains the cight MSBs and the odd location contains the four LSBs and four trailing zeroes.
The ADS74A may be used directly with 6800 series processors running at clock speeds up to 1.5 MHz .


Figure 13. AD574A-6800 6502 Interface Connections

## 808SA Lnterface

The 8085A microprocessor uses a muluplexed address/data bus. At the begenning of a machine cycle, this bus contains the low byte of the address being exercised. The ALE output signal is available to strobe a latch to hold the low address byte. For the rest of the machine cycle, this bus carries data to or from the CPU.
The 8085 A can use either accumulaior 1/O or memore-mapping for I/O devices. The system $\overline{R D}$ and $\overline{W R}$ are gated with $10 / \bar{M}$ to provide distinct INO read and write signals and memory read and write signals. The control signals required for the ADS74A are easily derived from the 8085 A control bus. $\overline{\mathrm{CS}}$ is taken from an address decoder on the high-order address bits. $R \cdot \bar{C}$ can be taken from $\overline{W R}$ (either $1 . O$ write or memory wnite), $A 0$ is ued to the LSB of the address bus. and CE is taken from the output of a NAND gate driven from $\overline{R D}$ and $\overline{X^{\prime} R}$. All bus access and noat delay requirements are met for direct bus interface for 8085A clock rates up to 3.9 H ;


Figure 14. AD574A-8085A Direct Bus Interface

In 8085A systems running at high cloct frequencics some enermal circuitry is required. First, the ADS74A delay from CE going low to the data lines going into throe-sate will cause a bus conflict when the 8085A sends out the low byte of the nex instruction address. This conflict will occur if the ADS74A data outputs are tied direcely to the 8085A bus. In systems where bus transceivers (e.g., 74LS245, 8286, etc.) are used to separate the address and data lines, the conflict is eliminared. The transceivers are disabled at the end of the read cycle and thus isolate the ADS74A from the 8085A bus. Since most systems incorporate such buffers, this does not add to system complexity.

A second consideration when interfacing to higher speed 8085A systems is the width of the convert start pulse. The $\overline{W R}$ pulse from a SMHZ 8085A is only guaranteed wo be 230 nanosecoods wide and is thus nor long enough to initiate a conversion. There are two solutions to this problem. One possibility is to use a dual D-type llip-flop connected as shown in Figure 15 to insert a siggle wait state in read and write operations directed towards the ADS74A. Another solution is to substitute the earlier-occurring S1 and SO outputs from 8085A for $\overline{R D}$ and $\overline{\overline{W R}}$ in the circuit of Figure 14 to generate the required control signals. It is important that bus transceivers be emploved if S1 and SO are used for control signals since these signals remain active longer than $\overline{R D}$ and WR, enabling the ADS74A outpur buffers in read operations for too long, causing potential bus conflicts.


Figure 15. Wait State Generator for 5MHz 8085 A Interface Z-80 System Interface
The 2-80 series of 8 -bit microprocessors, like the 8085 A , offers both memory-mapped and accumulator VO capability. While the 8085A only includes two instructions for accumulator I/O (IN and OUT), the 2-80 I/O instruction set is considerably more extensive.
The control signals available on the $2-80$ include $\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}$, $\overline{R D}$. and $\overline{W R}$. The $\overline{R D}$ and $\overline{W R}$ signals indicate direction of data Now while $\overline{M R E Q}$ and $\overline{\text { IORQ }}$ determine whether the read or write cycle in progress is a memory or I/O cycle. During I/O reads and writes, only 8 address lines are active (as in the 8085A). An interesting feature of the Z-80 is that 10 read and write erc!es are automatically extended by one clock cycle (one wait state is inserted) and are thus slower. The Z-80 control signal connections to the AD574A are identical to the 8085A connections.
The ADS74A can be interfaced to $\mathrm{Z}-80$ series processors with clock speeds up to 2.5 MHz in the memory address space using the $\overline{M W R}$ and $\overline{M R D}$ signals. At higher clock rates ( 4 and 6 MHz ), the memory write pulse is not wide enough to properly start a conversion. The extra wait state added during I O write operations will extend this pulse 10 a suitable width at clock rates up to 6 MHz so that accumulator $\mathrm{L}^{\prime} \mathrm{O}$ is possibie.

## INTERFACING THE ADS74A TO THE APPLE II COMPUTER

The AD574A can be used to provide a low-cost precision analog input port for the Apple II microcomputer without the need for addicional power supplies or extensive digital interface logic. The AD574A can be mounted on a hobby ard designed to plug into an Apple II עO slot.

## Hardware

All required supply voluges and control signals are available on the Apple's peripheral connectors. Each connector contains, on pin 41, a DEVICE SELECT output which is active when the address bus holds a heradecimal address between COmO and $\operatorname{COnF}$, where $n$ is equal to the slot number plus 8 . This signal can be connected to pin $3(\overline{\mathrm{CS}})$ of the $\mathrm{dDS74A}$. The DO clock on pin 40 of the peripheral connector can be used for the ADS it.t CE input (pin 6). The ADS74A R $\overline{\mathrm{C}}$ input (pin 5) can be driven directly by the R $\bar{W}$ output available on peripheral connector pin 18. Pin 2 of the peripheral connector, A0, connects directly to the AD574A pin 4. The connections berween the peripheral connector and the ADS74d are shown in Figure 16.


Figure 16. AD574A Connections to Apple II Peripnera. Connector
The Apple 11 represents a relatively hostile ciectricai envirun::!c:nt to the AD574A. The high frequency clocks radiate a large amuunt of noise which can be inadvertently coupled into analog signal lines. Furthermore, the switching power supply in the Apple is noisy, and this noise will often pollute the analow signals l':possible, however by judicious bypassing. decoupling. aric ground management, to achieve a data acquisition system wili, only occasional thicker. A suggested grounding and decnurt:ax scheme is shown in Figure 17.
It is recommended that any signal preamplification used :: …: a system be physically located outside the Apple cabinet 1: aiiscale signal range is less susceptible to electromagneticallu inion:ud interference than a smaller signal rar.ge would be. Thu: :in preferred method is to deliver a buffered, high-level sigi.... the ADSith through a shielded cable. The $=55^{\circ}$ or $=$ il!

In 8085 A systems running at high clock frequencies some external circuitry is required. First, the ADS74A delay from CE going low to the data lines going into three-state will cause a bus conflict when the 8085A sends out the low byte of the next instruction address. This conflict will occur if the ADS74A data outputs are tied directly to the 8085A bus. In systems where bus transceivers (e.g., 74LS245, 8286, etc.) are used to separate the address and data lines, the conflict is diminated. The transceivers are disabled at the end of the read cycle and thus isolate the AD574A from the 8085A bus. Since most systems incorporate such buffers, this does not add to system complexity.
A second consideration when interfacing to higher speed 8085 $A$ systems is the width of the conver starn pulse. The $\overline{\overline{W R}}$ pulse from a SMHz 8085A is only guaranteed to be 230 nanoseconds wide and is thus not long enough to initiate a conversion. There are two solutions to this problem. One possibility is to use a dual D-type flip-flop connected as shown in Figure 15 to insert a single wait state in read and write operations directed cowards the ADS74A. Another solution is to substitute the earlier-occurring S1 and S0 outputs from 8085A for $\overline{R D}$ and $\overline{W R}$ in the circuit of Figure 14 to generate the required control signals. It is important that bus transceivers be emploved if S1 and SO are used for control signals since these signals remain active longer than $\overline{R D}$ and $\overline{W R}$, enabling the ADSiti output buffers in read operations for too long, causing potential bus conflicts.


Figure 15. Wait State Generator for 5MHz 8085 A Interface Z-80 System Interface
The 2-80 series of 8 -bit microprocessors, like the 8085A, offers both memory-mapped and accumulator IO capability. While the 8085A only includes two instructions for accumulator VO (I.i and OUT), the Z-80 L'O instruction set is considerably more extensive.
The control signals available on the $Z-80$ include $\overline{M R E Q}, \overline{\mathrm{ORQ}}$, $\overline{R D}$. and $\overline{X R R}$. The $\overline{R D}$ and $\overline{X R R}$ signals indicaie direction of data flow while $\overline{M R E Q}$ and $\overline{\mathrm{IORQ}}$ determine whether the read or write cycle in progress is a memory or I/O cycle. During I/O reads and writes, only 8 address lines are accive (as in the 8085 A ). An interesting fearure of the $\mathrm{Z}-80$ is that I/O read and write cycles are automaucally extended by one clock cycle (one wait state is inserted) and are thus slower. The Z-80 control signal connections to the AD574A are identical to the 8085 $A$ connections
The ADS74A can be interfaced to $\mathrm{Z}-80$ series processors with clock speeds up to 2.5 MHz in the memory address space using the $\overline{M W R}$ and $\overline{M R D}$ signals. At higher clock rates ( 4 and 6 MHz ), the memory write pulse is not wide enough to properly start a conversion. The extra wait state added during I:O write operations will extend this pulse in a suitable width at clock rates up tu 6 MHz so that accumulator LO is possible.

## INTERFACING THE AD574A TO THE APPLE II

 COMPUTERThe AD574A can be used to provide a low-cost precision analos input por for the Apple 11 microcomputer without the need for additional power supplies or extensive digital interface logic. The ADS74A can be mounted on a hobby card designed to plug into an Apple II I/O sot.

## Hardware

All required supply voluges and control signals are available on the Apple's peripheral connectors. Each connector contains, on pin 41, a DEVICE SELECT output which is active when the address bus holds a heradecimal address berween COnO and COnF , where n is equal to the slot number plus 8 . This signal an be connected to pin $3(\overline{\mathrm{CS}})$ of the $\mathrm{dDS74A}$. The $\Phi 0$ clock on pin 40 of the peripheral connector can be used for the ADSith CE input ( $p$ in 6). The ADS74A R/C input ípin 5) an be driven directly by the $R \bar{w}$ output available on peripheral connector pin 18. Pin 2 of the peripheral connector, $\lambda 0$, connects directly to the AD574A pin 4. The connections berween the peripheral connector and the ADSi4A are shown in Figure 16.


Figure 16. AD574A Connections to Apple II Peripnerai Connector

The Apple 11 represents a relatively hostile electrical envirumationt to the ADS74A. The high frequency clocks radiale a large amount of noise which can be inadveriently coupled into analog signal lines. Furthermore, the switching power supply in the Appic is noisy, and this noise will often follute the analog signals. I• :possible, however, by fudicious bypassing, decoupling. si.e ground management, to achieve a data acquisition system watt: only occasional flicker. A suggested grounding and decourtinu scheme is shown in Figure 17.
It is recommended that any signal preamp ificatiun usci : :: t.en a sustem be physically located outside the Apple cabinet i : iulscale signa! range is less susceptible to electromagneticall: , wi:?:ud interference than a smaller signal range would be Thus $3:$ preferred method is to deliver a buliered, high-level meris. the ADSiti through a shielded canle. The さ5V or - in!

# Monolithic Function Generator 

general description

The XR-2206 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of highslability and accuracy. The output waveforms can be both amplitude and Irequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.01 Hz to more than 1 MHz
the circuit is ideally suited for communlcations, instru. mentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a iypical drift specification of $20 \mathrm{ppm}{ }^{\circ} \mathrm{C}$. The oscillator Irequency canbe linearly swept over a 2000:1 frequency range, with an external control voltage, having a very small affect on distortion.

## FEATURES

LowSine Wave Distortion Excellent Temperature Stability Wide Sweep Range LowSupply Sensitivity Linear Amplitude Modulation IIL Compatible FSK Controls
Wide Supply Range
Adjustable Duty Cycle

## APPLICATIONS

\%'
Wavelorm Generation
Sweep Generation
ANJFM Generation
VIF Conversion
FSK Generation
Phase-Locked Loops (NCO)

## absolute maximum rr.tings

Power Supply	26 V
Power Dissipation	750 mW
Derate Above $25^{\circ} \mathrm{C}$	
Total Tirning Current	$5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	

FUNCTIONAL BLOCK DIAGRAM


ORDERING INFORMATION

Pant Number	Package	Operating Tamperature
XR-2206M	Ceramic	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
XR-2206N	Ceramic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2206P	Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2206CN	Ceramic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2206CP	Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## SYSTEM DESCRIPTION

The XR-2206 is comprised of four func:ional blocks; a voltage-controlled oscillator (NCO), an a.nalog multiplier and sine-shaper; a unity gain buffer amplifiert and a set of current switches.

The VCO actually produces an output Irequency proportional to an input current, which is produced by a resistor from the timing terminals to ground. The current switches route one of the timing pins current to the VCO controlled by an FSK input pin, to produce an output frequency. With two timing pins, two discrete output frequencies can be independently producep for FSK Generation Applications.

## XR-2206

electrical characteristics
Test Condtrions: Test Circult of Figure $1, V^{+}=12 V_{1}, T_{A}=25^{\circ}, C=0.01 \mu F_{1} R_{1}=100 \mathrm{kR}, R_{2}=10 \mathrm{kR}, R_{3}=25 \mathrm{ko}$ - : Unless otherwise specified. $\mathrm{S}_{1}$ open for triangle, closed for sine wave.

-	${ }_{8} \times$	R-2206M	\%		R-2206C			
PARAMETERS	MIN	TYP	MAX	MIN	: TYP	MAX	UNITS	CONDITIDNS
GENERAL CHARACTERISTICS			-		,			
Single Supply Voltage Split-Supply Voltage Supply Current	$\begin{aligned} & 10 \\ & \pm 5 \end{aligned}$	12	$\begin{gathered} 26 \\ \pm 13 \\ 17 \end{gathered}$	$\begin{aligned} & 10 \\ & \pm 5 \end{aligned}$	14	$\begin{gathered} 26 \\ \pm 13 \\ 20 \end{gathered}$	$\begin{gathered} V \\ v \\ m A \end{gathered}$	$\mathrm{R}_{1} \geq 10 \mathrm{k} 0$
OSCILLATOR SECTION								
Max. Operating Frequency	0.5	1		0.5	1		MHz	$\mathrm{C}=1000 \mathrm{pF} \mathrm{R}_{1}=1 \mathrm{kO}$
Lowest Practical Frequency		0.01			0.01		Hz	$C=50 \mu F_{1} R_{1}=2 \mathrm{MO}$
Frequency Accuracy		$\pm 1$	$\pm 4$		$\pm 2$		\% of 10	$\mathrm{L}_{0}=1 R_{1} \mathrm{C}$
Temperature Stabilly :		$\pm 10$	$\pm 50$		$\pm 20$	$\because$ :	pprm ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}, \\ & R_{1}=R_{2}=20 \mathrm{k} 0 \end{aligned}$
Supply Sensitivity		0.01	0.1		0.01		\% N	$V_{L O W}=10 V_{1} V_{\text {HIGH }}=$
	$\cdots$							$\mathrm{R}_{1}^{20}=\mathrm{R}_{2}=20 \mathrm{kO}$
Sweep Range	1000:1	2000:1			2000:1		$\mathrm{I}_{\mathrm{H}}=\mathrm{I}_{\mathrm{L}}$	$\mathrm{I}_{\mathrm{H}} \times R_{1}=1 \mathrm{kO}$
								$\mathrm{L}_{\mathrm{L}}$ (3) $\mathrm{R}_{1}=2 \mathrm{MO}$
Sweep Linearlty 10:1 Sweep		2			2			
1000:1 Sweep		8			8		\%	$\mathrm{I}_{\mathrm{L}}=.1 \mathrm{kHz}, \mathrm{f}_{\mathrm{H}}=10 \mathrm{kHz}$ $I_{L}=100 \mathrm{kHz}, I_{H}=100$
FM Distortion		0.1			0.1		\%	$\underset{\mathrm{kHz}}{ \pm 10 \%}$ Deviation
Recommended Timing .								
Components								
- Timing Capacitor: C	0.001		100	0.001		100.	${ }_{\text {k }} \mathrm{F}^{\text {a }}$	See Figure 4.
Timing Resistors: $R_{1} \& R_{2}$			2000	1		2000	k 0	
Triangle Sine Wave Output	-							See Note 1. Figure 2.
Triangle Amplitude		- 160			160		mV/k 0	Figure 1, $\mathrm{S}_{1}$ Open
Sine Wave Amplitude	40	60	80		60		mVka	Figure 1, $\mathrm{S}_{1}$ Closed
Max. Output Swing		${ }_{600}^{6}$			6 600		$\checkmark \mathrm{p}$ -	
Triangle Linearity		600 1			$\stackrel{1}{1}$		\%	
Amplitude Stablity		0.5			0.5		dB	
Sine Wave Amplitude		4800			4800		pprnj ${ }^{\circ} \mathrm{C}$	See Note 2.
Stability								
Sine Wave Distortion								
Without Adjustment		2.5			2.5		\%	$\mathrm{R}_{1}=30 \mathrm{k} 0$
With Adjustment		0.4	1.0		0.5	1.5	\%	See Figures 6, and 7.
Amplitude Modulation Input Impedance								
Input Impedance	50	100		50	100		$k 0$	
Modulation Range		100			100		\%	
Carrier Suppression		55			55		${ }^{\text {dB }}$	
Linearity		2			2		\%	For 95\% modulation
Square-Wave Output Amplitude								
Ampllitude		12			- 12		$\checkmark \mathrm{p} \cdot \mathrm{p}$	Measured at Pin 11.
Rise Time		250			250		nsec	$C_{L}=10 \mathrm{pF}$
Fall Time		50			50		nsec	$C_{L}=10 \mathrm{pF}$
Saturation Voltage		0.2	0.4		0.2	0.6	$v$	$\mathrm{L}_{\mathrm{L}}=2 \mathrm{~mA}$
Leakage Current		0.1	20		0.1	100	${ }^{\mu} \mathrm{A}$	$V_{11}=26 \mathrm{~V}$
FSK Keying Level (Pin 9)	0.8	1.4	2.4	0.8	1.4	2.4	$v$	See section on circuit controls
Reterence Bypass Voltage	2.9	3.1	3.3	2.5	3	3.5	$\checkmark$	Measured at \|Pin 10.

Note 1: Output amplitude is directly proportional to the resistance, $\mathrm{R}_{3}$, on Pin 3 . See Figure $\mathbf{2}$.
Note 2: For maximum amplitude stability, $R_{3}$ should be a positive lemperature coefficient resistor.

## XR-2206



Figure 1. Basic Test Circull.


Figure 2. Output Ampiltude as a Function of the Resistor, $\mathrm{H}_{3}$ at Pin 3.


Figure 3. Supply Currant versus Supply Vothage, Timing, $A$


Figure 4. R varsus Oscillation Frequency.


Figure 5. Normalzed Output Amplitade versus DC Blas at AM Input'(Pin 1).


Figure 6. Trimmed Distortion varsus Timing Resistor.


Figure 7. Sine Wave Distortion varsus Oparating Frequency whth Timing Capachors Varied.


Figure B. Frequency Dritl versus Temperature.

## XR:2206



Figure 9. Circul Cannaction tor Fraquency Swasp.


Figure 10. Circulk lor Sine Wave Generation whthout External Adjustmant. (See Figure 2 for Choice of liz).


Figure 12. Sinusoldal FSK Generator.


Figuri 11. CIrcult for Sine Wave Generation whth Minimum Harmonic Distortion. ( $R_{3}$ Doterminas Output Swing-Ses Figure 2.)

## Fraquacy-Shiff Kaying:

The XR-2206 can be operated with two separate timing resistors, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ connected to the tirming Pin 7 and 8, respectively, as shown in Figure 12 Depending on the polarity of the logic signal at Pin 9, etther one or the other of these timing resistors is activated. If Pin 9 ts open-circulted or connected to a blas voltage $\geq 2 \mathrm{~V}$, onty $R_{1}$ ts activated. Similarty, $H$ the voltage level at Pin 9 is siVi only $R_{2}$ is activated. Thus, the output frequency can be keyed between two lovels, $i_{1}$ and $i_{2}$, as:
$\therefore \quad I_{1}=1 / R_{1} C$ and $I_{2}=1 / R_{2} C$
For split-supply operation, the keying voltage at Pin 9 is relerenced to V -.

## Outpid DC Level Contral:

The de level at the output (Pin 2) is approximately the same as the dc bias at Pin 3. In Figures 10. 11 and 12. Pin 3 is biased midway between $\mathrm{V}+$ and ground, to glve an output de level of $=V+12$.

## APPLICATIONS INFORMATION

## Sine Wave Generatioń

## Whiout Extornal Adjuştmont:

Figure 10 shows the circult connection for generating a sinusoidal output from the XR-2206. The polentiometer, $R_{1}$ at Pin 7, provides the desired frequency tuning. The maximum output swing is greater than $V+12$, and the typical distortion (THD) is $<2.5 \%$. If lower sine wave distortion is desired, additional adjustments can be provided as described in the following section. .

The circuit of Figure 10 can be converted to split-supply operation, simply by replacing all ground connections with V -. For split-supply operation, $\mathrm{R}_{3}$ can be directly connected to ground.

## Whit External Adjustmant:

The hammonic content of sinusoidal output can be re duced to $\approx 0.5 \%$ by additional adjustments as shown In Figure 11. The potentiometer, $R_{A}$, adjusts the sineshaping resistor, and $R_{B}$ provides the fine adjustment - tor the waveform symmetry. The adjusiment procedure is as follows:

1. Set $R_{B}$ at midpoint, and adjust $R_{A}$ for minimum distortion.
2. With $R_{A}$ set as above, adjust $R_{B}$ to further reduce distortion.

## Irlangle Wave Generation

The circuits of Figures 10 and 11 can be converted to triangle wave generation, by simply open-circuiting Pin 13 and 14 (i.e., $\mathrm{S}_{1}$ open). Amplitude of the triangle is approximately iwice the sine wave output.

## FSK Gene:ation

Figure 12 shows the circuit connection for sinusoldal FSK signal operation. Mark and space: frequencles can be independently adjusted, by the choice of timing resistors, $R_{1}$ and $R_{2}$; the output is phase-continuous durlng transitions. The keying signal is applied to PIn 9. The circuit can be converted to split-supply operation by simply replacing ground with V -.

## Pulse and Ramp Generation

Fgure 13 shows the circull lor pulse land ramp wayeform generation. In this mode of operation, the FSK keying terminal (Pin 9) is shorted to the square-wave output (Pin 11). and the clrcult automatically frequency-shift keys. Itself between two separate fiequencles during the positive-golng and negative-going output waveforms. The pulse width and duty cycle can be adjusted from $1 \%$ to $99 \%$, by the choice of $R_{1}$ and $R_{2}$. The valves of $R_{1}$ and $R_{2}$ should be in the range of 1 ko to 2 MO.

## PRINCIPLES Óf OPERATION

## Description of Controls

Froquancy of Oparation:
The frequency of oscillation, $f_{0}$, is determined by the external timing capacitor, C, acress Pin 5 and 6, and by the timing resistor, R, connected to elther Pin 7 or 8. The frequency is given as:

$$
t_{0}=\frac{1}{R C} \mathrm{~Hz}
$$

and can be adjusted by varying either $R$ or $C$. The recommended values of R, for a given frequency range, as shown in Flgure 4. Temperature stability is optimum for $4 \mathrm{kO}<R<200 \mathrm{kO}$. Recommended yalues of C are from 1000 pF to' $100 \mu \mathrm{~F}$.

## Friquency Sweap and Modulation:

Frequency of oscillation is proportional to the total timing current, IT. drawn from Pin 7 or 8 :

$$
\mathrm{f}=\frac{320 I_{T}(\mathrm{~mA})}{C(\mu F)} \mathrm{Hz}
$$

Timing terminals (Pin 7 or 8 ) are low-Impedance points, and are internally biased at +3 V , with respect to Pin 12. Frequency varies linearly with $I_{T}$, over a wide range of current values, from $1 \mu \mathrm{~A}$ to 3 mA . Thelfrequency can be controlled by applying a control voltage, $\mathrm{V}_{\mathrm{C}}$, to the activated timing pin as shown in Flgure 9. The firequency of oscillation is related to $\mathrm{V}_{\mathrm{C}}$ as:

$$
\hat{i}=\frac{1}{R C} 1+\frac{R}{R_{C}}\left(1-\frac{V_{C}}{3}\right) H z
$$

## XR-2206

where $\mathrm{V}_{\mathrm{C}}$ is in volts. The voltage-to-frequency conversion galn, K. is given as:

$$
K=81 / \partial V C=-\frac{0.32}{R_{C C}} \mathrm{HzN}
$$

CAUTION: For salety operation of the cliccuit, ht should be limited to $\leq 3 \mathrm{~mA}$.

## Output Amplituds:

Maximum output amplitude is Inversely proportional to the external resistor, $\mathrm{R}_{3}$, connected to Pin 3 (see Figure 2). For sine wave output, amplitude is approximately 60 mV peak per kO of $\mathrm{R}_{3}$; for trlangle, the peak amplitude is appraximately 160 mV peak per ko of $\mathrm{R}_{3}$. Thus, for example, $R_{3}=50 \mathrm{kQ}$ would produce approximately $\pm 3 \mathrm{~V}$ sinusoidal output amplltude.

## Ampterve Modulation:

Output amplitude can be modulated by applying a dc bt as and a modulating signal to Pin 1 . The internal hoped ance at Pin: 1 Is approximately 100 k . Output amplis. tude varies linearty with the applied voltage at Pin $1+$ for 2 values of dc bias at this pin, within $\pm 4$ voits of $V+12$ as shown in Figure 5. As this bias leval approaches $V+12$ the phase of the output signal is reversed, and the amplitude goes through zero. This property is suitable for phase-shift keying and supp:essod-carrier AM genera. tion. Total dynamic range of amplitude modulation is approximately 55 dB .

CAUTION: AM control must be used in conjunction with a well-regulated supply, since the output amplitude: now becomes a function of Vt .


EQUIVALENT SCHEMATIC DIAGRAM

## FSK Demodulator/Tone Decoder

## GENERAL DESCRIPTION

The XR-2211 Is a monolithic phase-locked boop (PLL) system especially designed for data communications. It Is particularly well sulted for FSK modem applications. It operates over a wide supply voltage range of 4.5 to 20 V and a wide frequency range of 0.01 Hz to 300 kHz . if can accommodate analog signals between 2 mV and 3 V , and can Interface with conventional DTL. TTL , and ECL logic families. The clrcult consists of a basic PLL for tracking an input signal within the pass band, a quadrature phase detector which provides carrier detection, and an FSK voltage comparator which provides FSK demodulation. External components are used to in': dependently set center frequency, bandwidth, and ourput delay. An Internal voltage reference proportional to the power supply provides ratio metric operation for low system performance variations with power supply changes.

The XR-2211 is avallable in 14 pin DTL ceramic or plas: tic packages specified for commercial or military temperature ranges.

## FEATURES

Wide Frequency Range
Wide Supply Voltage Range


DTUTTLECL Logic Compatibll
FSK Demodulation, with Carrier Detectio
Wide Dynamic Range 2 mV to 3 V ms
Adjustable Tracking Range ( $\pm 1 \%$ to $\pm 80 \%$ )
Excellent Temp. Stability $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, typ.

## APPLICATIONS

FSK Demodulation
Data Synchronization
Tone Decoding
FM Detection
Carrier Detection

## ABSOLUTE MAXIMUM RATINGS

Power Supply	20 V
Input Signal Level	3 rms
Power Dissipation	
Ceramic Package	750 mW
$\quad$ Derate Above $T_{A}=+25^{\circ} \mathrm{C}$	$6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Plastic Package	
Derate Above $T_{A}=+25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

FUNCTIONAL BLOCK DIAGRAM

ordering information

Part Number	Paclage	Operating Tomperaturi
XR-2211M	Ceramic	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
XR-2211CN	Ceramic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2211CP	Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
XR-2211N	Ceramic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
XR-2211P	Plastic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## SYSTEM DESCRIPTION

The main PLL withln the XR-2211 is constructed from an input preamplifier, analog multiplier used as a phase, delector, and a precision voltage controlled oscillatori (VCO). The preamplifier is used as a limiter such that in-: put signals above typically 2MV RMS are amplified to a constant high level signal. The multiplying-type phase deiector acts as a digital exclusive or gate. Its output (unfiltered) produces sum and difference frequencles of the input and the VCO output, $f$ itnput $+f$ input ( 2 f input) and 1 input - 1 input $(0 \mathrm{~Hz})$ when the phase detector output to remove the "sum" írequency component while passing the difference (DC) component to drlve the VCO. The VCO is actually a current controlled oscillator with its nominal Input current ( $t_{0}$ ) set by a resistor ( $R_{0}$ ) to ground and its driving current with a resistor $\left(R_{1}\right)$ from the phase detector.

The other sections of the XR-2211 act to: determine if the VCO is driven above or below the center frequency (FSK comparator); produced both active high and active low outputs to indicate when the main PLL is in lock (quadralure phase detectcr and lock detector compara; tor)

## XR-2211

## ELECTRICAL CHARACTERIStICS

Wat Coodtlons: Test Circult of Figure $1, V^{+}=V^{-}=6 V_{,} T_{A}=+25^{\circ} \mathrm{C}, \mathrm{C}=5000 \mathrm{pF}, R_{1}=R_{2}=R_{3}=R_{4}=20 \mathrm{kQ}$, $R_{L}=4.7 \mathrm{ko}$. Binary inputs grounded, $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ closed, unless otherwise specifiled.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multicolumn{3}{|l|}{XR-2211/2211M} \& \multicolumn{3}{|c|}{XR-2211C} \& \multirow[b]{2}{*}{UNITS} \& \multirow[b]{2}{*}{CONDITIONS} \\
\hline \& MIN \& TYP \& max \& MIN \& TYP \& max \& \& \\
\hline \multicolumn{9}{|l|}{GENERAL} \\
\hline Supply Voltage Supply Current \& 4.5 \& 4 \& \[
\begin{gathered}
20 \\
7
\end{gathered}
\] \& 4.5 \& 5 \& \[
\begin{gathered}
20 \\
9
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA}
\end{gathered}
\] \& \(R_{0} \geq 10 \mathrm{kQ}\). See Fig. 4 \\
\hline \multicolumn{9}{|l|}{OSCILLATOR SECTION} \\
\hline \begin{tabular}{l}
Frequency Accuracy Frequency Stabillty Temperature Power Supply \\
Upper Frequency Limit Lowest Practical Operating Frequency Trring Resls:or, Ro Operating Range Recommended Range
\end{tabular} \& 100

5
15 \& $\pm 1$
$\pm 20$
0.05
0.2

300 \& $$
\begin{gathered}
\pm 3 \\
\pm 50 \\
0.5 \\
\\
0.01 \\
2000 \\
100
\end{gathered}
$$ \& \[

15

\] \& \[

\left[$$
\begin{array}{c} 
\pm 1 \\
\pm 20 \\
0.05 \\
0.2 \\
300 \\
0.01
\end{array}
$$\right.

\] \& \[

$$
\begin{gathered}
2000 \\
100
\end{gathered}
$$
\] \& $\%$

\%pm/
$\%$
$\% N$
KHz
Hz
Ko

Ko \& | Deviation from io $=1 / R_{0} C_{0}$ $R_{1}=1 / 2$ |
| :--- |
| See Fig. 8. |
| $V^{+}=12 \pm$ 1V. Soe Fig. 7. |
| $v+5 \pm 0.5 \mathrm{~V}$. See Flg. 7 . |
| $R_{0}=8.2 \mathrm{kQ}, C_{0}=490 \mathrm{pF}$ |
| $\mathrm{R}_{0}=2 \mathrm{MQ}, \mathrm{C}_{0}=50 \mu \mathrm{~F}$ See Fig. 5. |
| See Figs. 7 and 8. | <br>

\hline \multicolumn{9}{|l|}{LOOP PHASE DETECTOR SECTION} <br>

\hline Peak Output Current Output Offset Current Output Impedance Maximum Swing \& $$
\begin{gathered}
\pm 150 \\
\pm 4 \\
\hline
\end{gathered}
$$ \& \[

$$
\begin{array}{|c|}
\hline \pm 200 \\
\pm 1 \\
1 \\
\pm 5 \\
\hline
\end{array}
$$

\] \& $\pm 300$ \& | $\pm 100$ |
| :--- |
| $\pm 4$ | \& \[

\left\lvert\, $$
\begin{gathered}
\pm 200 \\
\pm 2 \\
1 \\
\pm 5
\end{gathered}
$$\right.
\] \& $\pm 300$ \& $\mu A$

$\mu A$
$M D$

$V$ \& | Measured at Pin 11. |
| :--- |
| Relerenced to Pin 10. | <br>

\hline \multicolumn{8}{|l|}{QUADRATURE PHASE DETECTOR} \& Measured at Pin 3. <br>

\hline Peak Output Current Output Impedance Maximum Swing \& 100 \& $$
\begin{array}{|c|}
\hline 150 \\
1 \\
11
\end{array}
$$ \& \& \& \[

$$
\begin{array}{|c}
150 \\
1 \\
11
\end{array}
$$

\] \& \& \[

$$
\begin{gathered}
\mu \mathrm{A} \\
M \mathrm{a} \\
\mathrm{~V} p \mathrm{p}
\end{gathered}
$$
\] \& <br>

\hline \multicolumn{8}{|l|}{INPUT PREAMP SECTION} \& Measured at Pin 2. <br>

\hline Input Impedance Input Signal Voltage Recuired to Cause Limiting \& . \& | 20 |
| :--- |
| 2 | \& 10 \& \& 20 \& \&  \& \& <br>

\hline \multicolumn{9}{|l|}{VOLTAGE COMPARATOR SECTIONS} <br>

\hline Input Imperdance Input Blas Current Voltage Gain Output Voltage Low Output Leakage Current \& 55 \& | 2 |
| :---: |
| 100 |
| 70 |
| 300 |
| 0.01 | \& \& 55 \& | 2 |
| :---: | :---: |
| 100 |
| 70 |
| 300 |
| 0.01 | \& \& \[

$$
\begin{aligned}
& \mathrm{Ma} \\
& \mathrm{nA} \\
& \mathrm{~dB} \\
& \mathrm{mV} \\
& \mu \mathrm{~A}
\end{aligned}
$$
\] \& Measured at Plns 3 and 8.

$$
\begin{aligned}
& R_{L}=5.1 \mathrm{kQ} \\
& C_{C}=3 \mathrm{~mA} \\
& V_{O}=12 \mathrm{~V}
\end{aligned}
$$ <br>

\hline \multicolumn{9}{|l|}{INTERNAL REFERENCE} <br>

\hline Voltage Level Output Impedance \& 4.9 \& $$
\begin{aligned}
& 5.3 \\
& 100 \\
& \hline
\end{aligned}
$$ \& 5.7 \& 4.75 \& \[

$$
\begin{array}{r}
5.3 \\
.100 \\
\hline
\end{array}
$$
\] \& 5.85 \& V \& Measured at Pin 10. <br>

\hline
\end{tabular}

## XR-2211

9. Total Loop Gain, $\mathrm{K}_{\mathrm{T}}$.

- $K_{T}=2 \pi K \phi K_{0}=4 K_{0} R_{1} \mathrm{rad} / \mathrm{sec} /$ volt

10. Peak Phase Detector Current $I_{A}$ :

$$
I_{A}=V_{R} \text { (volts)/25mA }
$$

## APPLUCATIONS INFORMATION

## FSX DECODING:

Figure 9 shows the basic circuit connection for FSK decoding. With reference to Figures 2 and 9, the functions of external components are defined as follows: $R_{0}$ and $\mathrm{C}_{0}$ set the PLL center frequency, $\mathrm{R}_{1}$ sets the sysfom bandwidth. and C1 sets the loop lilter time constant and the loop damping factor. $C_{F}$ and $R_{F}$ form a one-pole post-detection filter for the FSK data output. The resistor $R_{B}(=510 \mathrm{KD})$ from Pin 7 to Pin 8 introduces positive feedback across the FSK comparator to facilltate rapid transition between output loglc states.

Recommended component values for some of the most commonly used FSK bands are given in Table 1.

## Design Instructions:

The circuit of Figure 9 can be tailored fcr any FSK decoding application by the choice of five key circuit com. ponents: $R_{0}, R_{1}, C_{0}, C_{1}$ and $C_{F}$ for a given set of $F S K$ mark and space frequencies, $f_{1}$ and $f_{2}$, these parameters can be calculated as follows:
a) Calculate PLL center frequency, $\mathrm{o}_{0}$ :
$i_{0}=\frac{f_{1}+f_{2}}{2}$
b) Choose value of timing resistor $R_{0}$. to be In the range of 10 KO to $100 \mathrm{~K} \Omega$. This choice is arbitrary.


Figure 3. Desenskizing Input Stage


The recommended value is $R_{0}-20 \mathrm{KR}$ The final value of $R_{0}$ is normally fine-tuned with the series potentiometer, Rx.
c) Calculate value of $C_{0}$ from design equation (1) or from Figure 6:
$C_{0}=1 / R_{0} 0$
d) Calculate $R_{1}$ to give a $\Delta f$ equal to the mark space deviation:

$$
R_{1}=R_{0}\left[{ }^{\prime} /\left(I_{1}-I_{2}\right)\right]
$$

e) Calculate $\mathrm{C}_{1}$ to set loop damping. (See design equation No. 4.):

Normally, $5 * 1 / 2$ is recommenced.
Then: $\mathrm{C}_{1}={ }^{-} \mathrm{C}_{0} / 4$ for $5=1 / 2$

1) Calculate Data Filter Capacitance, $\mathrm{C}_{\mathrm{F}}$ :

For $R_{F}=100 \mathrm{Ka}, R_{B}=510 \mathrm{KQ}$, the reccimmended value of $C_{F}$ is:
$C_{F}=31$ (Baud Rate) $\mu \mathrm{F}$

Note: All calculated component values except $R_{0}$ can be rounded to the nearest standard value, and $R_{0}$ can be varied to fine-tune center frequency, through a series potentiometer, RX. (See Figure 9.)


Figure 4. Typical Supply Current vs $V+$ (Logic Outputs Open Circuited)

Reference Voltage, $V_{R}$ (Pin 10): This pin is internally blased at the reference voltage level, $V_{R}: V_{R}=V+12-650$ mV . The dc voltage level at this pin forms an internal -reference for the voltage levels at Pins 5, 8, 11 and 12 Pin 10 must be bypassed to groúnd with a $0.1 \mu \mathrm{~F}$ capacitor for proper operation of the circult.


Figura 1. Functional Block Diagram ol a Tone and FSK Decoding System Using XR-2211
Loop Phase Detector Output (Pin 11): This terminal provides a high impedance output for the loop phase detector. The PLL loop filter is formed:by $R_{1}$ and $C_{j}$ connected to Pin 11 (see Figure 2). With no input slgnal, or with no phase error within the PLL, the dc level at Pin 11 is very nearly equal to $\mathrm{V}_{\mathrm{R}}$. The peak voltage swing available at the phase detector output is equal to $\pm V_{R}$.


Figure 2. Genarallzed Circult Connaction for FSK and Tone Detection
VCO Control Input (Pin 12): VCO free-running frequency is determined by external timing resistor, $R_{0}$. connected from this terminal to ground. The VCO free-running frequency. ${ }^{1} 0$. is:

$$
\mathrm{I}_{0}=\frac{1}{R_{0} C_{0}} \mathrm{~Hz}
$$

where $C_{0}$ is the timing capacitor across Pins 13 and 14. For optimum temperature stablity. $\mathrm{R}_{0}$ must be in the range of $10 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$ see Figure 8).

This terminal is a low impedance point, and is Internally biased at a de level equal to $V_{R}$. The maximum timing current drawn from Pin 12 musf be limited to $\leq 3 \mathrm{~mA}$ for proper operation of the circult.

VCO Tlming Capactor (Plis 13 and 14): VCO frequency, ts inversely proportional to the external timing capaction, Co. connected across these terminals (see Figure 5). Co must be nonpolar. and in the range of 200 pF to 10 $\mu \mathrm{f}$.

VCO Fraquancy Adjustament: VCO can be fine-funed by connecting a potentiometer, Rx. in series wth $R_{0}$ at Pin 12 (see Figure 9).

YCO Fres-Runniag Frequency, 10 ; )R-2211 does not have a separate VCO output terminal Instead, the VCO out. puts are internally connected to the phase detector sections of the clircuit. However, for set-up or adjustment purposes, VCO free-running frequency can be -measured at Pin 3 (with $\mathrm{CD}_{\mathrm{D}}$ disconnectod), with no input and with Pin 2 shorted to Pin 10.

## DESIGN EQUATIONS

(See Figure 2 for definition of components.)

1. VCO Center Frequency. if

$$
T_{0}=1 / R_{0} C_{0} \mathrm{~Hz}
$$

2. Internal Reference Voltage, $\mathrm{V}_{\mathrm{R}}$ (measured at Pin 10):

$$
V_{R}=V+12 \cdot 650 \mathrm{mV}
$$

3. Loop Low-Pass Filter Time Constant, r:

$$
\tau=R_{1} C_{1}
$$

4. Loop Damping, $\zeta$ :

5. FSK Data Filter Time Constant, IF: ${ }_{T} F=R_{F} C_{F}$
6. Loop Phase Detector Conversion Gain, $K_{\phi}$ : ( $K \phi$ is the differential dc voltage across Pins 10 and 11. per unit of phase error at phase detector input):
$K_{\phi}=02 V_{R} / \pi$ volts $/$ radian
7. VCO Conversion gain. $K_{0}$ : ( $K_{0}$ is the amount oi change in VCO frequency, per unit of dc voltage change at Pin 11):
$K_{0}=-1 N_{R} C_{0} R_{1} \mathrm{~Hz} /$ vol


Fligure 5. VCO Frequency vs Timing Resistor


Figure 7. Typlal io va Power Supply Characteristics


Figure 6. VCO Frequency vs Timing Capactior


Figure 8. Typlcal Center Froquency Drifins vemporature


Flgure 9. Circult Connection for FSK Docoding

## XR-2211 <br> Desiga Eumplo:

75 Beud FSK demodulator with mark space frequencies of $1110 / 1170 \mathrm{~Hz}$ :

Step 1: Calculate io: io $(1110+1170)(1 / 2)=$. 1140 Hz

Step 2: Choose Ro - 20 KД (18 KO fixed resistor in series with 5 KO potentiometer)

Step 3: Calculate $C_{0}$ from Figure 6: $C_{0}=0.044 \mu F$
Slep 4: Calculate $R_{1}: R_{1}=R_{0}(2240 / 60)=380 \mathrm{Ko}$
Step 5: Calculate $C_{1}: C_{1}=C_{0} / 4=0.011 \mu F$
Nole: All values except $R_{0}$ can be rounded to nearest slandard value.
able 1. Rocommended Componant Values for Commonty Used FSK Bands. (Sos Clecull of Figurs 9.)

. FSK BAMD	COMPONENT VALUES
300 Baud	$C_{0}=0.039 \mu F{ }^{\prime} C_{F}=0.005 \mu \mathrm{~F}$
$\mathrm{t}_{1}=1070 \mathrm{~Hz}$	$C_{1}=0.01 \mu F \quad R_{0}=18 \mathrm{KO}$
$F_{2}=1270 \mathrm{~Hz}$	$R_{1}=100 \mathrm{KO}$
300 Baud	$C_{0}=0.022 \mu \mathrm{~F} \quad \mathrm{C}_{F}=0.005 \mu \mathrm{~F}$
$\mathrm{f}_{1}=2025 \mathrm{~Hz}$	$C_{1}=0.0047 \mu \mathrm{~F} \mathrm{R}_{0}=18 \mathrm{KO}$.
$\mathrm{I}_{2}=2225 \mathrm{~Hz}$	$\mathrm{R}_{1}=200 \mathrm{kO}$
1200 Baud	$C_{0}=0.027 \mu F \quad C_{F}=0.0022 \mu \mathrm{~F}$
$\mathrm{I}_{1}=1200 \mathrm{~Hz}$	$C_{1}{ }^{\prime}=0.01 \mu \mathrm{~F} \quad \mathrm{R}_{0}=18 \mathrm{KO}$
$\mathrm{I}_{2}=2200 \mathrm{~Hz}$	$\mathrm{R}_{1}=30 \mathrm{~K} \Omega$

## FSK DECODING WITH CARRIER DETECT:

The lock detect section of XR-2211 can be used as a carrler detect option, for FSK decoding. The recommended circuit connection for this application is shown in Figure 10. The open collector lock delect output, Pin 6, is shorted to data output (Pin 7). Thus, data output


Rguri 10. Erternal Connectors lor FSK Demodulation with Carriar Datect Capabinty
Nota: Data Output la "Low" When Mo Carrier is Present.
will be disabled at "low" state, until there is a carrier within the detection band of the PPL. and the Pin 6 output goes "high." to enable the data output.

The minimum value of the lock detec rilter capacitance $C_{D}$ is inversely proportional to the capture range: $\pm$ $\Delta f_{c}$. This ts the range of Incoming frequencies over which the loop can acquire tock and s always less than the tracking range. It is further limited by $\mathrm{C}_{1}$. For most applications, $\Delta I_{C}>\Delta t / 2$. For $R_{D}=1470 \mathrm{KS}$, the approximate minimum value of $C_{D}$ can be setermined by:
$\mathrm{CD}_{\mathrm{D}}(\mu \mathrm{F}) \geq 16$ capture range in Hz :
With values of $C_{D}$ that are too small, chatter cen be observed on the lock detect oulput as in. Incoming signal frequency approaches the caplure jandwidth. Excesstvely large values of $C_{D}$ will slow thiz response time of the lock detect output.
TONE DETECTION:
Figure 11 shows the generalized circult connection for tone detection. The logic outputs, $\bar{Q}$ and $\bar{Q}$ at Pins 5 and 6 are normally at "high" and "low"!lygic states, respectively. When a tone is present within the detection band of the PLL, the logic state at these cutputs become reversed for the duration of the input ione. Each logic output can sink 5 mA of load current.

Both logic outputs at Pins 5 and 6 are open collector type stages, and require external pulli-up resistors R R1 and $R_{L 2}$, as shown in Figure 11.


Figure 11. Circult Connection for Tone Datection

With reference to Figures 2 and 11; the functions of the external circuit components can be explained as foltows: $R_{0}$ and $C_{0}$ set VCO center Irequency: $R_{1}$ sets the detection bandwidth; $\mathrm{C}_{1}$ sets the low pass-loop filter time constant and the loop dampling factor: $R_{\text {L1 }}$ and $R_{L_{2}}$ are the respective pull-up resistors for the $Q$ and $\bar{Q}$ logic outputs.

Dasign Instructions:
The circult of Figure 11 can be optimized for any tone detection application by the choice of the 5 key circuit components: $\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{C}_{\mathrm{O}}, \mathrm{C}_{1}$ and $\mathrm{C}_{\mathrm{D}}$. For a given Input.
the tone frequency, IS, these parameters are calculated as follows:
a) Choose $R_{0}$ to be th the range of 15 KA to 100 KO . This choice is arbitrary.
b) Calculate $C_{0}$ to set center irequency. $l_{0}$ equal to $I_{8}$ (see Figure 6): $C_{0}=1 / R_{0}$ 's
c) Calculate $R_{1}$ to set bandwidth $\pm \Delta$ (see design equation No. 5):

$$
R_{1}=R_{0}(10 / \Delta I)
$$

Note: The total detection bandwidth covers the frequency range of $t_{0} \pm \Delta \mathrm{f}$.
d) Calculate value of $\mathrm{C}_{1}$ for a given loop damping factor:

$$
C_{1}=C_{0} 16 \zeta 2
$$

Normally $5=1 / 2$ is optimum for most tone detector applications, giving $\mathrm{C}_{1}=0.25 \mathrm{Co}_{0}$

Increaslag $\mathrm{C}_{1}$ Improves the out-od-bend signal rejection, but increases the PLL cespture time.
e) Calculate value of filter capactor CD. To avoid chatter at the logic output, with $R_{D}=470 \mathrm{KR}, C_{D}$ must be:
$C_{D}(\mu \mathrm{~F}) \geq(16 /$ capture range in Hz$)$
Increasing $C_{D}$ slows down the logic output response time.

## Design Examples:

Tone detector with a detection band of $1 \mathrm{kHz} \pm 20 \mathrm{~Hz}$ :
a) Choose $R_{0}=20 \mathrm{KO}$ (18 K』 in series with $5 \mathrm{~K} \Omega \mathrm{po}$ tentiometer).
b) Choose $\mathrm{C}_{0}$ for $\mathrm{t}_{0}=1 \mathrm{kHz}$ (irom Figure 6): $\mathrm{C}_{0}=$ $0.05 \mu \mathrm{~F}$.
c) Calculate $R_{1}: R_{1}=\left(R_{0}\right)(1000120)=1 \mathrm{MQ}$.
d) Calculate $\mathrm{C}_{1}$ : for $\zeta=1 / 2, C_{1}=C .25, C_{0}=$ $0.013 \mu \mathrm{~F}$.
e) Calculate $C_{D}: C_{D}=16 / 38=0.42 \rho F$.
f) Fine-tune center frequency with $5 \mathrm{~K} \Omega$ potentiometer, Rx.

## LINEAR FM DETECTION:

XR-2211 can be used as a linear FM detector for a wide range of analog communications and relemetry applications. The recommended circuit connection for this application is shown in Figure 12. The demodulated output is taken from the loop phase detector output (Pin 11). through a post-detection fitter made up of $R_{F}$ and $\mathrm{C}_{\mathrm{F}}$ and an external bufter amplifier. This butfer amplifier is necessary because of the high impedance output

## XR-2211

at Pin 11. Normally, a non-Inverting unity gain op amp can be used as a butfer amplifier, as shown in Figure 12.


Figure 12. Uneas FM Detector Using XR-2211 and an Extoraal Op Amp. (Seo Section an Dasign Equation for Cear ponent Values.)

The FM detector gain, l.e., the output vgitage change per unlt of FM devlation can be given as:

$$
V_{\text {out }}=R_{1} V_{R} / 100 R_{0} \text { Volls/ } \% \text { depiation }
$$

where $V_{R}$ is the internal reference voltage $N_{R}=V+12$ -650 mV ). For the choice of external components $R_{1}$. $R_{0}, C_{D}, C_{1}$ and $C_{F}$ see section on deslg equations.

## PRINCIPLES OF OPERATION

Signal Input (Pin 2): Signal is ac coupled to this terminal. The internal impedance at Pin 2 is 20 KO . Recommended input signal level is in the range of 10 mV ms to 3 V ims.

Quadrature Phase Dolector Output (Pin 3): This is the high impedance output of quadrature phase detector and is internally connected to the input of lock detect voltage comparator. In tone detection applications; Pin 3 is connected to ground through a paraliel combination of RD and $C_{D}$ (see Figure 2) to eliminate the chatter at lock detect outputs. If the tone detect section is not used. Pin 3 can be left open circuited.

Lock Detoct Output, 0 (Pin 5): The output at Pin 5 is al "high" state when the PLL is oul of lock and goes to "Iow" or conducting state when the PLL|is locked. It is an open collector type output and requires a pull-up resistor, $\mathrm{R}_{\mathrm{L}}$. to $\mathrm{V}+\mathrm{for}$ proper operation. Al ""low" state, M can sink up to 5 mA ol load current.

Lock Detect Complement, $\overline{0}$ (Pin 6): The ou\{put at Pin 6 ts the logic complement of the lock detect output at Pin 5 This output is also an open collector type stage which can sink 5 mA of load current at low or "on" state.

## XR-2211

psk Data Output (PIn 7): This output is an open collector logle stage which requires a pull-up resistor, $A_{L}$, io $\mathrm{V}+$ por proper operation. It can sink 5 mA of bad current. when docoding FSK slgnals, FSK data output is at Thgh" or. "off" state for fow input frequency, and at "tow" or "on": state for high input frequency. Il no input sional is present, the logic state at PIn 7 is indetermt nete.
दos.
FSK Cempartor Input (Pin 8): This Is the high whpodance Input to the FSK voltage comparator. Normally, an FSK post-defection or data filter is connected between this terminal and the PLL phase detector outpul (Pin 11). This data filter. is formed by $R_{F}$ and $C_{F}$ of Figure 2. The threshold voltage of the comparator is set by the Inter: nal reference voltage, $\mathrm{V}_{\mathrm{R}}$, available at Pin ig.


ภาคผนวก ค.

โปรแกรมควบคุมการทางาน


จุฬาลงกรณ์มหาวิทยาลัย

Channel Colour สีประจำช่องความถี่	Transmitter ความถี่แร่คริสดอณภวคส่ง	Receiver ความถี่แร่คริ่สตอลภาครับ
น้ำดาล   แดง   ส้ม   เหลือง   เขียว   น้ำเงิน	MHz   26.995   27.045   27.095   27.145   27.195   27.245	I.F.455KHz I.F.465KHz   26.540 26.530   26.590 26.580   26.640 26.630   26.690 26.680   26.740 26.730   26.790 26.780



```
;*************************************
;****************************
;INITIAL SERIAL PORT
;
INIT: MOV SCON,#50H
 MOV TMOD,#2OH
 MOV TH1,#OE8H ; set baud rate to 1200 bps.
 ma mode 2
 SETB TR1
 CLR ET1
 CLR ES
;RESET OUTPUT PORT 8255
;
RESP: MOV A,#OOH
 MOV DPTR,#EXP3PA
 MOVX @DPTR,A
 MOV DPTR,#EXP3PB
 MOVX @DPTR,A
 MOV DPTR,#EXP3PC
 MOVX @DPTR,A
;
```

```
;TRIG FOR PEAK
;
TRIG: MOV A,#OOH ;trig all bit to 'O'
 MOV DPTR,#EXP3PA
 MOVX @DPTR,A
 MOV A,#OOH ;
i
CHKP. MOV DPTR,#EXP2PC
 MOVX A,@DPTR
 ANL A,#00000100B
 JZ CHKP
;
DELA: MOV A,#2OH
DELAY: DEC A
 JNZ DELAY
CEOC: MOV DPTR,#EXP2PC
 MOVX A,@DPTR
 ANL A,#00001000B ;check end of conversion
 JZ CEOC
;
SAVE: MOV DPTR,#EXP2PA
 MOVX A,@DPTR
 MOV DPTR,#2500H
 MOvX @DPTR,A|ULALONGKORN UNIVERSITY
 MOV DPTR,#EXP2PB
 MOVX A,@DPTR
 MOV DPTR,#2501H
 MOVX @DPTR,A
CLRP: MOV A,#00100000B
 MOV DPTR,#EXP3PA
 MOVX @DPTR,A
```

```
;SEND TO SERIAL PORT AND OUT
;
START: CLR ES
 CLR RI
 CLR TI
 MOV DPTR,#2500H
 MOVX A,@DPTR
 MOV SBUF,A
 JNB TI,$
 CLR TI
 INC DPTR
 MOVX A,@DPTR
 MOV SBUF,A
 JNB TI,$
 CLR TI
LJMP TRIG
END
```



```
read_com()
 {
 int data;
 unsigned char ch_l,ch_h;
 ch_l=read();
 ch_h=read();
 data=ch_l+(ch_h*(1x100);
 return(data);
}
read_head()
 {
 int count;
 unsigned char ch;
 /* get header befor recive data */
 for(count=0; count<2; count+t)
 {
 do{
 ch=read();
 }while(ch!=0xFF):
]
 }
read()
 {
 unsigned char ch,tl;
 do{
tl=inportb(0x3FD);
tl=t1&0x01;
}while(t1!=1);
ch=inportb(0x3F8);
 outportb(0x3FA,0x86); /* reset recive buffer */
 return(ch);
 }
set_com()
 {
 unsigned char data;
```

```
 AH = 0x00;
 AL = 0x83;
 DX = 0x00;
 geninterrupt(0x14);;
 data=inportb(0x3FB); /* set to data mode */
 data=data&0x7F;
 outportb(0x3FB,dsta);
 outport(0x3F9,0x0F);
 outportb(0x3FC,0x0F);
 }
hit_key()
{
 unsigned int key;
 if((key=bioskey(1))!=0)
 {
key=bioskey(0);
return(key);
 }
 return(0);
}
```



```
gen_graph()
 {
 int GD=DETECT,GM;
 int count,x,y;
 initgraph(&GD,&GM,NULL);
 x=getmaxx();
 y=getmaxy();
 setcolor(BLUE);
 setbkcolor(WHITE);
 setfillstyle(SOLID_FILL,DARKGRAY);
 bar(1,1,getmaxx(),getmaxy());
 setcolor(LIGHTGREEN);
 line(50,10,50,410);
 line(50,410,610,410);
 x=50;
 y=410;
 for(count=0; count< 103; count++)
 {
 x=x+5;
 line(x,y,x,y+5);
 }
 setcolor(YELLOW);
 outtextxy(40,420, "0");
 outtextxy(x,420,"1023");
 outtextxy(5,(410-(1*30)-3)," 1000");
 outtextxy(5,(410-(2*30)-3),"2000");
 outtextxy(5,(410-(3*30)-3)," 3000");
 outtextxy(5,(410-(4*30)-3)," 4000");
 outtextxy(5,(410-(5*30)-3)," 5000");
 outtextxy(5,(410-(6*30)-3)," 6000");
 outtextxy(5,(410-(7*30)-3)," 7000");
 outtextxy(5,(410-(8*30)-3)," 8000");
 outtextxy(5,(410-(9*30)-3)," 9000");
 outtextxy(5,(410-(10*30)-3),"10000");
 setcolor(GREEN);
```

```
 x=50;
 y=410;
 for(count=1; count<=100; count++)
 {
y=y-3;
 if((count%10)==0)
 {
 line(x-6,y,x,y);
 }
else
 {
 line(x-3,y,x,y);
 }
 }
 settextstyle(SMALL_FONT,HORIZ_DIR,1);
 setcolor(LIGHTBLUE);
 settextstyle(DEFAULT_FONT,HORIZ_DIR, 2);
 outtextxy(180,445, "NUCLEAR SPECTRUM");
 setfillstyle(SOLID_FILL,BLACK);
 bar(525,440,630,460);
 settextstyle(SMALL_FONT,HORIZ DIR,1);
 setcolor(WHITE);
 outtextxy(530,450,"Scale = 1:10");
 }
re_graph()
 {
 setbkcolor(BLACK);LALONGKORNUNIVERSITY
 setfillstyle(EMFTY_FILL,WHITE);
 bar(51,11,610,4C9);
 setcolor(LIGHTRED);
 outtextxy(15,95, "Over");
 line(47,105,620, 105);
 }
set_time()
 {
```

```
 settextstyle(SMALL_FONT,HORIZ_DIR,1);
 setcolor(WHITE);
 outtextxy(12,11,"TIME");
 outtextxy(17,50, "min");
 setfillstyle(SOLID_FILL,BLACK);
 bar(10,25,40,45);
 }
/*out_time()
 {
 char ch[3]={NULL,NULL,NULL };
 int count=0;
 settextstyle(SMALL_FONT,HORIZ_DIR,1);
 setcolor(WHITE);
 outtextxy(12,11,"TIME");
 outtextxy(17,50,"min");
 setbkcolor(BLACK);
 setfillstyle(EMPTY_FILL,BLACK);
 do{
 ch[count]=getch();
 count++;
 bar(10, 25, 40,45);
 outtextxy(
 }while(ch[count]!=ENTER:'key==ESx);
]*/
off_graph()
 {
 int x,y;
 setcolor(BLACK);
 x=getmaxx();
 y=getmaxy();
 setfillstyle(SOLID_FILL,BLACK);
 bar(1,1,x,y);
 closegraph();
 }
```

```
#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<graphics.h>
#include<bios.h>
#include"gph.c"
#include"recive.c"
#define SET T 0x1400
#define ESC 0x011B
#define DEF T 50
#define ENTER 0x1COD
#define Enter 0x0DIC
#define HB 0xFFFF
#define TB 0xF0F0
unsigned int cc[1024];
unsigned int key,tm;
struct time tt_old,tt_new;
main()
 {
 unsigned int data;
 tm=DEF T;
 reset_val();
 set_com();
 gen_graph();
BEGIN :
 re_graph();
 set_time();
 out_time(tm);
 gettime(&tt_old);
 setfillstyle(SOLID_FILL,WHITE);
 do{
/* read_head();*/
/* if(key==ESC)
```

```
{
 goto==ESC;
 } */
 do{
 data=read_com();
/* if(key==ESC)
 {
 goto C_KEY;
 } */
 if((data!=HB)&&(data!=TB))
 {
 data=data&0\times3FF;
 cc[data]++;
 if(cc[data]>100)cc[data]=100;
 set_bar(data,cc[data]);
 }
 key=0x0000;
 key=hit_key();
 gettime(&tt_new);
/* }while(data!=TB&&key!=ESC&&((()
 }while(key!=ESC&&((()}tt_new.ti_hour-tt_old.ti_hour)*60)+(tt_new.ti_min-tt_old.t
 }while(key!=ESC&&((()tt_new.ti_hour-tt_old.ti_hour)*60)+(tt_new.ti_min-tt_ol
C_KEY:do{
 key=0\times0000;
 key=hit_key();
 if(key==ENTER:'key==Enter)
 goto BEGIN; HIULALONGKORN UNIVERSITY
 if(key==SET_T)
 {
 tm=get_time(tm);
 goto BEGIN;
 }
 }while(key==0x0000!'key!=ESC);
}
```

```
get_time(int ttm)
{
 int t1,t2,count;
 char ch[3]={'0','P',NULL};
 char cha;
 out_time(ttm);
 count=1;
 do{
 cha=getch();
 if(cha<='9':\ccha)='0')
{
 ch[0]=ch[1];
 ch[1]=cha;
]
 else sound(800);
 ttm=(ch[0]-'0'*10)+(\operatorname{ch[1]-'0');}
 out_time(ttm);
 }while(cha!=0\times0D:!cha!=0\times1D);
 return(ttm);
 }
out_time(int tm)
 {
 char ch[3]={NULL,NULL,NULL };
 int tmp1,tmp2;
 tmpl=tm/10;
 tmp2=tm%10;
 ch[0]='0'+tmp1;/LALONGKORN UNIVERSITY
 ch[1]='0'+tmp2;
 setfillstyle(SOLID_FILL,BLACK);
 bar(10,25,40,45);
 outtextxy(15,28,ch);
 }
set_bar(int chan,int data)
 {
```

```
 int x1,yl,x2,y2,cc1,cc2,high;
 y2=409;
 if((chan%10)>0)
{
 ccl=1;
}
 else
 {
ccl=0;
 }
 if((data%10)>0)
{
 cc2=1;
}
 else
 {
cc2=0;
 }
 y1=y2-(((data/1)\star 3)+(cc2\star3))+1; /* +1 for simu to y=410 */
 x1=51+(((chan/10)*5)+(1-cc1));
 x2=x 1+3;
 bar(x1,y1,x2,y2);
}
reset_val()
 {
 unsigned int count;ONGKORN UNIVERSITY
for(count=0; count< 1024;count++);
 {
 cc[count]=0;
 }
 }
```



จุฬาลงกรณ์มหาวิทยาลัย




## CMOS SINGLE - CHIP 8 BIT MICROCONTROLLER

- 83CIS4-CMOS SANGLE-CHIP 日-BTT MICROCONTROUER with fectory mask-programmabto ROM
- 83C1EAF - The internal ROM code cannot be read or dumped after activation of a special protection
- BOCT64 - ROMLESS veraton
- 83C184-1-10 MH2 version
- 80C784-1-16 Matz ROMiess version

FEATURES


DESCRIPTION

ihe ટこC:54 retarrs all the realures of the MHS 20C52 with extenced RCM sapacily (16K byes), 256 bytes of RAM, 32 I/O lines, a 6 -source 2 -level interrupts, a full duplex serial port, an on-chip oscillator and clock cracuits, three 16 bit limers with extra features: 32 bit timer and watch dog functions. Tmer 0 and 1 can be configured by program to implement a 32 bit timer. The watch dog function can be activated either with timer 0 , or timer 1 or both !ogether ( 32 bit time!).
In addition, the 83C:54 has :wo sottware selectable modes o! reduced activity for further reduction of power consumption. In the !de Mode. the CPU is frozen while the RAM is saved, and the timers, the serial port, and the interrudt system zentinue :o ؛uncticn. in ine zower Down Mode. the RAM is saved and the timers, serial port and interrupts continue to function when driven by external clocks. In addition as for the MHS 80C5I/C52, the stop clock mode is also available.


## IDLE AND POWER DOWN

 OPERATIONFigure 3 shows the internal Idle and Powm Down ctock zentiguration. As :Hustrated. Fower Dnwn operation stcDs the oscillater. The :nterruct. serial pnrt. and timet slocks zontinue to iuncrion sint with external c!nck INTC. NTI, IO. '11.


Idle Mode operation allows the interrupt, serial port. end limer thocks to continue to function with internal cr external ciocks. while the c!ock to CPU is gated off. The special modes are activated by soltware via the Special Functlon Repister, 「CON. Hs hardware address is 87 H PCON is not bit addressable
PCON- Power Control Registe:

(MSB)
SMCD $\mid$ HPD $\mid$ RPD


Symbol	Poaltion	Nerme and Function
SMCD	PCON. 7	Double Baud rate bit. When : to a l.!he caud rate is ccut: when the serial cor s se. used in olther mocies 1.2 cr
HFO	FCON. 6	Hard Power Down bit. Sett: this bit allows CPU to enter Power Down state on : external event ( 1 to 0 transitic on bit T1 (p. 3-5) the CPU qu the Hard Power Down moc when bit T1 (p. 3-5) go high when reset is activated.
RPD	FCON. 5	Recover from Idle or Pow Down bit. When 0 RPD has $r$ effect. When 1, RPD permits exit from idle or Power Dcs with amy non enabled interr: source (except timex 2). In th case the program start at ir next address. When Intern' is enabled, the appropriai interruct routine is serviced.
-	PCON. 4	(Reserved)
GFI	FCCN. 3	General-curcose ilag bit.
GFO	PCON. 2	General-purpose llag bil.
PD	PCON. 1	Power Down bit. Setting this t activates power down oper: tion.
:CL	PCON. 0	ide mode bit. Setting this = activates idle mode operatic:

## DATA SHEET

80C51-L/ 80C31-L

## CMOS SINGLE-CHIP 8 BIT 3V-MICROCONTROLLER

- 80C51-L-CMOS SINGLE-SHIP 8-BT MICROCONTROUER with factory mask-programmable ROM
- 80C31-L-CMOS SINGLE-CHIP 8-BT CONTROL-ORIENTED CPU wIth RAK and I/O
- B0C51-L/C31-L: 0 TO $6 \mathrm{MHz}, \mathrm{VCC}=2.7 \mathrm{VTO}$ 6V

FEATURES

- POWER CONTROL MODES
- $128 \times 8$ BT RAM
- 32 PROGRAMMABLE I/O LNES
- TWO 16-ETT TIMER/COUNTERS
- 64K PROGRAM MEMORY SPACE
- FULUY STATIC DESGGN
- HIGH PERFORIMANCE SAVI VI CMOS PROCESS
- BOOLEAN PROCESSOR
- 5 INTERRUPT SOURCES
- PROGRAMMABLE SERIAL PORT
- gak data memory space
- TEMPERATURE RANGE: 0 TO $70^{\circ} \mathrm{C}$


## DESCRIPTION



MHS's 80C51 and 80C31 are nign performance CMOS versions of the $8051 / 8031$ NMOS singie chip 8 bitı C and is manufactuređ usıng â self-alioned silicon gate CMOS process (SんNIVI).
The fully static design of $t n \in$ MHS 80C51/80C31 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC withour loss of data.
The 80C51 retains all the features of the 8051: 4 K bytes of ROM: 128 byes of RAM: 32 I/O lines: twc 16 bit timers; a 5 -source 2-leve: interrupt structure: a full duplex seria port; and on-chip oscillator and clock circuits.
In addition, the 80C51 has two software-selectable modes of reduced activity for further reduction in power consumption. In the Idle Mode the CPU is frozen while the RAM, the timers, the senial port, and the interrupt system continue to function. In the Power Down Mode the RAM is saved and all other functions are inoperative.
The 80C31 is identical to the 80C51 except that it has no on-chip ROM.


## IDLE AND POWER DOWN

 OPERATIONFigure 3 shows the internal ldle and Power Down clock configuration. As illustrated. Power Down operation stops the oscillator. Idle mode operation allows the interrupt. serial port, and timer blocks to continue to function while the clock to the CPU is gated off. These special modes are activated by software via the Special Function Register, Its hardware address is 87 H . PCON is not bit addressable.


Figure 3. Idie and Power Down Hardware

PCON: Power Control Register

	(LSB)					
SMOD	-1	-	-	GF1	GFO	PD

Symbol Position Name and Function
SMOD PCON. 7 Double Baud rate bit. When set to a 1 . the baud rate is doubled when ithe senial port is being usea in etther modes 1,2 or 3.

- PCON. 6	(Reserved)	
-	PCON. 5	(Reserved)
-	PCON. 4	(Reserved)
$G \bar{r} i$	FCON. 3	Generai-curpose ilag bit.
GFO	CCON. 2	General-curpose flag bit.
PD	PCON. 1Power Down bit. Setting this   bit activates power down   operation.	
IDL	PCON. 0Ide mode bit.Selting this bit   activates idle mode operaticn.	

If 1's are written to PD and IDL at the same time PD takes precedence. The reset value of PCON is (0XXXC000).

Table 1. Status of the extemal pins during Idie and Power Down modes

Mode	Program Memory	ALE	$\overline{\text { PSEN }}$	PORTO	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data	Port Data	Port Data	Port Data
Idle	External	1	1	FIgating	Port Data	Address	Port Data
Power   Down	Internal	0	0	Fort Data	Port Data	Port Data	Por Date
Power   Down	External	0	0	Floating	Port Data	Port Data	Port Data

## IDLE MODE

The instruction that sets PCON. 0 is the last instruction executed before the Idle mode is activated. Once in the Idie mode the CPU status is preserved in its entirety: the Stack Pointer, Program Counter. Program Status Word.Accumulator, RAM, and all otherregisters maintain their data during lale. Table 1 describes the status ot the external pins ouring idle mode.
There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause PCON.O to be cleared by hardware. terminating ldle mode. The interrupt is serviced, and following RETL the next instruction to be executed will be the one following theinstruction that wrote a 1 to PCON.O.
The flag bits GFO and GF1 may be used to determine whether the interrupt was received during normal execution or during the idie mode. For example. the instruction that writes to PCON. 0 can also set or ciear one or Doth fiag bits. When izie mode is terminate Jo! an enabies inierruc:.the sen:ce rojune can exam:n= the status of the flag dits.
The second way of terminating the dile mode is with a hardware reset. Since the oscillator is still running. the hardware reset needs to be active for only 2 machine cycles ( 24 oscillator perioas) to complete the reset operation.

## POWER DOWN MODE

The instruction that sets PCON. 1 is the last executed prior to entering power down. Once in power down the oscillator is stopped. The contents of the onchip RAM and the Special Function Register is saved during power down mode. A hardwa'e reset is the only way of exiting the power down mode. The hardware reset initates the Special Function Register (see lable 1).
In the Power Down mode. VCC may be lowered to minimize circuit power consumption. Care must be taken to ensure the voltage is not reduced until the power down mode is entered. and that the voltage is restored before the hardware reset is applied which frees the oscillator. Reset should not be released until the oscillator has restarted and stabilized.
lable 1 describes the status of the external pins while in the power down-mode. It should be noted that if the power down mode is activated while in external program memory, the port data that is held in the Special Function Register P2 is restored to Port 2 . It the data is a 1 . the port pin is held high during the power down mode bythe strong pullup. T1. shown in Figure 4.

## STOP CLOCK MODE

Due to static design.theMHS 80C31/C51cIock speez can be reduced until 0 MHz without any data loss in memory or registers. This mode allows sted by ste= utilization. and permits to reduce system power consumption by bringing the dock frequency down to eny value. At 0 MHz . the power consumotion is the seme as in the Powe- Down Mode

## 80C51 I/O PORTS

The I/O port drive of the 80C51 is similar to the 8051 The I/O buffers for Pons 1.2 and 3 are implementec as shown in figure 4.
When the port latch contains a 0 . all PFETS in figure 4 are off while the nFET is turned on. When the port latch makes a 0 -to- 1 transition. the nFET turns oft. The stronc oullup DFET. T1, tums on for two oscillator periocs. puliing: he output high very rapidily. As the output ine is zawn high DFETT2 :urns on through the invente: :
 :rm a iaten whicn nolas the $i$ and is suddoned dy :Znen Pan 2 is use external program ó oata memory, any aoaress $\mathrm{D}:$ : inai contains a 1 will have his strong pullup turneo on io: ine entire duration of the external memory access.
When an I/O pin on Forts 1.2. or 3 is used as an ino:. tne user should be aware that the external carcuit musi sink current during the logical 1-to-0 transition The maximum sink current is specified as $\Pi L$ unoer the D.C.Specifications. Wher the indut goes below
 vinen returning to $e$ logical 1 . T2 is the oniy internal zullue that is on. Tnis wili resuli iri a slow r:se tume i" ine user's circuit does no: force the inpu: line hion


Fig. 4.1/O Buffers in the 80 C 51 (Ports 1, 2,3)


## XTAL

Input to tr: : :nverting amplifier that forms the oscillator. Receives the external oscillator signal when an external oscillator is used.

## XTAL2

Cutru: at ine invering ampifier that forms the oscillator. and input to the internal clock generator. This din shculd be floated when an extemal oscillator is usea. pulled high oy the internal pullups. and in that state can ze used as inputs. As inputs. Por 3 pins that are externally being pulled low will source Current (IIL. on the cata sneet) Decause of the pullups. It aisc serves the functicns of various special features ot the MCS-51 Family, as listed below

$\qquad$

## OSCILLATOR CHARACTERISTICS

XTAL 1 and XTAL 2 are the input and output respectively. of an inverting amplifier which is configured for use as an on-chip oscillator, as shown in figure 5 . Either a quart crystal or ceramic resonator may be used. To arive the device from, an external clock source. XTAL1 should be driven while XTAL2 is left
unconnected as shown in figure 6. There are no requirements on the duty cydle of the ex!ernal clock signal.since the input to the internal clocking circuitry is through a divide-by-two flid-flop, but munimum and maximum high and low times specified on the Daia Sheet must be observed.


## ABSOUTE MAXIMUM RATINGS＊

Ambient Temperature Under Bias：
Commercal ．．．．．．．．．．．．．．．．．．．．． $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
industrial ．．．．．．．．．．．．．．．．．．$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots . \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vokage on VCC to VSS ．．．．．．．．．．．．．．－0．5V to +7 V
Voltage on Any Pin to VSS．．．．．-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
Power Dissipation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．IW＊
－This value is based on the maximum allowable die temperature and the thermal resistance of the package．
＊NOTICE：
Stresses at orabove those listed under＂Absolute Maxi－ mum Ratings＂may cause permanent damage to the device．This is a stress rating only and funcional opera－ tion ofthe device at these oranyorherconditions above those andicated in the operational sections of this spe－ cification is not implied．Exposure to absolute maxi－ mum rating conditions may affect device reliability．

## DC CHARACTERISTICS

$T A=-40^{\circ} \mathrm{C}$ ： $085^{\circ} \mathrm{C}: \mathrm{VCC}=2.7 \mathrm{~V}$ to $\mathrm{VV}: \mathrm{VSS}=\mathrm{OV}: \bar{r}=0$ to 5 MHz

Symbol	Parameter	Min	Max	Unit	Test Conditions
VIL	Input Low Voltage	$-0.5$	$0.2 \mathrm{VCC}$	V	
VIH	Input High Voltage （Except XTALs and RST）	$\begin{gathered} \hline 0.2 \text { VCC } \\ -0.9 \end{gathered}$	$\begin{aligned} & \text { VCC } \\ & -0.5 \end{aligned}$	V	
$\mathrm{VIH1}$	Inout High Voltage to RST for Reset	$0 \div \mathrm{VCC}$	$\begin{aligned} & \text { VCC } \\ & -0.5 \end{aligned}$	V	
V／H2	Inout High Voltage Ts XTA L 1	2－ソ¢0	$\begin{aligned} & \text { YCC } \\ & 0.0 \end{aligned}$	；	
UFD		$\therefore 0$	j． 0	$\checkmark$	，
ソCL	Jutbut Low voltage ！Fons 1．2．3）	4	0.45	V	$\mathrm{iOL}=1.6 \mathrm{~mA}$（ note 1）
VOLI	Output Low Voltage Port O．ALE．PSEN	2840	0.45	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$（note 1 ）
VOH	Outout High loltage Perts 1．2．3	U．SVCC		V	$1 O H=-10 \mu \mathrm{a}$
		C2．4		V	$\begin{aligned} & 1 O H=-60 \mu A \\ & V C C=5 V \pm 10 \propto \end{aligned}$
$\mathrm{VOH1}$	Outbut Hign Voltage（Port 0 in External in External Bus Mode），ALE．PSEN	0．9VCC		V	$1 \mathrm{OH}=-40 \mu \mathrm{~A}$
		2.4	－	V	$\begin{aligned} & 1 O H=-400 \mu \mathrm{~A} \\ & \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% \end{aligned}$
IIL	Logical 0 Input Current Ports 1．2．3	\％	－50	；$A$	$\mathrm{Vin}=045 \mathrm{~V}$
心！	input Leakage Current		$=10$	$\mu \mathrm{A}$	$0.45<V_{\text {in }}<V_{C C}$
ITL	Logical 1 to 0 Transition Current （Pors 1．2．3）	－	－ 500	${ }_{\mu} \mathrm{A}$	$\mathrm{Vin}=2.0 \mathrm{~V}$
：CCPD	Power Supply Current （Power Down Mode）	50	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { (note 2) } \end{aligned}$
RRSi	RST Pulldown Piesistor	50	150	$\mathrm{k} \Omega$	
C．O	Cacacitance ？I／C Eutter		？	cF	${ }_{C} \mathrm{C}=1 \mathrm{MHZ}, \top_{A}=25^{\circ} \mathrm{C}$

Note 1：
Capactive loading on Ports 0 and 2 may cause spurious noise pulses to be suoerimposed on the VOLS of ALE and Ports ！and 3 The noise ss due ：o externat cus capacitance Jiscnarging into the Porio and Port 2 pins when these pins make 1－to－0
ransitions during bus operations．In the worst cases （capacitive loading 100 of the noise pulse on the ALE line m． m exceed 045 V with maxi VOL peak C．CV A Schmitt Trigger use is not necessary．
$\qquad$

## ABSOUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias:
Commercial .................... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial ................. $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on VCC to VSS ................ -0.5 V to +7 V
Voltage on Any Pin to V SS.....-0.5V to VCC +0.5 V
Power Dissipation .. 1W*

- This value is based on the maximum allowable die temperature and the thermal resistance of the package.
- NOTICE:
$\therefore$
Stresses at or above those listed under "Absoute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these oranyotherconditions above fhose indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.


## DC CHARACTERISTICS

$\overparen{\mathrm{T}} \mathrm{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}: V C C=2.7 \mathrm{~V}$ to $\mathrm{VV}: \mathrm{VSS}=\mathrm{OV}: F=0$ to 6 MHz

Symbol	Parameter	Min Max	Unit	Test Conditions
VIL	Input Low Voltage	$\begin{array}{c\|c} \hline-0.5 & 0.2 \mathrm{VCC} \\ & -0.1 \end{array}$	V	
VIH	Imput High Voltage (Except XTALs and RST)	$\begin{array}{cc} \hline 0.2 \mathrm{~V} \mathrm{CC} & \mathrm{VCC} \\ -0.9 & -0.5 \\ \hline \end{array}$	V	
$\mathrm{VIH1}$	Input High Voltage to RST for Reset	$\begin{array}{ll} \hline 0.7 \mathrm{VCC} & \mathrm{VCC} \\ & -0.5 \end{array}$	V	
V/H2	Indut High Voltage To XTAL/	$\begin{array}{ll} \hline 0.7 \text { VCC } & \text { VCO } \\ & -0 . \end{array}$	;	
VFD	Power Down Voltage io VCC in PD Mcae	2.0 ग.0	V	
'OL	Dutput Low Voltage (Pors 1. 2.3)	0.45	V	iOL $=1.06 \mathrm{~mA}$ (note 1 )
VOLI	Output Low Voltage Port O. ALE. PSEN	() 0.45	V	$1 \mathrm{OL}=3.2 \mathrm{~mA}$ (note 1)
VOH	Output High Voltage Ports 1. 2.3	O.SVCC	$\checkmark$	$\mathrm{iCH}=-10 \mu \mathrm{a}$
		2.4	V	$\begin{aligned} & 1 O H=-60 \mu A \\ & V_{C C}=5 V \pm 10 \% \end{aligned}$
VOHI	Output High Voltage (Port 0 in External in External Bus Mode). ALE, $\overline{\text { PSEN }}$	0.9VCC	V	$1 \mathrm{OH}=-40 \mu \mathrm{~A}$
		2.4	V	$\begin{aligned} & 1 \mathrm{OH}=-400 \mu \mathrm{~A} \\ & \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% \end{aligned}$
IIL	Logical 0 Input Current Ports 1.2.3	$-50$	$\cdots$	$\mathrm{Vin}=0.45 \mathrm{~V}$
心	Input Leakage Current	$=10$	$\mu A$	$0.45<\operatorname{Vin}<V_{C C}$
ITL	Logical 1 to 0 Transition Current (Ports 1.2.3)	-500	$\mu \mathrm{A}$	$\mathrm{Vin}=2.0 \mathrm{~V}$
:CCPD	Power Supply Current (Power Down Mode)	50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { (note 2) } \end{aligned}$
RRSi	RST Pulldown Resistor	$50 \quad$ i 150	ko	
CiO	Cadacitance of I/O Butfor	$\stackrel{\square}{\square}$	OF	$\mathrm{i}_{\mathrm{C}}=1 \mathrm{NHiz} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note 1:

Capactive loading on Ports 0 and 2 may cause spurious noise pulses to be superimoosed on the VOLS if Ale and Ports 1 and 3. The noise !s due !o externa! dus capacitance alscharging into the Port 0 and Port 2 pins when these pins make $1-10-0$
transitions during bus operations. In the worst cases (capac! tive loading 100 DF . the noise pulse on the ALE !ne may exceed 0.4§V with maxi YOL peak 0.eV. A Scr:mitt Trigger use is not necessary.
$\qquad$
EXTERNAL CLOCK DRIVE CHARACTERISTICS (XTAL 1)

Symbol	Parameter	Variable Clock fieq $=0$ to 6 MHz		Unit
		Min	Max	
TCLCL	Oscillator Period	166		ns
TCHCX	High Time	20		ns
TCLCX	Low Trme	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns



## AC CHARACTERISTICS

( $A=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} V C C=2.2 . V^{\prime}$ to $\left.\mathrm{VV}, V S S=O V\right)$
(Load Capacitance for Port O. ALE, and PSEN $=100 \mathrm{pf}$; Load Capacitance for All Other Outputs $=80 \mathrm{pf}$ ).

EXTERNAL PROGRAM MEMORY CHARACTERISTICS

Symbal	Parameter	Min	Max	Units
TLHLL	ALE Pulse Width	2TCLCL-40		ns
TAVLL	Address Valid to ALE	TCLCL-55		ns
TLLAX	Address Hold After ALE	TCLCL-35		ns
TLLN	ALE to Valid instr in		4TCLCL - 170	ns
TLLPL	ALE to PSEN	TCLCL-25		ns
TPLPH	PSEN Pulse Width	3TCLCL-35		ก¢
TPLIN	$\overline{\text { PSEN }}$ to Valid Instr In		3TCLCL-220	ns
TPXIX	Indut Instr Hold After PSEN	0		ns
TPXIZ	Input Instr Float After PSEN		TCLCL-20	ns
TPXAV	PSEN to Address Valid	TCLCL-8		ns
TAVN'	Address to Valid Instr In		STCLCL-220	ns
TPLAZ	PSEN Low to Address Float		0	ns

[^1]

80C51－L／80C31－L

## EXTERNAL DATA MEMORY CHARACTERISTICS



Symbol	Parameter	Min	Max Mod	＋1593
TRLRH	$\overline{\text { RD Pulse Width }}$	6TCLCL－100	$\cdot \mathrm{C}$	$\cdots \mathrm{ns}=8$
TWLWH	WR Pulse Widin	6TCLCL－100		IS
TLLAX	Data Address How After ALE	TCLCL－35	－	NS ${ }^{\text {anem }}$
TRLDV	RD to Valid Data in		STCLCL－165	ns
TRHDX	Data Hold After RD	0		ns
TRHDZ	Data Float After RD		2TCiCL－70	ns
TLLDV	ALE to Valid Data in		8TCLCL－150	ns
TAVCV	Address to Valid Cata in		9TCLCL－165	ns
TLLWL	ALE to WF or $\overline{\mathrm{RD}}$	3TCCL－5C	$3 \mathrm{CCLCL}+50$	ns
TAVWL	Address to $\overline{W R}$ c！ $\bar{\square} \bar{D}$	ITĊご－i30		ns
TOVWX	Data Vallo ic ： $\mathrm{VF}^{-}$－nsiam	こここーご		ns
TCVWH	Data Setud to W戸゙ Hign	FTC＇ごー－ 150		ns
TWHQX	Data Hold Atter WR	TCLC＇－50		ns
TRLAZ	$\overline{\mathrm{RD}}$ Low tc Address Floai		$\bigcirc$	ns
TWHLH	RD or WR High ：$:$ ALE Hign	TC：Co－40	${ }^{\text {T }}$ CLCL－ 40	ns

MAXIMUM ICC（mA）

	Cperating iNore 3）			idle（Note 4）		
Frea．Vcc	2.7 Y	5 V	6 V	2.7 V	5 V	6V
1 MHz	0.8 mm	1.5 ma	1.3 mm	$\therefore$－C ur	8 CO － A	1 mA
6 MHz	1 mA	8 mA	10 ma	1.2 nA	3.5 mA	3.8 mA

Note 2：
Power Down ICC is measured will all outcut ans disconnec：ed：ㄷ．$=$ Pori $0=\%$ Cc．Xir＿¿N．C．ASi＝ VSS

## Note 3：

ICC is measured with all outbut pins こ：sconnectec： XTAL1 driven with TCLCH．TCHCL $=5 \mathrm{r} . \mathrm{S}$ ． $\mathrm{VIL}=\mathrm{V} S S$－
 $\mathrm{V}_{\mathrm{C}}$ ．ICC would be slightly higner if a cristal escilizic： used．

## EXPLANATION OF THE AC SYMBOLS

Each timing symbol has 5 characi＝＇s 「－o－re：
 charac：ers．depenaing on their scsition siand ！cr：r ： name of a signal or the logical status it that signai The following is a list all the craracters end wnat they stand for．

Note 4：
ale ICC is measured ivntr．all outcut bins
 $=V_{S S}-0.5 \mathrm{~V}: \mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}-0.5 \mathrm{~V}:$ XTAL2 N．C：Port $0=$ $V C C . E A=R S T=V S S$

EXAMPLE：
TAVi＿＝Tr：s for Acu！


入．Ȧdaress．	C．Cu：su：sa：a
C：Clock．	R：REMD sicnal
D：Input data．	T Time
H：Logic level HIGH．	$\checkmark$ vald．
！：Instruction（program memory conter：	W WRITE s．gnal
L．Logic level LOW．or ALE	X No longer a valid iecte ：evel．
－PSEN	Z．Fioat．

$\qquad$
AC TIMING DIAGRAMS


AC TESTING INPUT/OUTPUT, FLOAT WAVEFORMS


AC inputs during testing are driven at $\mathrm{VCC}-0.5$ for a logic ${ }^{-10}$ and 0.45 V for a logic ${ }^{\circ} 0^{\circ}$. Timing measurements are made at VIH min for a logic "1" and VIL max for a logic " 0 ". For timing purposes a port pin is no longer floating when a 100 mV change from load vottage occurs and begins to foat when a 100 mV change from the loaded VOH NOL tevel occurs. iol/loH $\geq \pm 20 \mathrm{Mc}$.
$\qquad$
SERIAL PORT TIMING - SHIF REGISTER MODE A.C CHARACTERSSTICS:
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ : $\mathrm{VSS}=\mathrm{OV}: \mathrm{VCC}=2.7 \mathrm{~V}$ to VV : Load Capacitance $=80 \mathrm{pF}$ )

Symbol	Parameter	Min	Max	Units
TXLXL	Serial Port Clock Cycle Time	12 TCLCL		$\mu \mathrm{s}$
TOVXH	Output Data Setup to Clock   Rising Edge	10 TCLCL-133		ns
TXHQX	Output Data Hold After Clock   Rising Edge	2 TCLCL-117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		ns
TXHDV	Clock Rising Edge to Input Data Valid		$10 T C L-133$	ns

## SHIFT REGISTER TIMING WAVEFORMS



Chulalongkorn University
$\qquad$
CLOCK WAVEFORMS


This diagram indicates wheri signals are chocked intemally. The time it takes the signals to propagate to the pins however, ranges from 25 to 125 ns . This propagation delay is dependent on variables sucn as temperature and pir, loading. Propagation also varies from output to output and comporient. Typically though $\Pi_{A}=25^{\circ} \mathrm{C}$ fully loaded RD and WR propagation delays are approximately 50 ns . The other signais are typically 85 ns . Propagation delays are incorporated in the AC sJecifications.
$\qquad$
Table 1．MCS ${ }^{0}$－51 Instruction Set Description

ARTHMETIC OPERATIONS				11 matac
Mremonic		Description	Byte	
ADD	A．Rn	Add register to Accumulator	1	1
$\cdots$	A，direat	Add direct byte to Accumulator	2	1
ADD	A，＠Ri	Add indirect RAM to Accumulator	1	
ADD	A．\＃data	Add immediate data to Accumulator	2	1
ADDC	A．Rn	Add register to Accumulator with Carry	1	1
ADDC	A，direc：	Add direct byte to A with Carry flag	2	1
ADDC	A，＠Ri	Add indirect RAM to A with Carry flag	1	1
ADDC	A．\＃data	Add immediate data to A with Carry flag	2 ．	1
SUBB	A，Rn	Subtract register from A with Borrow	1	1
SUBB	A．dired	Subtract direct byte from A with Borrow	2	1
SUBB	A． 9 Ri	Subtract indirect RAM from A with Borrow	1	1
SUBB	A．	Subtract immed．data from A with Borrow	2	1
VC	A	Increment Accumulator	1	1
$\therefore$ C	Rn	Increment register	1	1
NC	direat	Increment direct byte	2	1
NC	＠Ri	Incriment indireat RAM	1	1
NC	DPTR	Incriment Data Pointer	1	2
こEC	A	Decrement Accumulator	1	1
こEC	Rn	Decrement register	1	1
こEC	direct	Decrement direct byte	2	1
こ上C	mR1	Decrement indirect RAM	1	1
$\because$ AL	$A E$	Multioly A \＆B	1	4
こり	$\lambda B$	Divide A by B	1	4
こi	$\lambda$	Decimal Adjust Accumulater	1	1
LOGICAL OPERATIONS				
Mnemonic		Destination	Byte	Cyc
$\therefore$－VL	A．Rn	AND register to Accumulator	1	1
$\sim \sim 1$	A direct	AND direct byte to Accumulator	2	1
aNL	A． 6 Ri	AND indirect RAM 10 Accumulator	1	1
$\therefore$－${ }^{\text {L }}$	A．\＃data	AND immediate data to Accumulator	2	1
ANL	directa	AND Accumulator to direct byte	2	1
$\therefore \mathrm{NL}$	direct．\＃data	AND immediate data to direct byte	3	2
SRL	A．Rn	OR register to Accumulator	1	$!$
SRL	A．direct	OR direct byte to Accumulator	2	1
－SRL	A．©Ri	OR indirect RAM to Accumulator	1	1
こril	A．ḟdata	OR immediate data to Accumulator	2	1
こRL	airect，A	OR Accumulator to direct byte RSTh	2	1
CRL	direct．\＃data	OR immediate data to direct byte	3	2
＜RL	A．Rn	Exclusive－OR register to Accumulator－	1	1
र⿸厂二	A．direct	Excluswe－OR direct byte to Accumulator	2	1
｜XRL	A．${ }^{\text {SR }}$	Exclusive－OR indirect RAM ！o A	1	1
人AIL	A．fidata	Exclusive－OR immediate data to A	2	1
－X 2 L	direct． A	Exclusive－OR Accumulater io cireci oyte	2	1
XPL	direct．，\＃cata	Exclusive－OR immediate data to uirect	3	2
ごR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL	A	Rotate Accumulator Left	1	1
RLC	A	Rotate A Left through the Carry flag	1	1
RR	A	Rotate Accumulator Riçit	1	1
ERC	A	Rctate A Right through Carry flag	i	1
ジiVAP	A	Swap niboles within the Accumulator	1	1

Table 1. (Cont.)

DATA TRANSFER				
Mnemonic		Description	Byte	Cyc
MOV	A.Rn	Move register to Accumulator	1	1
MOV	A.direct	Move direct byte to Accumulator	2	1
MOV	A.@RI	Move indirect RAM to Accumulator	1	1
MOV	A.\#data	Move immediate data to Accumulator	2	1
MOV	Rn,A	Move Accumulator to register	1	1
MOV	Rnodireat	Move direct byte to register	2	2
MOV	Rn, \#data	Move immediate data to register	2	1
MOV	direct. A	Move Accumulator to direct byte	2	1
MOV	direct.Rn	Move register to direct byte	2	2
MOV	directidireat	Move direct byte to direct	3	2
MOV	direct.0Ri	Move indirect RAM to direct byte	2	2
MOV	direct.\#\#data	Move immediate data to direat byte	3	2
MOV	©Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	©Ri, \#data	Move immediate data to indirect RAM	2	1
MOV	DPTR\#data 16	Load Data Pointer with a 16-bi, constant	3	2
MOVC	A.@A-DPTR	Move Code byte relative to DPTR to A	1	2
MOVC	A.@A+PC	Move Code byte relative to PC to A	1	2
MOVX	A, ©Ri	Move External RAM (8-bit add ${ }^{\circ}$ ) to A	1	2
MOVX	A,@DPTR	Move External RAM (16-bit addr) to A	1	2
MOVX	©Ri,A	Move A to Extemal RAM (8-bit addr)	1	2
MOVX	@DPTRA	Move A to External RAM (16-bit addr)	1	2
PUSH	direct	Push direct byte onto stack	2	2
POP	direct	Pop direct byte form stack	2	2
XCH	A.Rn	Exchange register with Accumulator	1	1
XCH	Adirect	Exchange direct byte with Accumulator	2	1
XCH	A.@RI	Exchange indirect RAM with A	1	1
XCHD	A.@Ri	Exchange low-order nibble ind RAM with A	1	1
BOS'EAN VARIABLE MANIPULATION				
Mnemonic		Description	Byte	Cyc
CLR	C	Clear Carry fiag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Sel Carry flag	1	1
SETB	bit	Set direct Bit	2	1
CPL	C	Complement Carry flag	1	1
CPL	bit	Complement direct bit WIT/ERSITV	2	1
ANL	C.bit	AND direct bit to Carry flag	2	2
ANL	C. 1 bit	AND complemen: of direct bit io Carry	2	2
ORI	C/bit	OR direct bit to Carry flac	2	2
ORL	C. 1 bli	OR compiement of direc: Dit to Carry	2	2
MOV	C/bit	Move direct bit to Carry fiac	2	1
MOV	bit.C	Move Carry flag to arrect Dit	2	2
PROGRAM AND MACHINE CONTROL				
Mnemonic		Description	Byte	Cyc
ACALL	addr 11	Absolute Subroutine Call	2	2
LCALL	addr 16	Long Subroutine Call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute Jump	2	2
LJMP	addr 10	Long Jump	3	2
SJMP	rel	Short Jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is Zero	2	2
JNZ	rel	Jump if Accumulator is Not Zerc	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if No Carry flag	2	2

## Table 1. (Cont.)

PROGRAM AND MACHINE CONTROL (cont.)				
Mnemonic		Description	Byte	Cre
	bit.ret	Jump if direct Bit set	3	2
JNB	bitrel	Jump it direct Bit Not set	3	2
-BC	bitrel	Jump if direct Bit is set \& Clear bit	3	2
WNE	A.direct,rel	Compare direct to A\& Jumo if Not Equal	3	2
CJNE	A.\#data,re	Comp. immed. to A \& Jump it Not Equal	3	2
CJNE	Rn.tyatarel	Comp. immed. to reg \& Jump if Not Equal	3	2
WNE	©Ri, \#Jata. rel	Comp. immed. to ind.\&Jump if Not Equal	3	2
DUNZ	Rn,rel	Decrement register \& Jump if Not Zero	2	2
DNE	direct. rel	Decrement direct \& Jump if Not Zero		2
NOP		No operation	1	1

```
Notes on data addressing modes:
in -Working register RO-R7
Girect - }128\mathrm{ internal RAM locations. any l/O port, control or status register
\Ri - Indirect internal RAM location addressed by register RO or R1
=data -8-bit constant included in instruction
=oata 16 - 16-bit constant included as bytes 2& 3 of instruction
2\pi}-128\mathrm{ software flags. any l/O pin.control or status bit
Notes on program addressing modes:
シscr i6
 - Destination Eoaress for:CFiLL&LJMF mav ce anywnere within the ô4-k program memory
 accress scace
-azr:i - Desination zodress "or iCMLL&&NMMP will ce within the same 2-k page of program
 memory as the frisi Dyle of the following instruction
-Il}\quad- SJMP and all conditional jumps include an 8-btt offset byte. Range is +127-128 byte
 relative to frrst byte of the iollowing mstructicn.
All mnemonics copyrighted 'Intel Corporation }197
```

Table 2．Instruction Opcodes in Hexadectmal Order

$\begin{array}{\|l\|} \hline \text { Hex } \\ \text { Code } \end{array}$	Number Mnemonic Operandsof Bytes			$\begin{array}{\|l\|} \hline \text { Hex } \\ \text { Code } \end{array}$	Numb of Byt	${ }_{5}$ Mnemo	Operands
00	1	NOP		33	1	RLC	A
01	2	AJMP	coje aadt	34	2	ADDC	4．$\$$ Jaia
02	3	LJMP	cooe addr	35	2	ADDC	f．．コลic aココ：
03	1	RR	A	36	1	ADDC	A．＠RO
04	1	INC	A	37	1	ADDC	A＠R1
05	2	INC	data addr	38	1	ADDC	A，RO
06	1	INC	©RO	39	1	ADDC	A．R1
07	1	INC	©R1	3 A	1	ADDC	A．R2
08	i	live	RJ	3B	；	ADDC	4．O．3
09	1	INC	R1	3C	1	ADDC	A．RL
OA	1	INC	R2	3D	1	ADDC	A．P． 5
OB	1	INC	R3	3E	－ 1	ADDC	A．R6
OC	1	INC	R4́	3F	$\bigcirc 1$	ADDC	A．RT
OD	1	INC	R5	40	2	JC	code addr
OE	1	INC	R6	41	2	AJMP	coae addr
OF	1	INC	R7	42	2	ORL	data 2ddi． 4
10	3	JBC	Dis addr．code	43	3	ORL	Oaić ニJコ！Jata
11	2	ACALL	code addr	44	2	ORL	A．toata
12	3	LCALL	cose addr	45	2	ORL	A．az：e asJr
13	1	RRC	A	46	1	ORL	A．＠RO
14	1	DEC	A	47	1	ORL	A．＠R1
15	2	DEC	data addr	48	1	ORL	A．RO
16	1	DEC	＠RO	49	1	ORL	A．Ri
7	1	DEC	＠R1	4A	1	ORL	A．R2
18	1	DEC	RO	4B	1	ORL	A．R3
19	1	DEC	R1	4 C	N 1	ORI	A．RL
1A	1	DEC	R2	4 D	1	ORL	A．R5
1 B	1	DEC	R3	4 E	1	ORL	A．R6
15	．	Dミこ	П－	$4 \bar{F}$	．	つマ＇	ム＝
1 D	1	コここ	ア．E	50		JV	こ0コミ ะวコ・
1三	1	DEC	RE	51	－	¢こALL	Cこコニ 2Jo：
17	1	DEC	$\bar{\square}$	52	2	ANL	aaié accr．n
20	3	JB	bit addr．code addr	53	3	ANL	data adcr．\＃data－
21	2	AWM？	cose addr	54	2	ANL	A．$\ddagger$ cata
22	1	RET		55	2	ANL	A．daia addr
23	1	RL	4	56	1	ANL	A．＠RD
24	2	ADD	A．data	57	1	ANL	A．＠R1
25	2	ADD	A．data addr	58	1	ANL	A．RO
26	1	ADD	A，＠RO	59	1	ANL	A．R1
27	1	ADD	A＠$@ 1$	5 A	1	ANL	A．F． 2
28	1	ADD	A．RO	5B	i	ANL	A．Fİ
29	1	ADD	A．R1	5C	1	ANL	A．FL
2 A	1	ADD	A．R2	5D	$i$	ANL	A．F．E
2 B	1	ADD	A．R3	5 E	1	ANL	A．Ró
2C	1	ADD	A．R4	5 F	1	ANL	A，F－
2D	1	ADD	A．R5	60	2	JZ	code addr
2 E	1	ADD	A，Ró	61	2	\＆JMP	cooe addi
2 F	1	ADD	A．R7	62	2	XRL	data addr A
30	3	JNB	bit addr．code addr	63	3	XRL	data adoir．\＃data
31	2	ACALL	code addi	64	2	XRL	A．\＃data
32	1	RETI		65	2	XRL	A．data addr


$\qquad$ 80C51-L / 80C31-L
Table 2. (Cont.)



นายอานวย สุดสาคร เกดวนห่ 26 มีนาคม 2506 ค่จงงวดชลบุรี สดเร็จการ ศึกษาปรญญาวศวกรรมศาสตรยณศิต สาขาเทคโนโลย ไฟฬ้าอุตสาหกรรม ธีการศึกษา 2531 จากสถายนเทคโนโธพระจอมเกส้า พระนครเหนีอ เช้าคึกษาตอศ่ภาควชานวเคสยรเทคโนโลย คณะ วศวกรรมศาสตร จพัาลงกรณ่มหาวทยาสย ในป พ.ศ. 2532

ประรติการท่างาน

สถายนบริการคอมพวเตอร จุพัาลงกรณมหาวทยาสย ระหวางษ พ.ศ. 2526 ถงษ พ. ศ. 2530

องศ์การโทรศพหแหงประเทศไทย ต้แหนงวิศวกร 5 ระหวางปี พ.ศ. 2530 ถงปจจุบน



[^0]:    VOL I, 10-62 ANALOG-TO-DIGITAL CONVERTERS

[^1]:    See next page for External Data Memory Characteristics

