เภสิชจลนพลศาสตร์ของมอร์ฟีน ที่สัมพันธ์กับการควบคุมการทางานของฮอร์รมนสืบพันธุ์ และ ฮอร์รมนจากต่อมไทรอยด์ ในลิงหางยาวเพศผู้วัยรุ่น และวัยเจริญพันธุ์

นางสาว สุจินดา มาลัยวิจิตรนนท์

วิทยานิพนธ์นี้ เบ็นส่วนหนึ่งของการศึกษาตามหลักสูตรบริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาวิทยาศาสตร์ชีวภาพ

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2537

ISBN 974-584-788-7

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

PHARMACOKINETICS OF MORPHINE RELATED TO THE REGULATION OF GONADAL AND THYROIDAL FUNCTIONS IN PUBERTAL AND ADULT MALE CYNOMOLGUS MONKEYS

MISS SUCHINDA MALAIVIJITNOND

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE SCHOOL

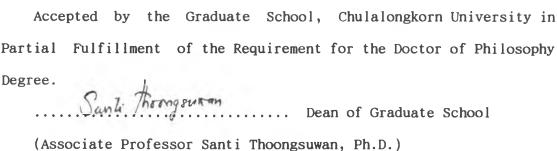
BIOLOGICAL SCIENCE PROGRAMME

CHULALONGKORN UNIVERSITY

1994

ISBN 974-584-788-7

Thesis title Pharmacokinetics of Morphine Related to The Regulation of Gonadal and Thyroidal Functions in Pubertal and Adult Male Cynomolgus Monkeys


By Miss Suchinda Malaivijitnond

Department Inter-department of biological science

Thesis advisory committee

Professor M.R.Puttipongse Varavudhi, Ph.D.

Associate Professor Makhumkrong Poshyachinda, M.D.

Copyright of the Graduate School, Chulalongkorn University.

ทีมพัตนภรบบทลดย่อวิทยานักเหลวยในภาอบสัญชานเพียงแล่เกิดยา

สุจินดา มาลัยวิจิตรนนท์ : เภสัชจลนพลศาสตร์ของมอร์ฟืน ที่สัมพันธ์กับการควบคุมการทำงานของฮอร์โมน สึบพันธุ์และฮอร์โมนจากต่อมไทรรอยด์ ในลิงหางยาวเพศผู้วัยรุ่นและวัยเจริญพันธุ์. (PHARMACOKINETICS OF MORPHINE RELATED TO THE REGULATION OF GONADAL AND THYROIDAL FUNCTIONS IN PUBERTAL AND ADULT MALE CYNOMOLGUS MONKEYS) อ.ที่ปรึกษา : ศ.ดช.ม.ร.ว. พุฒิพงค์ วรวลี, รศ.พญ. มาคุ้มครอง โปษยะจินดา, 265 หน้า. ISBN 974-584-788-7

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาฤทธิ์เฉียบพลันของมอร์ฟินไฮโดรคลอไรด์ต่อระดับฮอร์โมนโปรแลคติน(PRL) ไทโรโทรฟิน(TSH), ไทรอกซิน(T4), เทสโทสเตอโรน(T) และคอร์ติซอล(C) ในลิงหางยาว เพศผู้วัยรุ่น เปรียบ เทียบกับวัย เจริญพันธุ์ 2) ติดตามการ เปลี่ยนแปลงของฮอร์โมนเพศ (T, E2, PRL), ฮอร์โมนต่อม ไทรอยต์ (T4, TSH) และคอร์ติซอล ที่สัมพันธ์กับ เภสัชจลนพลศาสตร์ของมอร์ฟิน ภายหลังจากที่ใช้ยา เป็นระยะ เวลา นาน และภายหลังจากหยุดให้ยา และการ เปลี่ยนแปลงทางสรีรวิทยาบางประการที่เกี่ยวข้องในการทดลองได้แบ่งสัตว์ ทดลองออก เป็น 3 กลุ่ม คือ 1) กลุ่มลิงวัยรุ่น ให้มอร์ฟินไฮโดรคลอไรด์ ขนาด 3.0 มก./กก./วัน นาน 74 วัน 2) กลุ่มวัย เจริญพันธุ์ แบ่งออก เป็น 3 กลุ่มย่อย ให้มอร์ฟินขนาด 1.5, 3.0 และ 6.0 มก./กก./วัน นาน 130, 74 และ 110 วัน ดามลำดับ และ 3) กลุ่มควบคุม ให้น้ำ เกลือ (0.85% NaCl) 0.5 มล. นาน 149-170 วัน

ผลการศึกษาฤทธิ์ เฉียบพลันของมอร์พีนไฮโดรคลอไรค์ชนาด 3.0 มก./กก. ในลิงวัยรุ่น 3 ตัว และชนาด 1.5, 3.0 และ 6.0 มก./กก. ในลิงวัยเจริญพันธุ์ จำนวน 4, 3 และ 3 ตัว ตามลำดับ พบว่าจะมีผลไปเพิ่มระดับ PRL ในชีรัมภายใน 15 นาที และมีระดับสูงสุดที่ 30 นาที ในขณะที่ระดับ T และ C ลดลงต่ำที่เวลา 6.5-10 และ 2.5 ชั่วโมง ตามลำดับ โดยระดับที่เพิ่มขึ้นหรือลดลงของฮอร์โมนเหล่านี้จะเป็นสัดส่วนโดยตรงกับขนาดของมอร์ฟินที่ได้ รับ ถึงแม้ว่าจะติดตามศึกษานานถึง 10 ชั่วโมงภายหลังฉีดมอร์ฟิน ก็ไม่พบการเปลี่ยนแปลงที่ชัดเจนของระดับ TSH และ T4 ในลิงทุกกลุ่ม แต่พบว่าฮอร์โมนบางตัวมีรูปแบบการหลังเป็น circadian rhythm เมื่อติดตามศึกษาถึงผล ระยะยาวจากการให้มอร์ฟินทุกวัน โดยแต่ละครั้งของการตรวจวัดระดับฮอร์โมนจะทำที่ 20 ชั่วโมงภายหลังการฉีดยา พบว่าไม่มีการเปลี่ยนแปลงที่ชัดเจนของระดับฮอร์โมนในลิงทุกกลุ่ม และการเปลี่ยนแปลงของ metabolic turnover rate ในลิงแต่ละกลุ่มก็แตกต่างกัน โดยในลิงกลุ่มที่ได้รับมอร์ฟินในขนาด 1.5 และ 3.0 มก./กก./วัน มีค่าลดลง แต่ไม่พบการเปลี่ยนแปลงใดๆในลิงกลุ่มที่ได้รับมอร์ฟินในขนาด 6.0 มก./กก./วัน ซึ่งแสดงว่าลิงสามารถปรับตัวต่อ ขนาดและฤทธิ์ของมอร์ฟินที่ได้รับในแต่ละวัน (dispositional และ pharmacodynamic tolerances) พบว่า ฮอร์โมนคอร์ดิชอลที่เป็นดัชนีสำคัญในการบ่งชี้ถึงระดับความเครียด มีค่าเพิ่มสูงขึ้นภายหลังจากหยุดให้ยาและสัมพันธ์กับ อาการถอนยาที่เกิดขึ้นในลิงทุกตัว ซึ่งการเพิ่มสูงขึ้นอย่างเฉียบพลันของ C สามารถมีผลกระทบต่อระดับ T, E2 และ T4 ได้ และการเปลี่ยนแปลงตังกล่าวสามารถปรับคืนสู่ระดับปกติได้เองภายใน 1 เดือน

การฉีดมอร์ฟินแต่ละครั้งที่กระตุ้นให้ระดับ PRL ในซีรัมสูงมากในระยะเวลาสั้นๆ (transient hyper-prolactinemia) เป็นประจำทุกวัน สามารถทำให้ลิงเพศผู้ที่อยู่ในภาวะที่ไวต่อการถูกกระตุ้น เกิดภาวะ galactorrhea ได้ เมื่อมีระดับ T ในซีรัมลดต่ำลงอย่างชัดเจน โดยทั่วไปลิงที่มีระดับพื้นฐานของ PRL ค่อนข้างสูง จะมีความไวต่อการถูกกระตุ้นให้ เกิดภาวะน้ำนมไหลได้ดีกว่าลิงที่มีระดับพื้นฐานขงอ PRL ต่ำกว่า นอกจากนี้ยังพบว่าสืบองน้ำนมที่หลังก็ขึ้นอยู่กับระดับของ PRL เป็นสำคัญด้วย การที่มอร์ฟินทำให้ลิงมีระดับ PRL เพิ่มสูง มีน้ำนมไหล และ ลดระดับการสร้าง T แล้ว ลิงยังเกิดอาการ เบื่ออาหาร ขนาดของอัณฑะและน้ำหนักตัวก็ลดลงอย่างชัดเจน เช่นกัน ภาวะ เช่นนี้จะส่งผลให้ลิงหมดความต้องการทางเพศและไม่มีประสิทธิภาพในการสึบพันธุ์ แต่ผลดังกล่าวสามารถกลับคืน สู่สภาวะปกติได้ เมื่อหยุดให้ยา โดยระยะเวลาที่ใช้ในการปรับตัวจะขึ้นอยู่กับขนาดของยาที่ได้รับ

ภาควิชาพมาบาหลักสูตรคุษฎีบัณฑิต	ลายมือชื่อนิสิต 📉 🏣
สาขาวิชายาศาสตร์มีวลาพ	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2537	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

C325027 : MAJOR BIOLOGICAL SCIENCE

KEY WORD: MORPHINE/PHARMACOKINETICS/PRL/TSH/T₄/TESTOSTERONE/CORTISOL/E₂/CYNOMOLGUS MONKEY

SUCHINDA MALAIVIJITNOND: PHARMACOKINETICS OF MORPHINE RELATED TO THE REGULATION OF GONADAL AND THYROIDAL FUNCTIONS IN PUBERTAL AND ADULT MALE CYNCMOLGUS MONKEYS. THESIS ADVISOR: PROF. M.R. PUTTIPONGSE VARAVUDHI, Ph.D., ASSO.PROF.MAKHUMKRONG POSHYACHINDA, M.D., 265 pp. ISEN 974-584-788-7

The purposes of this study are 1) to investigate the acute effect of morphine hydrochloride on serum prolactin(PRL), thyrotropin(TSH), thyroxin (T_4), testosterone(T) and cortisol(C) levels in pubertal male cynomolgus monkeys comparing to adult male monkeys and 2) to follow the alterations of T, E_2 , PRL, T_4 , TSH and C related to pharmacokinetics of morphine hydrochloride during long-term treatment and drug withdrawal periods including some physiological changes. Monkeys were divided into 3 groups 1) pubertal group injected with 3.0 mg/kg/day for 74 days 2) adult group which was subdivided into 3 groups injected with 1.5, 3.0 and 6.0 mg/kg/day morphine for 130, 74 and 110 days, respectively and 3) control group injected with 0.5 ml saline for 149-170 days.

Acute effect of subcutaneous injection of morphine at the dose 3.0 mg/kg to 3 pubertal monkeys and 1.5, 3.0 and 6.0 mg/kg to 4, 3 and 3 adult monkeys, respectively showed that PRL began to increase at 15 min and peaked at 30 min, whereas T and C declined to a nadir at 6.5-10 h and 2.5 h, respectively. The decreased or increased levels of these hormones related to the dose of morphine injected. However, serum TSH and $T_{\scriptscriptstyle /}$ levels determination follow up to 10 h did not show any change. A circadian pattern of some hormones was observed. Long-term daily morphine injection of which each blocd sample was taken 20 h after injection did not show any prominent changes of hormonal levels in any monkey groups and the alteration of turnover rate was distinctive in each group. Monkey injected with $1.5\ \mathrm{and}\ 3.0$ mg/kg/day morphine exhibited a decrease in turnover rate values while in dose 6.0 mg/kg/day injection was negligible any effect. It means that monkeys can adjust themself to the effect and disposition of drug after daily morphine administration (pharmacological and dispositional tolerances). Cortisol, a prerequisite hormone for stress levels, showed a marked increase during the drug withdrawal and related to the withdrawal symptoms in all monkevs. This sudden increase of cortisol levels could influence on T_A , E_2 and testosterone levels and these alterations could recover within 1 month.

Transient hyperprolactinemia happened every day from each morphine injection could also induce galactorrhea symptom when it was synchronous with the markedly decrease in testosterone levels in male cynomolgus monkeys particularly in susceptible monkeys whom displayed the high basal PRL levels. The colour of excretion was principally depend upon the level of PRL. If it inferred to the effect of morphine to induce PRL elevation, milk excretion, anorexia, and decrease in testosterone levels, testicular size and body weight, these effects may cause an infertility in male cynomolgus monkeys. However, these effects could return to normal after the drug withdrawal and its latency depended upon the dose of morphine injection.

ภาควิชาสหสาขาหลักสูตรดูษฎีบัณฑิต	ลายมือชื่อนิสิต 🖳 😂
สาขาวิชาวิทยาศาสตร์ชีวภาพ	ลายมือชื่ออาจารย์ที่ปรึกษา พ
ปีการศึกษา ²⁵³⁷	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

I wish to express my profoundly sincere gratitude and hold in high esteem to my advisor, Professor Dr. Puttipongse Varavudhi for his helpful discussion, patience, understanding and greatful encouragement throughout this study and the writing of this thesis has been so long remembered.

I would like to express my appreciation to Associate Professor Dr. Vichai Poshyachinda for his kind support, invaluable guidance and giving me a bright way to reach a mile-stone. Sincere appreciation is also extended to Professor Dr. Vijitr Boonpucknavig, Associate Professor Dr. Makhumkrong Poshyachinda, Associate Professor Dr. Kanok Pavasuthipaisit and Associate Professor Dr. Vittaya Yodyingyuad who served on my defence committee and gave me valuable advices and comments.

My thanks are also given to the staffs of Department of Nuclear Medicine, Faculty of Medicine, Institute of Health Research and Primate Research Unit for their warm-hearted hospitalities and laboratory facilities. Gratitudes are also extended to the financial supports by the National Research Council of Thailand and Primate Research Unit, Chulalongkorn University.

Finally, I am greatly indebted to my parents for their loving, stimulating, understanding and extremely encouragement given to me.

As forever imbeded in my memmory, my work could not be successed if it lacked of an excellent cooperation and a lot of sacrifices from utmost experimental animal model, seventeen male cynomolgus monkeys.

CONTENTS

Pa.	ıge
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	хi
ABBREVIATION	хх
CHAPTER	
I. INTRODUCTION	1
II. LITERATURE REVIEW	11
III. MATERIALS AND METHODS	51
Materials	51
1. Animal	51
2. Chemical reagents and instruments	51
Methods	53
1. Dosages and treatment schedules	53
1.1 The study of chronic effect of morphine	53
1.1.1 Drug administration	58
1.1.2 Blood collection	59
1.1.3 Metabolic turnover rate study	60
1.1.4 Testicular measurements	63
1.2 The study of acute effect of morphine	64

CONTENTS (continued)

				page
		2. Hormonal determinations	• • • • •	66
	IV. R	RESULTS	• • • • •	90
		General Appearance	• • • • •	90
		Acute Effect of Morphine Hydrochloride		92
		Chronic Effect of Morphine Hydrochloride	• • • • •	110
		Integral Alteration in Hormonal Levels during	5	
		Chronic Morphine Treatment	• • • • •	118
		Metabolic Turnover of Morphine		135
		Testicular Measurements		136
		Galactorrhea Symptom	• • • • •	141
		Stress and Hormonal Alterations		143
	V. D	DISCUSSION		146
		Acute Effect of Morphine Hydrochloride		146
		Chronic Effect of Morphine Hydrochloride	• • • •	164
		Integral Alterations in Hormonal Levels durin	g	
		Chronic Morphine Treatment	• • • •	173
		Metabolic Turnover Rate of Morphine	• • • • •	178
		Testicular Measurements		185
		Galactorrhea Symptom	• • • • •	190
		Stress and Hormonal Alterations		194
SUMMARY			• • • • •	198
REFFEREN	ices			200

CONTENTS (continued)

			page
APPENDICES	5		
Ι.	•	CHEMICAL REAGENTS	252
II		INSTRUMENTS	254
II	II.	REAGENT PREPARATIONS	255
IV	7.	QUALITY CONTROL PREPARATION	257
v.	,	TERMINOLOGY	262
BIOGRAPHY			265

LIST OF TABLES

Tabl	e	Page
1.	History and administration doses of morphine hydrochloride	
	in studied male cynomolgus monkeys	. 52
2.	The administration doses of morphine hydrochloride for	
	acute response in monkeys previously studied in the	
	chronic effect	. 65
3.	Validations of the radioimmunoassay for steroid hormones	
	(estradiol-17B, testosterone and cortisol)	. 88
4.	Validation of the radioimmunoassay for the protein hormones	
	(prolactin and thyrotropin) and thyroxin	. 89

LIST OF FIGURES

Figu	are	Page
1.	Chemical structure of some of opiate agonists and	
	antagonists	5
2.	Schematic representation of the structure of the bovine	
	pro-opiomelanocortin precursor and its biologically	
	active peptides	5
3.	A schematic representation of known and postulated	
	pathway of morphine in vivo	17
4.	Scheme of the pharmacokinetic-pharmacodynamic model	20
5.	Schematic representation of integral mechanisms of	
	morphine administration, suckling and stress	
	throughout the postulated endogenous opiate pathway	
	on hormonal alteration at target organs	50
6A.	The pubertal male cynomolgus monkey at 4.0 years old	56
6B.	The appearance of reproductove organs during infancy	
	stage	56
6C.	Testicular descent during pubertal stage (at 4.0 years	
	old)	56
6D.	The increase in testis size with a reddish scrotal skin	56
7.	The study protocol in A)adult and pubetal male monkeys	
	treated with 3.0 mg/kg/day morphine hydrochloride,	
	B)adult monkeys treated with 1.5 mg/kg/day morphine and	
	C)adult monkeys treated with 6.0 mg/kg/day morphine,	
	respectively	57

Figu	re F	age
8.	Subcutaneous injection of morphine hydrochloride	
	around the ischial callosities areas	59
9.	Adult male monkey keeping in the restraining chair	60
10.	Plasma cpm count-time curve following intravenous	
	administration of radioactive morphine solution to	
	male cynomolgus monkeys	62
11.	Testicular size taken to be length (A) plus breadth (B)	
	on the left testicle	63
12.	Parallelism check between an original protocol and	
	a minor modification by a half reduction volume in	
	hTSH radioimmunoassay	71
13.	Checking for the maximum extraction of 500 ul pooled	
	monkey serum mixed with 10 ul 3 H-estradiol (10,000 cpm)	
	by various volumes of diethyl ehter	81
14.	Learning behavior of monkey no.523	91
15.	Serum prolactin levels in each monkey after subcutaneous	
	injection of morphine hydrochloride 1.5(A), 3.0(B,C)	
	and 6.0(D) mg/kg, respectively at time 0	93
16.	Mean(±SE) serum prolactin levels in each monkey group	
	after subcutaneous injection of morphine hydrochloride	
	1.5(A), 3.0(B,C) and 6.0(D) mg/kg, respectively at time 0	94

Figu	ire	Page
17.	Serum testosterone levels in each monkey after	
	subcutaneous injection of morphine hydrochloride	
	1.5(A), $3.0(B,C)$ and $6.0(D)$ mg/kg, respectively	
	at time 0 compared to saline-injected control(E)	. 95
18.	Mean(±SE) serum testosterone levels in each monkey	
	group after subcutaneous injection of morphine	
	hydrochloride 1.5(A), 3.0(B,C) and 6.0(D) mg/kg,	
	respectively at time 0 compared to saline-injected	
	control(E)	. 96
19.	Serum cortisol levels in each monkey after subcutaneous	
	injection of morphine hydrochloride 1.5(A), 3.0(B,C)	
	and 6.0(D) mg/kg, respectively at time 0 compared to	
	saline-injected control(E)	. 99
20.	Mean(<u>+</u> SE) serum cortisol levels in each monkey group	
	after subcutaneous injection of morphine hydrochloride	
	1.5(A), $3.0(B,C)$ and $6.0(D)$ mg/kg, respectively at	
	time 0 compared to saline-injected control(E)	. 100
21.	The percentage change in an initial value of cortisol	
	concentration after subcutaneous injection of morphine	
	hydrochloride 1.5(A), 3.0(B,C) and 6.0(D) mg/kg,	
	respectively compared to saline-injected control(E)	. 101

Figu	re	Page
22.	Serum thyrotropin levels in each monkey after	
	subcutaneous injection of morphine hydrochloride	
	1.5(A), 3.0(B,C) and 6.0(D) mg/kg, respectively	
	at time 0 compared to saline-injected control(E)	103
23.	Mean(±SE) serum thyrotropin levels in each monkey	
	group after subcutaneous injection of morphine	
,	hydrochloride 1.5(A), 3.0(B,C) and 6.0(D) mg/kg,	
	respectively at time 0 compared to saline-injected	
	control(E)	104
24.	The percentage change in an initial value of thyrotropin	
	concentration after subcutaneous injection of morphine	
	hydrochloride 1.5(A), 3.0(B,C) and 6.0(D) mg/kg,	
	respectively compared to saline-injected control(E)	105
25.	Serum thyroxin levels in each monkey after subcutaneous	
	injection of morphine hydrochloride 1.5(A), 3.0(B,C)	
	and 6.0(D) mg/kg, respectively at time 0 compared to	
	saline-injected control(E)	106
26.	Mean(±SE) serum thyroxin levels in each monkey group	
	after subcutaneous injection of morphine hydrochloride	
	1.5(A), 3.0(B,C) and 6.0(D) mg/kg , respectively at	
	time 0 compared to saline-injected control(E)	107
27.	Hormonal profiles in naive monkeys after a subcutaneous	
	injection of 3.0 mg/kg (no.519 and 520(3)) or 6.0 mg/kg	
	(no 520(6)) morphine hydrochloride at time 0	100

Figu	ure	Page
28.	Mean(+SE) serum prolactin levels taken 20 hours after	
	each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	. 111
29.	Mean(±SE) serum testosterone levels taken 20 hours	
	after each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	. 113
30.	Mean(+SE) serum thyrotropin levels taken 20 hours	
	after each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	. 114
31.	Mean(±SE) serum thyroxin levels taken 20 hours after	
	each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	. 115
32.	Mean(±SE) serum cortisol levels taken 20 hours after	
	each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	. 117
33.	Mean(±SE) serum estradiol-17B levels taken 20 hours	
	after each injection of morphine hydrochloride 1.5(A),	
	3.0(B,C) and 6.0(D) mg/kg/day respectively in each	
	monkey group	119

Figu	re Page
34.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 1.5 mg/kg/day in adult male monkey no.504 120
35.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 1.5 mg/kg/day in adult male monkey no.507 121
36.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 1.5 mg/kg/day in adult male monkey no.512 122
37.	Patterns of hormonal level taken 20 hours after each
	injection of morphine hydrochloride 1.5 mg/kg/day in
	adult male monkey no.93
38.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 3.0 mg/kg/day in adult male monkey no.505 125
39.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 3.0 mg/kg/day in adult male monkey no.509 126
40.	Patterns of metabolic turnover rate and hormonal level
	taken 20 hours after each injection of morphine
	hydrochloride 3.0 mg/kg/day in adult male monkey no.511 127

Figu	ire	Page
41.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine	
	hydrochloride 3.0 mg/kg/day in pubertal male monkey	
	no.522	129
42.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine	
	hydrochloride 3.0 mg/kg/day in pubertal male monkey	
	no.523	130
43.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine .	
	hydrochloride 3.0 mg/kg/day in pubertal male monkey	
	no.524	131
44.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine	
	hydrochloride 6.0 mg/kg/day in adult male monkey no.506	132
45.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine	
	hydrochloride 6.0 mg/kg/day in adult male monkey no.508	133
46.	Patterns of metabolic turnover rate and hormonal level	
	taken 20 hours after each injection of morphine	
	hydrochloride 6.0 mg/kg/day in adult male monkey no.704	134
47.	Mean serum testosterone, testicular size and body weight	
	profiles in adult male monkeys long-term treated with	
	1.5 mg/kg/day morphine hydrochloride	137

Figu	пе	Page
48.	Mean serum testosterone, testicular size and body weight	
	profiles in adult male monkeys long-term treated with	
	3.0 mg/kg/day morphine hydrochloride	. 138
49.	Mean serum testosterone, testicular size and body weight	
	profiles in adult male monkeys long-term treated with	
	6.0 mg/kg/day morphine hydrochloride	139
50.	Mean serum testosterone, testicular size and body weight	
	profiles in pubertal male monkeys long-term treated with	
	3.0 mg/kg/day morphine hydrochloride	140
51.	The relationship between testicular size and body weight	
	in cynomolgus monkeys during long-term treatment of	
	morphine hydrochloride	142
52.	The relationship between testicular size and age in	
	cynomolgus monkeys during long-term treatment of	
	morphine hydrochloride	143
53.	Milky excretion from the mammary gland in monkey no.509	
	as observed on day-40 of morphine treatment	143
54.	Excessive hair loss in pubertal monkey no.525 during	
	the study period	144
55.	Patterns of hormonal level taken 20 hours after each	
	injection of saline in pubertal male monkey no.525	145
56.	The preparation of column for performing hormone-free	
	serim	258

Figu	re	Page
57.	Mean prolactin profile $(X\pm SE)$ in adult after an intravenous administration of	-

ABBREVIATIONS

Met-Enk= Methionine enkephalin

Leu-Enk= Leucine enkephalin

B-EP = Beta-endorphin

B-LPH = Beta-lipotropin

POMC = Proopiomelanocortin

CLIP = Corticotropin-like intermediate lobe peptide

 $T_3 = 3,5,3'-Triiodothyronine$

 $T_4 = 3.3', 5.5'$ -Tetraiodothyronine or thyroxin

 E_2 = Estradiol-17 beta

T = Testosterone

PRL = Prolactin

LH = Luteinizing hormone

FSH = Follicle-stimulating hormone

TSH = Thyrotropin

ACTH = Adrenocorticotropin

MSH = Melanocyte-stimulating hormone

TRH = Thyrotropin releasing hormone

GnRH = Gonadotropin releasing hormone

CRH = Corticotropin releasing hormone

DA = Dopamine

5-HT = 5-Hydroxytryptamine or serotonin

NSB = Non-specific binding

Tc = Total count

cpm = Count per minute