
การเข้ารหัสด้วยขั้นตอนวิธีทางพันธุกรรมสำหรับการเข้ารหัสวีดิทัศน์ประสิทธิภาพสูง

นางสาว ไอไอ ทุน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2561

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย
บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

GENETIC ALGORITHM BASED CODING FOR HIGH EFFICIENCY VIDEO
CODING

Miss Ei Ei Tun

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Electrical Engineering

Department of Electrical Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2018

Copyright of Chulalongkorn University

Thesis Title GENETIC ALGORITHM BASED CODING FOR HIGH
EFFICIENCY VIDEO CODING

By Miss Ei Ei Tun
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Supavadee Aramvith, Ph.D
Thesis Co-Advisor Professor Yoshikazu Miyanaga, Ph.D

Accepted by the Faculty of Engineering, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Doctoral Degree

.. Dean of the Faculty of Engineering
(Professor Supot Teachavorasinkun, D.Eng.)

THESIS COMMITTEE

... Chairman
(Professor Prasit Prapingmongkolkarn, Ph.D)

... Thesis Advisor
(Associate Professor Supavadee Aramvith, Ph.D)

... Thesis Co-Advisor
(Professor Yoshikazu Miyanaga, Ph.D)

... Examiner
(Assistant Professor Suree Pumrin, Ph.D)

... Examiner
(Assistant Professor Charnchai Pluempitiwiriyawej, Ph.D)

... External Examiner
(Professor Kosin Chamnongthai, Ph.D)

iv

ไอไอ ทุน : การเข้ารหัสด้วยขั้นตอนวิธีทางพันธุกรรมสำหรับการเข้ารหัสวีดิ-
ทัศน์ประสิทธิภาพสูง (Genetic Algorithm based Coding for High Efficiency Video
Coding) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร. สุภาวดี อร่ามวิทย์, 65 หน้า.

การเข้ารหัสวิดิทัศน์ประสิทธิภาพสูง (High efficiency video coding, HEVC) เป็นมาตรฐานการเข้ารหัส-
รูปแบบใหม่ที่สามารถเพิ่มประสิทธิภาพให้กับการเข้ารหัสวิดิทัศน์ H.264/AVC แบบดั้งเดิมได้อย่างมาก เทค-
นิคดังกล่าวอาศัยคุณลักษณะแบบพิเศษของหน่วยการเข้ารหัส (Coding Unit, CU) ประกอบด้วยการแยก-
ส่วนหน่วยการเข้ารหัสที่อยู่บนพื้นฐานของ quadtree (Quadtree-based CU partitioning) ตัวกรองวิดิ-
ทัศน์แบบ deblocking (deblocking filter) ซึ่งจะช่วยให้ภาพไม่แตกเป็นบล็อก และเทคนิคการเข้ารหัสขั้น-
สูงอื่นๆ อย่างไรก็ดี HEVC มีความซับซ้อนในการคำนวณที่สูงมาก ซึ่งทำให้การค้นหาโดยวิธีทาง optimization
(optimization search) ใน Quadtree-based CU partitioning มีความผิดเพี้ยนอย่างมาก

ในส่วนแรก งานวิจัยนี้นำเสนอวิธีการลดคุณลักษณะ (feature reduction) ด้วยการใช้วิธีการตัดสินใจ
(decision method) เชิงขนาดของ CU ซึ่งอยู่บนพื้นฐานของฟัซซี่ support vector machine (SVM) ร่วมกับ-
ตัวควบคุมอัตรา (rate control, RC) เพื่อลดความซับซ้อนในการคำนวณ (computational complexity) โดย-
วิธีที่นำเสนออาศัยการกำจัดคุณลักษณะที่สัมพันธ์กัน (correlated) ของฟัซซี่ SVM บางตัวออกไปโดยที่ประ-
สิทธิภาพการเข้ารหัสคงเดิมจากผลการทดลอง พบว่าวิธีที่นำเสนอสามารถลดความซับซ้อนในการคำนวณด้วยวิ-
ธีฟัซซี่ SVM ได้ถึง 3% ภายใต้สมรรถนะของอัตราความผิดเพี้ยนเดียวกัน

นอกจากนี้ งานวิจัยนี้ยังนำเสนอวิธีการทาง optimization เพื่อหารูปแบบการแยกส่วนแบบเหมาะที่สุดสำ-
หรับ CU แทนการใช้ขั้นตอนวิธีอย่างเร็ว (fast algorithm) โดยวิธีที่นำเสนออยู่บนพื้นฐานของขั้นตอนวิธีเชิง-
พันธุกรรม (Genetic algorithm, GA) เพื่อลดทรัพยากรในการคำนวณของ Quadtree-based CU partitioning
เชิงลำดับชั้น โดยที่รูปแบบ (pattern) ของการแยกส่วน CU อย่างละเอียด (Exhaustive partitioning) และอัต-
ราความผิดเพี้ยน (distortion rate) ถูกพิจารณาเสมือนว่าเป็นโครโมโซม และการทำงานที่เหมาะสมที่สุด (fitness
function) ของขั้นตอนวิธีเชิงพันธุกรรม ตามลำดับ รูปแบบการแยกส่วน CU ของเฟรมหลัก (key frame)
จะถูกค้นหา และส่งต่อไปยังเฟรมถัดไปที่ติดกันภายใต้ความสัมพันธ์เชิงเวลา (temporal correlation) ที่สูง เพื่อ-
ลดเวลาในการคำนวนลง จากการทดสอบ ขั้นตอนวิธีที่นำเสนอสามารถลดทรัพยากรในการคำนวณภายใต้การ-
กำหนด delay P ที่ต่ำด้วย rate control ได้ถึง 62.5% และ 16.7% ที่ 8 Mbps ด้วยการลดคุณภาพในส่วน-
ที่ละเลยได้ และสามารถลดทรัพยาการในการคำนวณได้ถึง 64.1% และ 15.1% ภายใต้การกำหนด delay ต่ำๆ
เมื่อเทียบกับ HM16.5 และขั้นตอนวิธีอย่างเร็วซึ่งอยู่บนพื้นฐานของ SVM ตามลำดับ

ภาควิชาวิศวกรรมไฟฟ้า ลายมือชื่อนิสิต .
สาขาวิชาวิศวกรรมไฟฟ้า ลายมือชื่อ อ.ที่ปรึกษาหลัก .
บีการศึกษา2561

v

5971459321 : MAJOR ELECTRICAL ENGINEERING
KEYWORDS: FAST ENCODING/ GENETIC ALGORITHM / HIGH EFFICIENCY VIDEO
CODING/ QUADTREE-BASED CODING UNIT PARTITIONING.

EI EI TUN : GENETIC ALGORITHM BASED CODING FOR HIGH EFFICIENCY
VIDEO CODING.
ADVISOR: ASSOC. PROF. SUPAVADEE ARAMVITH, Ph.D,
CO-ADVISOR: PROF. YOSHIKAZU MIYANAGA, Ph.D, 65 pp.

High efficiency video coding (HEVC) is the newest video coding standard to greatly
increase the coding efficiency of its ancestor H.264/AVC with the aids of its new features
such as the quadtree-based coding unit (CU) partitioning, a simple deblocking filter, and
other advanced coding techniques. However, HEVC delivers a highly increased computation
complexity, which is mainly due to the exhaustive rate distortion optimization search of
quadtree-based CU partitioning.

Firstly, a feature reduction approach is proposed on a fuzzy support vector machine
(SVM) based CU size decision method. The proposed feature reduction approach with rate
control (RC) can reduce computational complexity by eliminating some correlated features of
a fuzzy SVM-based CU size decision method under a similar coding efficiency. According
to the empirical results, our approach can achieve up to 3% of complexity reduction under
the same rate distortion (RD) performance over a fuzzy SVM-based approach.

Secondly, instead of machine learning (ML) based fast algorithm approach, a CU
partitioning pattern optimization method based on genetic algorithm (GA) is proposed to
save the computational complexity of a hierarchical quadtree-based CU partitioning. The
required coding unit partitioning pattern for an exhaustive partitioning and the rate
distortion cost are efficiently considered as the chromosome and the fitness function of the
genetic algorithm, respectively. To reduce the computational time, CU partitioning patterns
of the key frame is searched and shared to other consecutive frames by taking into account
the highly temporal correlation. Our evaluation results show that the proposed method can
achieve 62.5% and 16.7% computational complexity reduction on average at 8 Mbps with
a negligible average quality degradation compared with HM16.5 and state-of-the-art
support vector machine-based fast algorithm, respectively, under low delay P configuration
with rate control while 64.1% and 15.1% under low delay configuration with rate control.

Department : .Electrical Engineering Student’s Signature
Field of Study :Electrical Engineering Advisor’s Signature
Academic Year :2018

vi

Acknowledgements

Firstly, I wholeheartedly thank my advisor Associate Professor Dr. Supavadee Aramvith and
my co-advisor Professor Dr. Yoshikazu Miyanaga, for supporting me to face and overcome the
most challenging part of study life as their advisee and for guiding my study at Chulalongkorn
University and Hokkaido University.

I also would like to express my heartfelt thanks to the members of the committee, Assistant
Professor Dr. Suree Pumrin, Assistant Professor Dr. Charnchai Pluempitiwiriyawej, Professor
Dr. Kosin Chamnongthai, and the Chairperson Professor Dr. Prasit Prapingmongkolkarn, for
their valuable time, important review and advice for this research.

Thanks to all group members of the Video Processing Research Group (VTRG) for their
suggestions, comments, and guidance. I believe that I have improved the presentation skill
under the suggestions from my advisor and the group members from VTRG. Those suggestions
are really valuable not only for this research work but also for my study life. I will always
remember every single word from them in my mind.

I would like to thank also my parents, all of my friends for their help, their understanding
and kind encouragements through my journey.

I would like to express my gratitude to AUN/SEED-Net Scholarship Program which provides
the financial support for studying Doctoral Engineering Degree in the Chulalongkorn University,
and I would like to thank the people at ISE and AUN/SEED-Net for their support and advice.

This work was supported in part by the Collaborative Research Project entitled Video
Processing and Transmission, in part by the JICA Project for AUN/SEED-Net, This research
has been supported in parts by the Collaborative Research Project entitled Video Processing and
Transmission, JICA Project for AUN/SEEDNet, Japan, and the Ministry of Internal Affairs and
Communications for SCOPE Program (185001003).

Contents

Page
Thai Abstract . iv
English Abstract . v
Acknowledgements . vi
Contents . vii

List of Tables . vii

List of Figures . viii

1 Introduction . 1

1.1 Research Motivation and Problem Statement 1

1.2 Contribution . 5

2 Background and Literature Review . 7

2.1 Background . 7

2.1.1 Overview of HEVC . 7

2.1.2 The Hierarchical Quadtree-based CU Partitioning 11

2.1.3 Genetic Algorithm . 15

2.2 Literature Review . 16

2.2.1 Fast Algorithms for Intra-coding of HEVC 17

2.2.2 Fast Algorithms for Inter-coding of HEVC 17

3 Fast Coding Algorithm for High Efficiency Video Coding 20

3.1 Reducing Redundant Feature from Fuzzy SVM-Based Coding Unit Decision in

HEVC . 20

3.2 GA-Based Fast CU Partitioning . 23

3.2.1 Proposed Data Structure . 23

3.2.2 Proposed Fitness Function . 26

3.2.3 Selection, Crossover and Mutation . 28

3.2.4 Optimization Criteria . 29

3.2.5 Genetic Algorithm with the Proposed Chromosome and Fitness Function 29

3.2.6 Overall Algorithm . 30

4 Evaluation . 35

4.1 Test Video Sequences . 35

4.2 Experimental Setup . 40

4.3 Performance Metric . 40

4.4 Feature Reduction on Conventional Fuzzy SVM-based Approach 41

4.5 GA-Based Fast CU Partitioning . 43

4.5.1 Performance Comparison with Original HM and State-of-the-art Approach 43

4.5.2 Stability of the Proposed Method . 48

4.6 Discussion . 52

4.6.1 Performance Comparison with CTU Level Sharing 52

viii

4.6.2 RD Cost Calculation with Two Most Common Modes and CU Prediction

without Two Most common Modes . 56

4.6.3 GA-Based Fast CU Partitioning without Utilizing Temporal Correlation

and with QP . 59

5 Conclusion and Future Works . 60

References . 62

Biography . 65

List of Tables

Page

1.1 Three categories for thirteen features. 3

1.2 Selected Features of different classifiers. 4

3.1 Example Feature Combinations of FuzzySVM [17]. 21

3.2 Selected Features for different classifiers [25] after eliminating redun-

dant features of [17]. 23

4.1 Testing sequences of the JCT-VC data set. 40

4.2 Performance comparison with HM16.5 and start-of-the-art fast algo-

rithm, FuzzySVM[17] (LDP). 45

4.3 Performance comparison with HM16.5 and start-of-the-art fast algo-

rithm, FuzzySVM[17] (LD). 46

4.4 Performance comparison of HM16.5, start-of-the-art fast algorithm

[17], previous and proposed method [26] 58

4.5 Performance Analysis of the proposed method [27] with HM16.5 and

start-of-the-art fast algorithm, FuzzySVM [17]. 59

List of figures

Page

1.1 Four consecutive frames of sequence ”PartyScene” (N = 4). 6

2.1 Block diagram of an H.264 encoder. 8

2.2 Block diagram of an HEVC encoder with built-in decoder (gray shaded). 9

2.3 Demonstration of the partitioning of a frame with 1280 × 720 luma

samples into (a) macroblocks. (b) CTU. 10

2.4 Available partitioning modes for partitioning a CU into 1, 2, or 4 PUs. 11

2.5 Eleven PU partition modes. 12

2.6 Illustration of RD cost calculating and comparing between a paren-

t/current CU and its children/sub-CUs. 12

2.7 The order of RD cost calculation for 85 CUs of a 64 x 64 CTU. . . . 13

2.8 Quadtree partitioning from CTU to CU. 14

2.9 Quadtree partitioning of a CTU into CU based on recursive RD cost

comparsion. (a) Subdivision into 64×64 CTUs. (b) Coding quat-

dree with CUs. 14

2.10 Flowchart of GA. 16

3.1 Finding optimal three feature sets based on misclassification. (a) C0.

(b) C1. (c) C2. 22

3.2 Hierarchical chromosome of a 64×64 CTU. 24

3.3 Possible CU partition patterns of a 64×64 CU (Maximum CU Depth

= 2). 25

3.4 Usage of MERGE/SKIP mode (in green color) for PUs with the lowest

RD cost in HEVC.(a) Traffic (Class A). (b) Kimono1 (Class B). (c)

BQMall (Class C). (d) BlowingBubbles (Class D). (e) Johnny (Class

E). (f) ChinaSpeed (Class F). 27

3.5 Required 85 RD costs of a 64 x 64 CTU. 28

3.6 Example splitting pattern of a CTU. 28

3.7 Illustration for sharing partitioning pattern. 31

3.8 Flowchart for quadtree-based CU partitioning of HM16.5. 32

3.9 Flowchart for quadtree-based CU partitioning of FuzzySVM[17]. . . . 33

3.10 Flowchart for quadtree-based CU partitioning of the proposed algo-

rithm based on GA [26]. 34

4.1 Traffic test sequence of Class A. 35

4.2 Class B. (a) Kimono1. (b) ParkScene. (c) Cactus. (d) BasketballDrive. 36

4.3 Class C. (a) BQMall. (b) PartyScene. (c) BasketballDrillText. 37

4.4 Class D. (a) BQSquare. (b) BlowingBubbles. 37

4.5 Class E. (a) BQMall. (b) PartyScene. (c) BasketballDrillText. 38

xi

4.6 ChinaSpeed test sequence of Class F. 38

4.7 Example test sequences for each test sequence class printed in with

appropriate relative size. 39

4.8 Performance comparison with FuzzySVM [17] under LDP Configura-

tion without RC and 4 QPs. (a) Computational time saving (%).

(b) Video quality degradation BDPSNR (dB). (c) Overhead bitrate

BDBR (%). 42

4.9 Performance comparison with FuzzySVM [17] under LDP Configu-

ration with RC. (a) Bitrate = 256 kbps.(b) Bitrate = 512 kbps.

. 43

4.10 Average performance comparison with FuzzySVM [17] under LDP

configuration. (a) Video quality (dB). (b) Computational time sav-

ing (%). 47

4.11 Average performance comparison with FuzzySVM [17] under LD con-

figuration. (a) Video quality (dB). (b) Computational time saving

(%). 47

4.12 Subjective video quality for POC 242 of BasketballDrillText video

sequence.(a) Encoded frame of HM16.5. (b) Encoded frame of

FuzzySVM. (c) Encoded frame of the proposed method [26]. 48

4.13 Stabilization of proposed method[26] over FuzzySVM[17]. (a) Time

saving of BQMall. (b) Time saving of Johnny. 49

4.14 Time utilization percentage of the proposed method [26]. 50

4.15 SVM decision percentage of FuzzySVM[17] for BQMall (a) Depth 0

(b) Depth 1 (c) Depth 2. 50

4.16 SVM decision percentage of FuzzySVM[17] for Johnny (a) Depth 0

(b) Depth 1 (c) Depth 2. 51

4.17 Total SVM decision percentage of FuzzySVM[17] for depth 0, 1 and

2 (a) BQMall (b) Johnny. 51

4.18 CU Partition of a CTU encoded by FuzzySVM[17] at 1 Mbps, 4 Mbps,

and 8 Mbps. 52

4.19 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of Traffic (Class A). (b) Time saving of Traffic (Class

A). 53

4.20 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of Kimono1 (Class B). (b) Time saving of Kimono1

(Class B). 53

4.21 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of PartyScene (Class C). (b) Time saving of Par-

tyScene (Class C). 54

xii

4.22 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of BlowingBubbles (Class D). (b) Time saving of

BlowingBubbles (Class D). 55

4.23 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of Johnny (Class E). (b) Time saving of Johnny (Class

E). 55

4.24 Performance comparison between FuzzySVM [17], CTU level and pro-

posed frame level partitioning pattern sharing scheme [26]. (a)

Video quality of ChinaSpeed (Class F). (b) Time saving of Chi-

naSpeed (Class F). 56

4.25 Flowcharts of previous and proposed GA-based fast CU partitioning. 57

Chapter 1

Introduction

1.1 Research Motivation and Problem Statement

Nowadays, video distribution for various purposes is proliferating over the Internet with

the aids of handy communication networks and smart mobile devices. Besides, video con-

sumers increasingly demand high definition (HD) and ultra-high definition (UHD) videos

to experience better visual quality. As a result, the delivery of HD/UHD videos to the

mobile devices’ users over the Internet is becoming a popular trend. However, the data

quantity for HD/UHD videos is huge due to the higher video resolution and frame rate.

The data size of a 10-second video with 3840 × 2160 resolution at a frame rate of 60 frames

per second reaches nearly 15 GB. Due to this, the delivery of HD/UHD videos demands

a more substantial amount of network bandwidth and data storage compared to the lower

resolution standard definition (SD) videos. To achieve the saving on network resources and

storage requirement, an efficient compression technique is crucially important.

Joint Collaborative Team on video coding (JCT-VC), a collaborative project group

of ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Ex-

pert Group (MPEG), has implemented a highly efficient video coding standard called High

Efficiency Video Coding (HEVC)/H.265[1] as a solution to the issue of increased video res-

olution. HEVC delivers a twofold coding efficiency as compared to its preceding coding

standard, namely, H.264/Advance Video Coding (AVC)[2]. Accurately, HEVC achieves the

bit-rate saving of nearly 50% under the same visual quality compared to the H.264/AVC.

As a result, HEVC becomes a popular video codec. HEVC brings such a significant coding

efficiency thanks to its innovation coding features such as hierarchical quadtree-based parti-

tioning, 33 directional modes for intra-picture prediction and simplified in-loop deblocking

filtering, etc.

On the other hand, these coding features are highly expensive in terms of computa-

tional complexity and hardware requirements. Due to this, HEVC struggles to realize

HD/UHD video delivery in real-time applications, for example, real-time video chat and

remote surveillance, etc. Many solutions on mitigating computational complexity of HEVC

2

have been proposed in the literature since the last few years. Most of these solutions focus

on a hierarchical quadtree-based coding unit (CU) partitioning because of the heaviest load

of recursive CU partitioning in the HEVC encoder. In a hierarchically exhaustive CU par-

titioning of HEVC, the encoder firstly starts trial encoding which includes two processes:

top-down rate distortion (RD) cost calculation and bottom-up RD cost comparison to find

an optimal quadtree splitting pattern based on RD performance gain for each coding tree

unit (CTU). To get an optimal CU partitioning pattern, every possible combination of CU

size, prediction unit (PU) modes and transform unit (TU) sizes are exhaustively examined.

Due to this, trial encoding especially the RD cost calculation is the most time-consuming

module of HEVC, over 80% in the HEVC test model (HM) [3]. To tackle this problem, most

of the studies aim to achieve the fast algorithm by replacing an exhaustive CU partitioning

with a simple operation under the negligible RD loss.

In order to efficiently save the computational time, two main researches are focusing on

complexity reduction in HEVC: intra-coding and inter-coding. Based on the new features

of HEVC intra-coding such as two partitioning modes in quadtree-based partitioning and

35 intra prediction modes, the previous solutions for intra-coding [4]–[7] focus on intra-

mode decision and CTU size prediction. For inter-coding, several time-consuming modules

such as quadtree-based CU partitioning[8]–[20], CU mode estimation[21], motion estimation

(ME)[22] have been improved to achieve a low complexity encoder. In specific, there are

two groups on the fast inter-coding algorithms for quadtree-based CU partitioning. One is a

statistical-based fast algorithm, and the other is a learning-based fast algorithm. The early

statistical-based approaches have statistically decided CU size by observing the nature of

original block partitioning in HEVC such as in [8]–[12]. These approaches determine some

CU-related features and spatiotemporal-based hard threshold to decide CU size without

looping RD optimization (RDO) process exhaustively. Starting a few years ago, most

researches reported in[13]–[20] have focused on learning approach for fast algorithm due to

the learning property from the largely complicated amount of data to the best decision.

Among these learning-based fast inter-coding algorithms, CU size decision based on online

SVM training (denoted by FuzzySVM)[17] is one of the best approaches in which the first

group of picture (GOP) encoded with original HM was using as the training data for three

3

SVM classifiers. For feature selection, misclassification-based feature selection approach

was utilized to get three different feature sets for depth 0, 1, and 2. The misclassification

costs of all feature combinations were energetically calculated and the minimum one for

each depth level (Depth 0 to Depth 2) was selected. The best feature set can make to get

a better RD performance because feature selection is one of the most important part of a

classifier and there is a relationship between features and estimation accuracy. As shown in

Table 1.1, there are three categories for thirteen features: the temporal domain (Index 1),

by-product feature of the current CU (Index 2 - 8) and the spatial domain (Index 9 - 13).

The misclassfication-based optimal feature sets for three level classifiers of [17] are shown in

Table 1.2. But there may have some redundant features according to their relationships. For

example, distortion, bits, and RD cost are the RD performance related features according

to the Eq. (1.1).

JRDO = D + λ×R (1.1)

where, JRDO, D , R and λ are the RDO cost, distortion, bits and Lagrangian multiplier,

respectively. Because of some correlations between three of them, some redundant features

can be eliminated from the feature set to save the time consumed by that features with

a negligible quality degradation. Therefore, for the first part of this thesis, we propose a

redundant feature reduction for FuzzySVM [17] to reduce the amount of time for wasting

some redundant features.

Table 1.1: Three categories for thirteen features.

Category Index Candidates Description

Temporal Domain 1 xSAD Sum Absolute Difference of the current CU and co-located CU

By-product information

2 xRDCost RD performance
3 xSkipF lag The skip flag PU level
4 xDistortion RD performance
5 xBits RD performance
6 xCtxSkipF lag The flag of skipping in neighboring blocks
7 xQP The regulating element between distortion and bits
8 xCBF SKIP The important flag representing coded block

Spatial domain

9 xMergeF lag The flag of merge mode
10 xMV The moving information
11 xPartition Selected PU size from possible modes
12 xDepth The block size
13 xCBF NB The coded block flags from neighboring block

4

Table 1.2: Selected Features of different classifiers.

Index Candidates Classifier C0 Classifier C1 Classifier C2

1 xSAD

√ √

2 xRDCost

√ √ √

3 xSkipF lag

√ √

4 xDistortion

√ √

5 xBits

√ √

6 xCtxSkipF lag

√

7 xQP

√ √

8 xCBF SKIP

√ √

9 xMergeF lag

√

10 xMV

√

11 xPartition

√

12 xDepth

√ √

13 xCBF NB

√ √

However, the training data of SVM classifiers of FuzzySVM is only from the first GOP,

causing the classifier to confuse on the depth decision and make a misclassification. False

positive (FP) is the misclassification when SVM classifier incorrectly decides the splitting

(+) decision for the current CU instead of the non-splitting (–) decision. Due to this, the

RD costs for unnecessary CUs are calculated and FuzzySVM may take a certain amount of

time for unnecessary depth levels and may not effectively save the computational burden of

the quadtree-based CU partitioning. Another critical situation is the risk area. If a sample

is located in the risk area, the original HM is triggered that can consume the computational

complexity of HEVC and may not significantly reduce the computational burden for risk

area case. Another main factor is the target bit rate of rate control (RC) to assign the

required bits for input video sequences. If the target bit rate is higher, the chance of the

splitting decision can be higher. As a result, FuzzySVM may need to go to the high depth

level and the number of CUs which need to be calculated the RD costs may be higher.

Therefore, FuzzySVM may take a big computational time for calculating the RD costs of

CUs at the high target bit rate. Additionally, all fast algorithms mentioned above do not

consider finding a partitioning pattern of a CTU as an optimization problem. Finding an

optimal CU partition pattern from all possible outcomes can be modeled as an optimization

problem and can be solved by a simply useful optimizer instead of machine learning based

approach.

Therefore, the purpose of the second part of this thesis is to save the computational

5

burden for quadtree-based CU partitioning by utilizing a genetic algorithm (GA). GA is a

metaheuristic based on mechanisms of natural systems such as natural genetics and selec-

tion [23]. GA is a member of evolutionary algorithm (EA) and has been started by John

Holland at the University of Michigan in the 1960s based on the biologically evolutionary

theory called Darwinism. The aim of GA is for solving complex problems such as large-scale

combinatorial and highly constrained optimization problems. Therefore, a simple fast CU

encoding based on GA should be proposed and implemented for saving the computational

time of quadtree-based CU partitioning of HEVC.

1.2 Contribution

There are two parts in our research work: machine learning -based and optimization

method -based fast encoding. For the first part, we propose a feature reduction method by

eliminating some features which correlate with other selected features in order to save the

computational time of the exhausted RDO search.

For the second part, we present a GA-based fast CU encoding for inter-coding of HEVC

intending to save the computational complexity of HEVC. We study the CU partitioning

procedure and formulate it as an optimization problem. Then, good CU partitioning pat-

terns of each CTU are searched by utilizing a simple optimizer, called GA. Nowadays, due

to the higher frame rate of video sequences such as 50-60 frames per second (fps) and up to

120 fps for HD and UHD videos, respectively, the temporal correlation between consecutive

frames is extremely high. The temporal correlation refers to the condition that the video

data between consecutive frames of a video sequence are temporally correlated under the

same background scene with the same moving objects. In details, for 60 fps video sequence,

the time intervals between two, four, six, and eight consecutive frames are 0.03, 0.07, 0.1,

and 0.13 second, respectively. Due to these small intervals, it is possible to share partition-

ing patterns of one frame to its consecutive frames without severely affecting the quality.

Therefore, frame level partitioning pattern sharing is one of our contributions to further

lower the computational burden of HEVC under a comparable video quality. In order to be

suitable for both low to high frame rate (24 to 120 fps) and to follow a group of pictures

(GOP) structure, a small GOP size 4 is reasonably utilized as a sharing range N , i.e., N is

6

4. As shown in Figure 1.1, the temporal correlation is relatively high between four consec-

utive frames since the motion information between them is low. Key frames usually use a

low quantization parameter (QP) value to get a higher quality compared to other frames.

Therefore, the CU partitioning patterns for the only key frame of every GOPs are searched

by GA. Then, we share the CU partitioning pattern of each CTU at the key frame fN×n to

the collocated CTU at (N − 1) consecutive frames fN×n+j , where n ∈ {1, 2, 3, . . .} is the

GOP number, and j ∈ {1, 2, 3} is the displacement between the key frame and consecutive

frames.

Figure 1.1: Four consecutive frames of sequence ”PartyScene” (N = 4).

Our main contribution of GA-based fast encoding approach is two-fold.

1. We design a reasonably effective fitness function for GA which defines the correlation

between CTU partitioning and RD performance.

2. Due to the possibility of a highly temporal correlation within consecutive frames, we

share the CU partitioning patterns of a key frame with other frames to further save

the computational time of the RD cost calculation.

This thesis is divided into five chapters such as introduction, background and literature

review, proposed method, experimental results, and conclusion and future works. Chapter

2 introduces HEVC, the quadtree-based CU partitioning, and GA. Chapter 3 and 4 describe

the detailed proposed method and evaluation of the proposed method, respectively. Finally,

Chapter 5 concludes our thesis.

Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Overview of HEVC

Due to the development of computing on multimedia data and the extreme distribution

of video over the Internet with several purposes, the storage space and network bandwidth

for uncompressed raw video are high. To reduce and remove redundant video informa-

tion with a negligible distortion on the visual quality, an effective video compression tech-

nique can be used so that compressed digital video can be effectively stored on computer

storage space and efficiently distributed over a network. The International Telecommu-

nications Union (ITU) and the International Standardization Organization/International

Electrotechnical Commission (ISO/IEC) are two dominant standardization organizations

to emerge video coding standards for real-time video communication and distribution or

broadcast of video content. H.261 and H. 263 were standardized by the ITU-T, MPEG-1

and MPEG-4 Visual were produced by ISO/IEC and the H.262/MPEG-2 Video was jointly

produced by two organizations.

The Joint Video Team (JVT), which consists of both the ITU-T Video Coding Experts

Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG), was established

to standardize the next video coding generation called H.264/MPEG-4 Advanced Video

Coding (AVC) standards. Figure 2.1 depicts the block diagram of a hybrid video encoder

for H.264/AVC standard. Due to the new features of H.264/MPEG-4 AVC, half of the bit

rate of MPEG-2 can be reduced under the same perceptual quality.

For high-definition (HD) videos, prior standards and H.264/MPEG-4 AVC can be ap-

plied to store and transmit that videos. Because of the increasing demand of the HD

video and the rising attention in the UHD, ITU-T and ISO/IEC have created an advanced

joint group called the Joint Collaborative Team on Video Coding (JCT-VC) to invent a

new video coding standard called High Efficiency Video Coding (HEVC). HEVC can get

8

the compressed video with the half-size bit-rate reduction and the same visual quality of

H.264/MPEG-4 AVC. Figure 2.2 shows a block diagram of a block-based hybrid video en-

coder with some characteristic ingredients of HEVC regarding its novel block partitioning

concept.

Figure 2.1: Block diagram of an H.264 encoder.

ITU-T and ISO/IEC are the main standardization bodies which have standardized all

HEVC’s antecedent standards in many years. They have utilized a 16×16 macroblock as

a basic processing unit in HEVC’s antecedent. Each frame is split into macroblocks. In

the 4:2:0 chrominance subsampling formats, there are one 16×16 block of luma components

to represent brightness and two 8×8 blocks of chroma components to refer color in each

macroblock. Therefore, the macroblock is the largest block size to indicate the predicted

information of intra-frame or inter-frame prediction in previous video coding standards.

9

Figure 2.2: Block diagram of an HEVC encoder with built-in decoder (gray
shaded).

However, typical HD and UHD videos have many larger frame regions than the mac-

roblock, and those regions can represent the same moving information. If the macroblock is

used as a basic processing unit for typical HD and UHD videos, a large number of bits are

required to signal the prediction information. Correspondingly, the transform block size is

bigger than the macroblock size. Therefore, HEVC supports a larger block size as a basic

processing unit called Coding Tree Block (CTB) for intra-frame or inter-frame prediction

and transform coding. For a non-monochrome video format, one luma CTB plus its two

associated chroma CTBs and the corresponding syntax are combined to form the primary

processing unit, called CTU. Figure 2.3 illustrates the frame partitioning from 1280 × 720

luma samples into 16 × 16 macroblock sizes and 64 × 64 CTU sizes. It may be concluded

that 64 × 64 size of CTU covers a large region of a frame that can be characterized by

the same motion parameters so that the largest CTU size can support a more appropriate

representation. Therefore, in HEVC, the primary processing units are partitioned as large

as 64 × 64 luma samples. Although a large block size is effective for high resolution video,

it is not a good choice for low resolution video.

10

(a)

(b)

Figure 2.3: Demonstration of the partitioning of a frame with 1280 × 720 luma
samples into (a) macroblocks. (b) CTU.

To be compatible with both high and low resolution videos, HEVC can flexibly partition

the video frames into several square CTUs of 2L×2L samples, where L ∈ {4, 5, 6}. The

encoder flexibly chooses a suitable value of L for intended application to have the best

trade-off between coding performance and cost such as memory storage, encoding time,

and delay. However, using a larger block for selecting whether intra-mode or inter-mode at

the prediction stage cannot guarantee to get a good RD performance for prediction stage.

To achieve a better coding efficiency, HEVC introduced a new basic processing unit, called

coding unit (CU) and a flexible quadtree partitioning from CTU to CU. Therefore, CU

size can be 64×64, 32×32, 16×16 and 8×8 at depth 0, depth 1, depth 2 and depth 3,

respectively.

11

For each CU, a prediction mode is indicated in the bitstream. The prediction mode

represents whether the intra-frame or inter-frame prediction is selected to encode CU. If

the intra-frame prediction is selected, one of the possible 35 modes for intra-frame prediction

has to be chosen for the CU and signaled in the bitstream. If a CU is coded using inter-

picture prediction, the CUs can be further split into prediction blocks (PUs). A PU is a

block of samples which includes the same motion parameters for inter-frame prediction.

To partition from a CU into PUs, HEVC provides eight different modes. As described in

Figure 2.4, a CU can either be coded as a PU or it can be partitioned into 2 or 4 rectangular

PUs. 2N × 2N mode represents to partition the whole CU into a single PU. N ×N mode

represents to split a CU into four PUs and the resulting PUs are square in shape and same

in size. For every 2M × 2M CU and PU, each unit consists of one 2M × 2M luma coding

block (CB) and prediction block (PB) and two corresponding 2M−1 × 2M−1 chroma CBs

and PBs, respectively, if the chroma sampling format is 4:2:0.

Figure 2.4: Available partitioning modes for partitioning a CU into 1, 2, or 4
PUs.

2.1.2 The Hierarchical Quadtree-based CU Partitioning

As we mentioned above, the CTU partitioning structure is one of the most important

coding features to the HEVC standard. The default size of a CTU is 64 × 64 samples, and

each CTU can be a solo CU or can be partition into four sub-CUs and then each sub-CU can

be additionally divided into four sub-CUs until the maximum CU depth reaches. So, the CU

size (depth level) can be in the range of 64 × 64 (Depth 0) to 8 × 8 (Depth 3). Additionally,

12

each CU can be further divided into smaller PU with various eleven partition modes, i.e., a

SKIP/MERGE, eight Inter, and two Intra partition modes as shown in Figure 2.5 and the

PU with the minimum RD cost will be selected. After getting the best partition mode for

each CU, the optimal CU sizes are decided based on recursive RD cost comparisons.

Figure 2.5: Eleven PU partition modes.

To define CU size or depth, HEVC starts a trial encoding which includes two main func-

tions called the RD cost calculating/checking and comparison in a top-down and bottom-up

manner, respectively, as mentioned in Section 1.1. Figure 2.6 illustrates the RD cost check-

ing and comparison process between a parent/current CU and its children/sub-CUs.

Figure 2.6: Illustration of RD cost calculating and comparing between a par-
ent/current CU and its children/sub-CUs.

13

22 43 64

50 51 52 5345 46 47 48 60 61 62 63

44 49 54 59

71 72 73 7467 68 69 76 79 81 82 83 84

65 70 75 80

29 30 31 3224 25 26 27 34 37 39 40 41 42

23 28 33 38

8 9 10 113 4 5 6 13 18 19 20 21

2 7 12 17

1

0

14 15 16 35 36 55 56 57 58 77 7866

Figure 2.7: The order of RD cost calculation for 85 CUs of a 64 x 64 CTU.

In the top-down RD cost calculation of a 64×64 CTU, the RD costs for all possible 85

CUs are calculated in a preorder traversal of the quadtree, as shown in Figure 2.7, if the

maximum CU depth is 3. In details, there are 1, 4, 16 and 64 CUs at depth 0, depth 1,

depth 2 and depth 3, respectively, and the total number of CU is
∑3

i=0 4i = 85 CUs. After

getting the RD costs for four children CUs of every one of parent CUs, HEVC turns to

the RD cost comparison to decide whether a parent CU is split or not by comparing the

RD cost of splitting and non-splitting conditions of parent CU. In Figure 2.6, the RD cost

of a current/parent CU is denoted as Rpa, and the RD costs of its children/sub-CUs are

denoted as Rsub
m , where m ∈ {1, 2, 3, 4} is the index of each child CU. Afterward, the

RD cost of a parent CU (Rpa) and the total RD cost of four sub-CUs (
∑3

m=0R
sub
c) are

compared to decide whether a parent CU should be partitioned. Then, HEVC switches

to the RD cost calculation or performs comparison again depending on the position of

parent CU. Therefore, there are 85 calculations and 21 comparisons in the top-down RD

cost calculation and bottom-up RD cost comparison of a 64×64 CTU, respectively. After

finally comparing a root CU at depth 0 with its four children CUs at depth 1, the best

CU quadtree structure of a CTU as shown in Figure 2.8 with the lowest RD cost is chosen

among 83,522 possible quadtree structures.

Figure 2.9 shows the CU partitioning pattern of frame representation of picture order

count (POC) 40 of sequence ”BlowingBubbles” searched by an exhaustive RDO search

of HM version 16.5 (HM16.5). The trial encoding of HEVC finds the best CU partition

structure of each CTU after an exhaustive RDO search. Therefore, choosing an optimal

14

CU partitioning structure can be modeled as an optimization problem and can be solved

by a lightly suitable optimization tool to search through a space of possible CU partition

solutions. For the small space optimization process, traditional comprehensive techniques

are proper to find the solution [24]. However, the techniques based on artificial intelligence

(AI) are efficient for a vast search space and GA is one of AI techniques to search a good

solution efficiently .

Depth 0 To 1

Depth 1 To 2

Depth 2 To 3

64 x 64 CU

32 x 32 CU

16 x 16 CU

8 x 8 CU

Figure 2.8: Quadtree partitioning from CTU to CU.

(a) (b)

Figure 2.9: Quadtree partitioning of a CTU into CU based on recursive RD
cost comparsion. (a) Subdivision into 64×64 CTUs. (b) Coding quatdree with
CUs.

15

2.1.3 Genetic Algorithm

For implementing GA for a particular problem, there are four components need to be

considered as follows:

1. A genetic data structure including genes, called chromosome, is an efficient candidate

solution to our problem.

2. A fitness function which measures how the chromosome fits to our problem.

3. Three genetic operators such as selection, crossover, and mutation to produce new

offspring.

4. Some basic parameter values such as population size, crossover, and mutation prob-

abilities.

By using these four components, GA has three major processes for creating a random initial

population of chromosomes, calculating fitness value for each chromosome in the current

population, and producing a newly better population until the optimization criteria meet, as

shown in Figure 2.10. The termination point of a GA is an important factor where it stops

GA with the best chromosome. Normally, there are three possible termination conditions

described as follow:

1. The fitness value of the best chromosome has achieved a predefined value.

2. The best chromosome of the current population and previous population are still the

same for G generations.

3. The total number of generations has reached a predefined count.

The termination criteria highly depend on the problem domain and it is defined by trying

all possible options to get the best termination criteria and point.

16

Start

Choose a pair of parent

chromosomes from current

population based on fitness function

New population is

completed?

End

Crossover and Mutation

No

Optimization criteria

meet?

Yes

Yes

No

Create a randomly initial

population of n

chromosomes

Find fitness function f(x) for

each chromosome x in the

population

New Population

Figure 2.10: Flowchart of GA.

2.2 Literature Review

To efficiently save the computational cost of HEVC, researchers explored several effi-

cient methods on the fast algorithms for HEVC. In general, the existing methods can be

categorized into two parts: intra-coding and inter-coding, as we mentioned in Chapter 1.

17

2.2.1 Fast Algorithms for Intra-coding of HEVC

Cho et al. [4] applied a Bayes decision rule to decide whether CU is early split or

not and whether CU is early pruned or not based on rough RD cost and full RD cost

respectively. Min et al. [5] proposed a CU depth prediction based on global and local edge

complexities of parent CU and four children CUs. To catch up on the current trend, Li et

al. [6] utilized deep convolutional neural network (CNN) approach for the CU partitioning

procedure instead of exhaustive RDO search for HEVC intra-coding. In order to reduce

the further computational complexity of intra-coding, Zhang et al. [7] focused on quickly

deciding intra-mode and CU depth by utilizing gradient-based block direction detection

and Support Vector Machine (SVM). They presented fast intra-mode decision and CU size

decision for decreasing the computational time of intra-coding of HEVC under a comparable

RD performance. In order to get a quick decision for intra-mode, they proposed a method

based on the gradient for reducing the candidate modes for rough mode decision (RMD) and

RD optimization (RDO). In order to get a fast decision for CU size, firstly, the homogeneous

CUs was early stopped to partition. Then, two linear SVM were utilized to make the

decisions of early CU splitting and termination for the remaining CUs. These two SVM

classifiers utilized the difference of depth and ratio of Hadamard transform-based costs

(HAD costs) as their features.

2.2.2 Fast Algorithms for Inter-coding of HEVC

In order to save the computational time for inter-coding of HEVC, the researches re-

ported in [8]–[12] were statistically studied the relationship between some important features

and CU partitioning. Shen et al. [8] proposed a fast CU depth decision based on statistical

analysis and spatiotemporal correlation. After these statistical analyses, they determined

an adaptive CU depth range by skipping some uncommon depth levels of neighboring CUs

and co-located CUs of the previous frame. Then, they skipped ME at high CU depth based

on three early termination method based on motion similarity, SKIP mode, and RD thresh-

old. In [9], an adaptive threshold based on the RD distribution of the previous frame was

utilized whether the parent CU of the current frame is split or not. In [10], the quadtree

traversal can be switched from an originally top-down order to an inversely bottom-up or-

18

der. As a result, the number of mode testing of parent CU at lower depth can be reduced

by utilizing the mode information of its four children CUs at higher depth. In [11], Shen

et al. utilized Bayesian decision rule with effectively relevant feature candidates to avoid

unnecessary CU partitioning. Though these threshold-based CU size decision approaches

can significantly save high computational time, they may not be applicable for all sequences

since their statistically hard threshold and spatiotemporal distribution.

In [13]–[20], learning-based fast algorithms have utilized their efficient learning capability

for complexity reduction on the quadtree-based CU partitioning of HEVC. To save the

computational load of CU partitioning, Shen et al.[13] early terminated CU partitioning

process with the aids of SVM and feature selection based on a wrapper approach. Also,

they introduced different weights to the training of SVM in order to decrease the effect

of outliers and RD loss when a misclassification happens. To early terminate unnecessary

CUs, PUs, and TUs partition, Correa et al.[14] built decision trees by using a free open-

source data mining (DM) tool. To create a robustly superior learning model for the joint

SVM classifier, Zhang et al.[15] originated an optimally weighted parameter determination

method and used offline training mode with CU partition-related features. They proposed

the quadtree partitioning pattern of CTU as a three-level classification process, and two

three-decision classifiers were designed to control the risk of false prediction. Mainly, the

feature extraction process should be low complexity to avoid the computation overheads

and the CU size are related with the video content’ texture, motion information, context

of spatiotemporal neighboring information, etc. According to these two principles, they

considered the nine features for deciding CU size and nine features can be categorized into

four groups: information of the SKIP/MERGE mode of current CU, motion information,

context information and a quantization parameter. Heindel et al. [16] used support vector

machine (SVM) with offline training mode to make a decision whether CU is partitioned or

not. They built several SVM models for all selected video sequences for their experiment by

utilizing the training data from all the other video sequences. Due to the usage of training

data of other video sequences, the feature values from training data and testing data are

quite different. This is one of the drawbacks of offline training mode of learning approach

that may lead to decrease the prediction accuracy significantly. Additionally, due to the

19

hard threshold for classifying uncertain decision and the running of exhaustively original

RD optimization for uncertain condition, the computational time save may not achieve

significantly.

To improve the prediction accuracy, CU size decision based on online SVM training

has implemented in [17] to firstly consider the adaptive regulation parameters due to the

difference between False Positive (FP) and False Negative (FN) rates, different weights for

training samples to deduct the negative effect of outliers, and the risk area. In order to

terminate the CU partitioning process early, Kim et al.[18] applied Bayesian decision rule

by jointing online and offline learning to train the selected frames for each scene and get

loss matrix after training several frame sequences, respectively. In [19], Zhu et al. reduced

the computational burden of CU and PU partitions by utilizing binary SVM classifiers and

multi-class SVM classifiers with both online and off-line learning modes. However, SVM

based CU size decision approach [17] considered feature selection based on misclassification

cost and did not consider the correlation between features.

Additionally, all mentioned learning-based approaches have considered the CU parti-

tioning problem of HEVC as a classification problem or decision problem. As a result, an

original HM will be triggered instead of the original RDO process if the prediction accuracy

is not enough to use the prediction output. Therefore, these approaches may not signif-

icantly reduce the computational burden for an inaccurate situation of prediction results.

Finding an optimal CU partition pattern from all possible outcomes can be modeled as an

optimization problem and can be solved by a simply effective optimizer. All fast algorithms

mentioned above have not formulated a CU partition as an optimization problem. There-

fore, a simple fast CU encoding based on GA is supposed to be proposed and implemented

to reduce the computational burden of quadtree-based CU partitioning.

Chapter 3

Fast Coding Algorithm for High Efficiency Video

Coding

As we mentioned above, there are two parts in our research work: machine learning

-based [25] and optimization -based fast encoding [26].

3.1 Reducing Redundant Feature from Fuzzy SVM-Based

Coding Unit Decision in HEVC

For ML-based prediction approach, choosing fruitful and proper features is the major

contribution of a classifier and using those features efficiently can reduce the training time

and the required storage. In order to achieve that goal, there are three issues as explained

in the following paragraphs.

The first issue is how to avoid the computational overhead of the feature extraction. To

avoid this, [17] utilized some ready-made features, except one temporal domain features,

after checking with the most common modes. Therefore, the feature extraction stage does

not spend too much processing time. The second issue is how to select the representative

features that can distinguish different classes. Generally, the depth of CU can vary due to

the image texture, motion information, spatio-temporal context information, etc. Based on

this issue, [13], [15], [17], and [19] considered several effective features from the prediction

error of the temporal domain, spatial domain and by-product information of the current

block. The third issue is how many numbers of features will be used as small as possible to

keep a low computational time at the prediction stage. To concern the third issue, in [13],

eleven possible candidates were firstly proposed and then evaluated to get an effective

feature subset by using the wrapper approach based on F-score. And finally, five features

were selected to make a trade-off between accuracy and additional complexity introduced

by feature extraction and prediction. In [17], they firstly considered thirteen features as

potential candidates. They exhaustively checked all possible number of feature combinations

21

C and the value of C is 213− 1 = 8191 feature combinations if the number of features is 13.

Table 3.1 shows example feature combinations (feature sets) with their index and binary

patterns which represent the position of the features and whether the feature is included in

feature combination or not. Finally, an optimal feature set with minimum misclassification

cost for each depth level was selected based on empirical results shown in Figure 3.1. It can

be found that the indexes of optimal feature sets with the lowest misclassification cost are

5065, 598 and 8187 for classifier C1, C2, and C3, respectively.

Table 3.1: Example Feature Combinations of FuzzySVM [17].

Index Feature Binary Representation

1 xSAD 1 0000000 00000
2 xRDCost 0 1000000 00000
3 xSkipF lag 0 0100000 00000
. . .
. . .
. . .

14 xSAD, xRDCost 1 1000000 00000
. . .
. . .
. . .

598 xRDCost, xSkipF lag, xDistortion, xBits 0 1111000 00000
. . .
. . .
. . .

5065 xSAD, xRDCost, xDistortion, xQP , xCBF SKIP , xDepth, xCBF NB 1 1010011 00011
. . .
. . .
. . .

8187 xSAD, ..., xBits, xCtxSkipF lag, ..., xCBF NB 1 1101111 11111
. . .
. . .
. . .

8191 xSAD, ..., xCBF NB 1 1111111 11111

22

(a)

(b)

(c)

Figure 3.1: Finding optimal three feature sets based on misclassification. (a)
C0. (b) C1. (c) C2.

Therefore, each optimal features set shown in Table 1.2, getting from empirical results,

may have some correlated features as we mentioned before. Because of this possible issue

23

for some correlated features, firstly, some correlated features of the optimal feature sets

are determined in our work. In detail, according to the Eq. (1.1), there are two correlated

features (xRDCost and xDistortion), three correlated features (xRDCost, xDistortion and xBits)

, two correlated features (xRDCost and xBits) for classifier C0, C1, and C2, respectively.

Therefore, there may be possible to eliminate distortion or/and bit features when the RD

cost feature is already included in the optimal feature set to save the time consumed by

one or two redundant features. In our work [25], distortion and bits features are eliminated

from three optimal feature sets. Table 3.2 shows the remaining selected features of different

classifiers after eliminating two features.

Table 3.2: Selected Features for different classifiers [25] after eliminating redun-
dant features of [17].

Index Candidates Classifier C0 Classifier C1 Classifier C2

1 xSAD

√ √

2 xRDCost

√ √ √

3 xSkipF lag

√ √

4 xCtxSkipF lag

√

5 xQP

√ √

6 xCBF SKIP

√ √

7 xMergeF lag

√

8 xMV

√

9 xPartition

√

10 xDepth

√ √

11 xCBF NB

√ √

3.2 GA-Based Fast CU Partitioning

As we mentioned in Section 2.2.2, all learning-based approaches have proposed the

CU partitioning problem of HEVC as a classification or decision question. Therfore, after

studying the procedure of CTU partition, we firstly consider quadtree-based CU partitioning

as an optimization problem and utilize GA to find a good CU partition pattern for each

CTU [26].

3.2.1 Proposed Data Structure

For the first component of GA, the CU partitioning pattern of a 64×64 CTU is consid-

ered as a chromosome of quadtree-based CU partitioning problem as shown in Figure 3.2.

24

Three hierarchical levels of chromosome structure are proposed to represent three CU depth

levels of CU partitioning of HEVC. Assume that the maximum CU depth is 3, our proposed

21-bit data structure C for GA is represented as follows:

C = a b0b1b2b3 c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15

a =

0, if CU is not split

1, otherwise

b =

null, if a = 0

0, if CU is not split

1, otherwise

(3.1)

c =

null, if a = 0 or corresponding parent b = 0

0, if CU is not split

1, otherwise

, where a, b and c are genes to represent the splitting decisions for depth 0, depth 1 and

depth 2, respectively. The possible values for a is 0 (non-splitting) and 1 (splitting). The

a

c0

b1 b2 b3b0

c1 c2 c3 c5c4 c6 c7 c9c8 c10 c11 c13c12 c14 c15

Figure 3.2: Hierarchical chromosome of a 64×64 CTU.

possible values for b are null if a is 0, 0 (non-splitting) and 1 (splitting). The possible

values for c are null if its corresponding parent b is 0, 0 (non-splitting) and 1 (splitting).

It should be noted that the proposed data structure is composed of a group of dependent

25

0 ----

1 01011 0100 1 0110 1 0111

1 0000 1 0001 1 0010 1 0011

1 1000 1 1001 1 1010 1 1011

1 1100 1 1101 1 1110 1 1111

Figure 3.3: Possible CU partition patterns of a 64×64 CU (Maximum CU Depth
= 2).

genes. Therefore, the total number of possible CU partitioning patterns P is calculated as

in (3.2),

P = (24 + 1)(d−1)2 + (dmod 2) (3.2)

, where d ∈ {1, 2, 3} is the maximum CU depth and mod is the modulo operation for

finding the remainder. If the maximum CU depth is 2 and 3, the total number of possible

partitioning patterns is only 17 as shown in Figure 3.3, and 83,522 even there are five genes

and 21 genes to represent the CU partitioning pattern, respectively.

26

3.2.2 Proposed Fitness Function

Considering the CU size decision of original HEVC mentioned in Section 2.1.2, RD

cost-oriented fitness function is reasonably proposed to select top parents of current pop-

ulation to create a new better population. It should be noted that the smaller the RD

cost of a chromosome, the higher the chance to become a good chromosome. To save the

computational time for the proposed fitness function, we analyze most common modes of

the original HEVC and take advantage of those modes to calculate the RD cost of CU. As

shown in Figure 3.4, we can observe that the SKIP/MERGE mode is the most selected

mode for PUs with the minimum RD cost in HEVC. Therefore, the RD costs of existing

CUs encoded with the most common mode SKIP/MERGE are calculated before calculating

the fitness function of GA.

The data structure as shown in Figure 3.2 and the RD costs for existing CUs as shown in

Figure 3.5 are utilized in order to get the fitness function of each chromosome in population

using (3.3),

F = (1− a)RDCosta + a

[∑3
i=0(1− bi)RDCostbi + bi

(∑4i+3
j=4i(1− ci)RDCostcj + cj

∑4j+3
k=4j RDCostdk

)]
(3.3)

, where F is the RD cost-oriented fitness function, a, bi, and cj are the values of one

gene, four genes, and sixteen genes of each chromosome to represent the splitting decision

at depth 0, 1, 2, and 3, respectively. RDCosta, RDCostbi , RDCostcj , and RDCostdk

are the RD cost values of one CU, 4 CUs, 16 CUs, and 64 CUs at depth 0, 1, 2, and 3,

respectively. The chromosome value of the splitting pattern shown in Figure 3.6 is 0 1010

0000222210002222 which represents a b0b1b2b3 c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15. The

gene 0, 1, and 2 means non-splitting, splitting, and null, respectively. The fitness value of the

splitting pattern shown in Figure 3.6 are
∑3

j=0RDCostck +RDCostb1 +
∑19

k=16RDCostdk +

RDCostc10 +RDCostc11 +RDCostc12 +RDCostb3 .

27

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Usage of MERGE/SKIP mode (in green color) for PUs with the
lowest RD cost in HEVC.(a) Traffic (Class A). (b) Kimono1 (Class B). (c)
BQMall (Class C). (d) BlowingBubbles (Class D). (e) Johnny (Class E). (f)
ChinaSpeed (Class F).

.

28

𝑅𝐷𝐶𝑜𝑠𝑡𝑐15

𝑅𝐷𝐶𝑜𝑠𝑡𝑑0

𝑅𝐷𝐶𝑜𝑠𝑡𝑏0 𝑅𝐷𝐶𝑜𝑠𝑡𝑏1 𝑅𝐷𝐶𝑜𝑠𝑡𝑏2 𝑅𝐷𝐶𝑜𝑠𝑡𝑏3

𝑅𝐷𝐶𝑜𝑠𝑡𝑐0

.

𝑅𝐷𝐶𝑜𝑠𝑡𝑑63

𝑅𝐷𝐶𝑜𝑠𝑡𝑎

Figure 3.5: Required 85 RD costs of a 64 x 64 CTU.

1 2

3 4

13

6 7

8 9
10

11 12

5

5 13

21 3 4 10 11 12

76 8 9

Figure 3.6: Example splitting pattern of a CTU.

3.2.3 Selection, Crossover and Mutation

After calculating the fitness function for each chromosome of the current population,

individual chromosomes are selected based on their fitness function to be a good parent

for the next population until the optimization criteria meet. The chromosomes with lower

fitness values have a higher chance to become the parents. The total number of parents is

about 10% of the total number of chromosomes. After selecting top parents, each gene of a

new chromosome is created by filling a collocated gene from a randomly selected parent. To

do more adaption for each chromosome, the mutation operator is applied to alter the value

of genes. It should be noted that each generated chromosome is needed to check whether

it is a valid chromosome or not.

29

3.2.4 Optimization Criteria

According to our problem domain, we use the second termination condition mentioned

above that GA will terminate if the two best chromosomes of the current population and

previous population are repetitive for X times. To save the computational time for finding

a good chromosome under an acceptable accuracy, the GA parameter, X, is assigned as 2

based on empirical results.

3.2.5 Genetic Algorithm with the Proposed Chromosome and Fitness

Function

The detailed process of GA with the effective chromosome structure and fitness function

is described as two steps in Algorithm 1. To have a trade-off between running time and

accuracy for GA, we empirically assign 50, 5 and 2 for the value of N,M and X, respectively.

By utilizing the splitting pattern from GA, the CU depth is estimated without doing an

exhaustively recursive RDO search.

30

Algorithm 1 GA with the proposed chromosome and fitness function

Input: rdcosta, rdcostbi , i ∈ {0, 1, 2, 3},
rdcostcj , j ∈ {0, 1, ..., 15},
rdcostdk , k ∈ {0, 1, ..., 63}

Output: SplittingPattern
a b0b1b2b3 c0c1c2c3c4c5c6c7c8c9c10c11c12c13c14c15

Step 1: Create N Initially Random Chromosomes, C

1: n← 0
2: for each n < N do
3: initial : Cn ← random Chromosome()
4: if Cn is duplicate then
5: goto initial
6: end if

7: Fn ← (1− a)rdcosta + a

[∑3
i=0(1− bi)rdcostbi + bi

(∑4i+3
j=4i(1− ci)rdcostcj +

cj
∑4j+3

k=4j rdcostdk

)]
8: end for

Step 2: Select Best M Parents P from N Chromosomes and Reproduce
New Chromosomes

9: sameFitnessCount← 0, generation← 0
10: while sameFitnessCount ! = X do
11: generation + +
12: if generation > 1 then
13: previousMinFitness← min Fitness(C)
14: end if
15: P ← select BestParents(C,M)
16: if (generation > 1 && previousMinFitness == min Fitness(P)) then
17: sameFitnessCount + +
18: end if
19: n←M
20: for each n < N do
21: Cn ← reproduce(P)
22: end for
23: end while

3.2.6 Overall Algorithm

Three main parts of the proposed method to find the CU partitioning patterns for every

CTUs of a key frame are RD cost calculation, CU partitioning pattern finding, and CU

size prediction. The overall procedure of the proposed algorithm [26] can be summarized

31

as follows:

1. For the first GOP, the CU partition patterns of the first inter frame (in yellow color)

and fourth frame (key frame in blue color) are searched by GA and shared with

two consecutive frames of current GOP and three consecutive frames of next GOP,

respectively.

2. For the next GOP, each frame are checked whether it is a key frame or not. If it is

the key frame, the CU partitioning patterns of that key frame are searched by GA

and shared with three consecutive frames as shown in Figure 3.7.

3. For each CTU of the key frame, there are three main parts mentioned above. Firstly,

the RD costs for 85 CUs are efficiently calculated, assuming that the size of CTU is

64×64 and the maximum CU depth is 3. Secondly, the CU partitioning pattern is

quickly searched by using the efficient RD costs of 85 CUs and a simple GA. Finally,

the CU size is predicted by using the CU partitioning pattern.

4. For each CTU of the non-key frame, the CU sizes are predicted by using the CU

partitioning pattern of collocated CTU of key frame.

The quadtree CU partitioning flowchart of the original HM, FuzzySVM[17], and the pro-

posed method are shown in Figure 3.8, Figure 3.9, and Figure 3.10, respectively.

Intra Frame GA

PP PP

GA

GOP

GA GA

PP

PP

GOP GOP

Figure 3.7: Illustration for sharing partitioning pattern.

32

compressCTU with

cuDepth = 0

Calculate RD cost of SKIP/

MERGE and Part_2Nx2N modes

Calculate Part_2NxN,

Part_Nx2N, AMP and Intra

modes

Select the best mode with

minimum RD cost

cuDepth < MaxDepth?

Yes

CU RDO on four sub-CUs

with cuDepth++

No

End of compressCTU

Compare RD cost and Make

decision of CU partition

CU RDO with cuDepth = d

cuDepth =

MaxDepth? Yes

Calculate RD cost

Part_NxNNo

Figure 3.8: Flowchart for quadtree-based CU partitioning of HM16.5.

33

compressCTU with

cuDepth = 0

Calculate RD cost of SKIP/MERGE

and Part_2Nx2N modes

Extract Features

Assign SVMSplit by using

Classifiers getting from first GOP

SVMSplit &&

cuDepth < MaxDepth?

cuDepth = MaxDepth?

Calculate RD cost

Part_NxN

Calculate Part_2NxN, Part_Nx2N,

AMP and Intra modes

CU RDO on four sub-

CUs with cuDepth++

Yes

No

Yes

No

End compressCTU

Select the best mode with minimum

RD cost

CU RDO with cuDepth = d

Figure 3.9: Flowchart for quadtree-based CU partitioning of FuzzySVM[17].

34

compressCTU with

cuDepth = 0

Calculate RD costs of SKIP/

MERGE

cuDepth < MaxDepth?

RD Cost Calculation on four sub-CUs

with cuDepth++

Yes

RD Cost Calculation

with cuDepth = d

 No

Apply GA to get CU partition pattern by

using RD costs of 85 CUs

GASplit &&

cuDepth < MaxDepth?

CU size prediction

with cuDepth = d

No

Assign GASplit by using CU

partition pattern of GA

End compressCTU

Calculate Part_2NxN, Part_Nx2N,

AMP and Intra modes

Yes

CU size prediction on

four sub-Cus with

cuDepth++

cuDepth = MaxDepth?

Calculate RD

cost Part_NxN

Yes

No

Select the best mode with

minimum RD cost

Calculate RD costs of SKIP/

MERGE and Part_2Nx2N modes

Figure 3.10: Flowchart for quadtree-based CU partitioning of the proposed
algorithm based on GA [26].

Chapter 4

Evaluation

4.1 Test Video Sequences

As shown in Table 4.1, five sequences from three different resolutions (Class B to Class

E) are encoded with 4 QPs and Low Delay P (LDP) configuration as mentioned in [17] for

the first part[25]. For second part [26], we use thirteen test video sequences of six classes

(Class A to Class F). All video sequences are from the source of common test conditions

(CTC) of JCT-VC. In order to assess the coding efficiency of HD/UHD video, class A is the

set of higher resolution video sequences than full HD and these video sequences are cropped

to get frame resolution of 2560×1600 in order to reduce the encoding time. Class B aims

to evaluate the coding efficiency of 1080p high definition television (HDTV) while class E

uses for low latency video applications such as video conferencing. In order to measure the

coding efficiency for mobile applications, class C and D video sequences can be used. In

addition, captured video sequences, there is one different class called class F which contains

video scenes which are not captured by the camera and captured by the device itself to

get the screen content. These all test video sequences have different scene behaviors such

as the scene with moving objects in the foreground and static background and scene with

moving objects in the foreground and dynamic background in a crowded area. The video

contents of class A, B, C, D, E, F, and the actual size for all classes are shown in Figure 4.1,

Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7, respectively.

Figure 4.1: Traffic test sequence of Class A.

36

(a) (b)

(c) (d)

Figure 4.2: Class B. (a) Kimono1. (b) ParkScene. (c) Cactus. (d) Basket-
ballDrive.

37

(a) (b)

(c)

Figure 4.3: Class C. (a) BQMall. (b) PartyScene. (c) BasketballDrillText.

(a) (b)

Figure 4.4: Class D. (a) BQSquare. (b) BlowingBubbles.

38

(a) (b)

(c)

Figure 4.5: Class E. (a) BQMall. (b) PartyScene. (c) BasketballDrillText.

Figure 4.6: ChinaSpeed test sequence of Class F.

39

Class A

Class B

Class C

Class D

Class E Class F

Figure 4.7: Example test sequences for each test sequence class printed in with
appropriate relative size.

40

Table 4.1: Testing sequences of the JCT-VC data set.

Class Resolution Name No. of Frames Frame Rate

A 2560×1600 Traffic 150 30

B 1920×1080

Kimono1 240 24
ParkScene 240 24

Cactus 500 50
BasketballDrive 500 50

C 832×480
BQMall 600 60

PartyScene 500 50
BasketballDrillText 500 50

D 416×240
BQSquare 600 60

BlowingBubbles 500 50

E 1280×720
Johnny 600 60

KristenAndSara 600 60
Vidyo4 600 60

F 1024×768 ChinaSpeed 500 30

4.2 Experimental Setup

In order to measure the performance of the proposed method, the experiments are done

by using HM 16.5. All simulation are done by using the computer which are equipped with

Intel Core i7-6700 CPU @ 3.40 GHz × 8 processor, 8 GB memory, and Ubuntu 16.04 LTS

64-bit Linux operating system.

For the first part [25], all experiments are carried out under low delay P (LDP) without

RC (4 QPs) i.e., QP = 22, 27, 32 and 37 and with enabled RC and two bit rates, i.e., 256

Kbps and 512 Kbps.

For the second part [26], all experiments are carried out under low delay P (LDP) and

low delay (LD) configuration with enabled RC and four bit rates, i.e., 1 Mbps, 2 Mbps, 4

Mbps, and 8 Mbps.

4.3 Performance Metric

In this thesis, to measure the RD performance of a conventional SVM method [17]

and feature reduction on that method [25] over the original HEVC test model (HM 16.5),

Bjøntegard Delta Peak Signal To Noise Ratio (BDPSNR) and Bjøntegard Delta Bit Rate

(BDBR) [28] are used. For both parts, we utilize the most important performance metric

of fast encoding, called the computational time saving (TS). For TS based on QP, TS is

41

calculated as

TS =
1

4

4∑
n=1

THM16.5(QPn)− TP (QPn)

THM16.5(QPn)
, (4.1)

, where THM16.5(QPn) is the encoding time of the original HM 16.5 and and TP (QPn) is

FuzzySVM[17] or the proposed method P with QPn where QP ∈ {22, 27, 32, 37} .

For TS based on RC, TS is searched as

TS =
THM16.5 − TFastAlgorithm

THM16.5
× 100% (4.2)

, where THM16.5 is the computational time of the HM16.5 and TFastAlgorithm is

FuzzySVM[17] or the proposed fast CU encoding. In addition, we use an another important

factor for measuring the quality degradation of fast encoding, called the peak signal-to-noise

ratio of luminance component (Y-PSNR) for the second part.

4.4 Feature Reduction on Conventional Fuzzy SVM-based

Approach

The experiment results under LDP configuration without RC are shown in Figure 4.8.

According to the experiment results, feature reduction on a conventional fuzzy SVM method

[25] is unable to reduce the computational time. One of the reasons is that LDP configura-

tion without RC may not reduce the computational time as we expected. But, according to

the Figure 4.9, it can be found that a certain amount of computational time can be reduced

by enabling RC without quality degradation.

42

 50

 55

 60

 65

 70

 75

 80

BQMall

BasketballDrive

PartyScene

KrisAndSara

Johnny

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
S

av
in

g
 (

%
)

FuzzySVM
ReducedFeatures_FuzzySVM

(a)

−0.25

−0.2

−0.15

−0.1

−0.05

 0
BQMall

BasketballDrive

PartyScene

KrisAndSara

Johnny

B
D

P
S

N
R

 (
d

B
)

FuzzySVM
ReducedFeatures_FuzzySVM

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

BQMall

BasketballDrive

PartyScene

KrisAndSara

Johnny

B
D

B
R

 (
%

)

FuzzySVM
ReducedFeatures_FuzzySVM

(c)

Figure 4.8: Performance comparison with FuzzySVM [17] under LDP Configu-
ration without RC and 4 QPs. (a) Computational time saving (%). (b) Video
quality degradation BDPSNR (dB). (c) Overhead bitrate BDBR (%).

43

 60

 65

 70

 75

 80

 85

BQMall

BasketballDrive

PartyScene

KrisAndSara

Johnny

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
S

av
in

g
 (

%
)

FuzzySVM
ReducedFeatures_FuzzySVM

(a)

 55

 60

 65

 70

 75

 80

BQMall

BasketballDrive

PartyScene

KrisAndSara

Johnny

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
S

av
in

g
 (

%
)

FuzzySVM
ReducedFeatures_FuzzySVM

(b)

Figure 4.9: Performance comparison with FuzzySVM [17] under LDP Configu-
ration with RC. (a) Bitrate = 256 kbps.(b) Bitrate = 512 kbps.

4.5 GA-Based Fast CU Partitioning

4.5.1 Performance Comparison with Original HM and State-of-the-art

Approach

In this subsection, the original HM and FuzzySVM [17] are the benchmarks to compare

with the proposed method [26]. FuzzySVM predicts the CU sizes for three depth levels by

using three modified SVM classifiers. The source code of FuzzySVM is downloaded from

the authors [17].

Table 4.2 and Table 4.3 describe the experimental results of HM16.5, FuzzySVM, and

the proposed method [26] under low delay P (LDP) and low delay (LD) configurations

with enabled RC, respectively. We use four target bit rates such as 1 Mbps, 2 Mbps,

4 Mbps, and 8 Mbps which are described as 1, 2, 4, and 8, respectively, in Table 4.2

and Table 4.3. The larger TS indicates that the encoding time can be further reduced.

Compared with HM 16.5, the average computational time saving of FuzzySVM for all bit

rates ranges from 45.8% to 61.1% and 49% to 60.8%, while our proposed method can achieve

the saving for all bit rates ranges from 62.5% to 66.6% and 64.1% to 67.4% under LDP and

LD configurations, respectively. The average computational time savings of our proposed

method over FuzzySVM are thus 5.5%, 8.3%, 11%, and 16.7% for the bit rates of 1, 2,

44

4, and 8 Mbps, respectively, under LDP while 6.5%, 9.3%, 10.6%, and 15.1% under LD

configuration. These trade-offs are with the negligible average PSNR loss of less than 0.5

dB. Our proposed method has a stable improvement in computational time saving and

a comparable value in video quality especially at the higher bit rate cases. In special,

our proposed method achieves better quality performance for the Class E test sequences.

Therefore, our proposed method is more effective than FuzzySVM with comparable video

quality and an improved computational time saving, especially for low latency application

such as real-time video conversational application.

For several different sequences, the proposed algorithm can save the maximum and

minimum computational complexity of 68.5% in ”ChinaSpeed” and 45.4% in ”BlowingBub-

bles” for LDP, respectively, with a comparable quality loss at 8192 Kbps compared with

HM16.5. For 1024 Kbps, the proposed method can reduce the computational complexity at

most 74.1% in ”Traffic” and at least 47.3% in ”BlowingBubbles” with a negligible quality

degradation compared with HM16.5. For one example video sequence of class A called

”Traffic”, the proposed method greatly achieves 18.5% computational complexity reduc-

tion over FuzzySVM with a comparable PSNR value at 8192 Kbps. For ”KristenAndSara”

video sequence of class E, our proposed algorithm significantly reduces 18.9% computation

burden more than FuzzySVM at 8192 Kbps under the same video quality. In specific, our

proposed method achieves a similar RD performance as the original HM under a notable

computational time saving for the test video sequences which have a highly temporal cor-

relation between consecutive frames such as ”Johnny”, ”KristenAndSara”, ”FourPeople”

of class E. The behavior of class E is a scene with only people’s faces and upper bodies

movements in the foreground and static background. Figure 4.10 and Figure 4.11 describe

the experimental results of HM16.5, FuzzySVM, and the proposed method [26] under low

delay P (LDP) and low delay (LD) configurations with enabled RC, respectively.

45

Table 4.2: Performance comparison with HM16.5 and start-of-the-art fast al-
gorithm, FuzzySVM[17] (LDP).

Class Sequence
Bit rate Y-PSNR (dB) TS (%)
(Mbps) HM16.5 FuzzySVM[17] Proposed[26] FuzzySVM[17] Proposed[26]

A Traffic

1 33.3 33.2 32.2 66.6 74.1
2 35.8 35.7 35.1 56.9 71.6
4 38.0 37.9 37.6 59.1 69.4
8 39.9 39.8 39.6 48.6 67.1

B

Kimono1

1 36.2 36.1 35.7 61.4 69.4
2 38.7 38.6 38.4 54.8 68.2
4 40.8 40.8 40.6 46.8 67.2
8 42.2 42.1 42.1 45.8 65.9

ParkScene

1 33.3 33.2 32.7 61.1 69.7
2 35.4 35.3 34.9 57.3 66.8
4 37.6 37.5 37.3 51.5 65.2
8 39.7 39.6 39.5 46.2 63.4

Cactus

1 31.7 31.5 31.0 67.7 72.1
2 33.8 33.7 33.4 62.1 70.6
4 35.8 35.7 35.5 61.7 69.2
8 37.1 37.1 37.0 54.3 67.2

C

BQMall

1 34.7 34.5 34.1 60.4 65.6
2 37.3 37.2 36.9 56.8 63.9
4 39.6 39.5 39.3 51.0 62.4
8 41.5 41.5 41.4 47.6 62.8

PartyScene

1 29.6 29.5 29.0 58.9 64.6
2 32.1 32.0 31.7 54.3 62.7
4 34.8 34.7 34.5 48.7 61.6
8 37.7 37.6 37.5 42.6 60.4

BasketballDrillText

1 34.5 34.4 34.0 58.0 65.4
2 37.4 37.3 36.9 54.1 64.3
4 40.3 40.2 39.9 52.0 62.9
8 43.1 43.1 42.8 47.5 61.9

D

BQSquare

1 34.7 34.6 34.4 49.5 48.3
2 37.2 37.1 37.0 47.3 47.8
4 40.3 40.3 40.1 42.8 47.5
8 44.4 44.4 44.3 34.0 47.1

BlowingBubbles

1 35.0 34.9 34.8 48.8 47.3
2 37.8 37.8 37.7 44.3 45.9
4 40.9 40.9 40.8 41.1 45.4
8 45.3 45.2 45.1 34.6 45.4

E

Johnny

1 42.1 42.0 41.9 69.6 72.7
2 42.9 42.8 42.8 65.9 71.1
4 43.6 43.6 43.5 58.6 69.5
8 44.5 44.5 44.4 50.7 67.6

KristenAndSara

1 41.7 41.6 41.4 69.8 73.0
2 43.0 43.0 42.9 65.0 71.4
4 44.0 43.9 43.9 60.3 69.5
8 45.0 44.9 44.9 48.6 67.5

Vidyo4

1 41.1 40.9 40.8 62.5 72.6
2 42.5 42.4 42.3 60.0 71.1
4 43.7 43.7 43.6 57.4 69.5
8 45.1 45.0 45.0 51.7 67.8

F ChinaSpeed

1 34.6 34.4 33.9 60.0 70.7
2 37.9 37.7 37.4 58.2 69.9
4 41.5 41.3 41.0 54.1 69.3
8 45.4 45.2 44.9 43.6 68.5

All AVERAGE

1 35.6 35.4 35.1 61.1 66.6
2 37.8 37.7 37.5 56.7 65.0
4 40.1 40.0 39.8 52.7 63.7
8 42.4 42.3 42.2 45.8 62.5

46

Table 4.3: Performance comparison with HM16.5 and start-of-the-art fast al-
gorithm, FuzzySVM[17] (LD).

Class Sequence
Bit rate Y-PSNR (dB) TS (%)
(Mbps) HM16.5 FuzzySVM[17] Proposed[26] FuzzySVM[17] Proposed[26]

A Traffic

1 33.4 33.2 32.4 65.7 74.9
2 35.9 35.8 35.2 59.3 74.1
4 38.2 38.1 37.8 60.6 71.9
8 40.2 40.2 39.9 49.0 70.7

B

Kimono1

1 36.5 36.4 36.0 61.4 69.9
2 38.9 38.9 38.7 54.8 68.8
4 41.0 41.0 40.9 49.4 67.9
8 42.4 42.4 42.3 40.5 66.9

ParkScene

1 33.3 33.2 32.8 58.2 70.0
2 35.5 35.4 35.0 59.4 68.7
4 37.7 37.7 37.4 52.8 67.5
8 39.9 39.9 39.7 39.6 66.4

Cactus

1 31.8 31.7 31.2 65.9 70.0
2 34.0 33.9 33.5 61.2 68.7
4 35.9 35.9 35.6 62.2 67.5
8 37.4 37.3 37.2 56.7 66.4

C

BQMall

1 34.9 34.8 34.4 60.5 67.1
2 37.6 37.5 37.2 58.0 65.8
4 40.0 39.9 39.7 54.3 64.7
8 41.9 41.8 41.8 49.9 63.5

PartyScene

1 29.7 29.6 29.2 59.6 66.4
2 32.4 32.3 32.0 57.9 65.1
4 35.3 35.3 35.0 52.2 64.1
8 38.5 38.4 38.2 47.4 63.1

BasketballDrillText

1 34.8 34.7 34.3 60.2 67.1
2 37.8 37.7 37.3 55.2 65.8
4 40.8 40.7 40.4 55.0 64.8
8 43.7 43.6 43.4 53.4 64.2

D

BQSquare

1 35.5 35.4 35.2 50.2 50.5
2 38.1 38.0 37.9 48.3 54.8
4 41.2 41.2 41.1 45.1 49.3
8 45.4 45.3 45.2 42.5 48.4

BlowingBubbles

1 35.3 35.2 35.1 50.4 49.7
2 38.4 38.3 38.2 49.2 48.8
4 41.7 41.6 41.5 44.0 47.7
8 46.0 46.0 45.9 42.2 47.6

E

Johnny

1 42.4 42.3 42.2 69.9 72.8
2 43.3 43.2 43.1 66.1 71.9
4 44.0 44.0 43.9 62.2 70.5
8 44.8 44.8 44.7 57.0 68.7

KristenAndSara

1 41.9 41.7 41.6 68.9 72.9
2 43.3 43.2 43.1 65.1 71.7
4 44.2 44.2 44.1 60.7 70.4
8 45.2 45.2 45.2 53.2 68.7

Vidyo4

1 41.4 41.3 41.1 59.6 72.8
2 42.9 42.8 42.7 53.4 71.6
4 44.1 44.0 43.9 56.1 70.5
8 45.5 45.4 45.3 57.3 69.4

F ChinaSpeed

1 34.7 34.5 34.0 60.2 71.7
2 38.1 37.9 37.5 58.6 71.2
4 41.6 41.4 41.1 55.1 70.6
8 45.5 45.4 45.1 48.1 69.9

All AVERAGE

1 35.8 35.7 35.3 60.8 67.4
2 38.2 38.1 37.8 57.4 66.7
4 40.4 40.4 40.2 54.6 65.2
8 42.8 42.7 42.6 49.0 64.1

47

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Bitrate (Mbps)

HM16.5
FuzzySVM
Proposed

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed

(b)

Figure 4.10: Average performance comparison with FuzzySVM [17] under LDP
configuration. (a) Video quality (dB). (b) Computational time saving (%).

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d

B
)

Bitrate (Mbps)

HM16.5
FuzzySVM
Proposed

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed

(b)

Figure 4.11: Average performance comparison with FuzzySVM [17] under LD
configuration. (a) Video quality (dB). (b) Computational time saving (%).

For video quality comparison between original HM16.5, FuzzySVM and the proposed

method, Figure 4.12 shows the reconstructed frames decoded by HM16.5, FuzzySVM and

the proposed method at 1024 kbps under LDP configuration. The required bit allocations

and PSNR values of that frame are 14976 and 34.6 dB for HM16.5, 13936 and 34.4 dB

for FuzzySVM, and 14280 and 34.1 dB for the proposed method. Even though the PSNR

degradation of the proposed method compared with HM16.5 and FuzzySVM are nearly 1

dB and 0.2 dB, respectively, at 1024 kbps, a similar video quality is perceived by the human

48

(a) (b)

(c)

Figure 4.12: Subjective video quality for POC 242 of BasketballDrillText video
sequence.(a) Encoded frame of HM16.5. (b) Encoded frame of FuzzySVM. (c)
Encoded frame of the proposed method [26].

visual system.

4.5.2 Stability of the Proposed Method

In order to analyze the stability of the proposed method, we use several target bit rates

such as 1, 2, 4, 8, 16, and 32 Mbps to encode two different test video sequences such as

”BQMall” from class C and ”Johnny” from class E under LDP configuration. ”BQMall”

sequence has many moving objects in foreground and camera movements while ”Johnny”

has the only face and upper body movements with a stable background. Figure 4.13 shows

the stability of the proposed method compared with FuzzySVM. From this figure, it can be

observed that our proposed method gives a stable reduction in the computational burden

of HEVC from the 1 Mbps to 32 Mbps target bit rate. This happens due to the consider-

ation of temporal correlation and the advantage of effective chromosome structure, fitness

49

function, and negligible computation time of GA which is not greater than 1% of the total

encoding time as shown in Figure 4.14. On the other hand, the computational time sav-

ing of FuzzySVM is not stable and is dramatically reducing since FuzzySVM has a higher

chance to make a splitting decision when the target bit rate is higher. In details, Figure 4.15

and Figure 4.16 describe the percentage of SVM decision of each depth for ”BQMall” and

”Johnny” test sequences, respectively. From Figure 4.17, it can be found that the total

splitting decision percentage for all three depths is increasing while the target bit rate is

increasing. As shown in Figure 4.18, FuzzySVM calculates the RD costs for only one 64×64

CU when the target bit rate is 1 Mbps. For 4 Mbps, there are one 64×64 CU and four

32×32 CUs. The RD costs for one 64×64 CU, four 32×32 CUs, eight 16×16 CUs, and four

8×8 CUs are calculated at the high target bit rate, 8 Mbps. Therefore, the total number of

CUs that need to be calculated the RD cost may be increased when the target bit rate is

increasing. As a result, FuzzySVM may consume a larger computational complexity while

HM16.5 and the proposed method calculate the RD costs for a fixed amount of CUs.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30

T
im

e
S

av
in

g
 (

%
)

Bit rate (Mbps)

FuzzySVM
Proposed

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30

T
im

e
S

av
in

g
 (

%
)

Bit rate (Mbps)

FuzzySVM
Proposed

(b)

Figure 4.13: Stabilization of proposed method[26] over FuzzySVM[17]. (a) Time
saving of BQMall. (b) Time saving of Johnny.

50

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

A B C D E F

T
im

e
U

ti
li

za
ti

o
n

 P
er

ce
n

ta
g

e
(%

)

Video Class

Video Encoding GA

Figure 4.14: Time utilization percentage of the proposed method [26].

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(a)

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(b)

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(c)

Figure 4.15: SVM decision percentage of FuzzySVM[17] for BQMall (a) Depth
0 (b) Depth 1 (c) Depth 2.

51

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(a)

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(b)

 0

 20

 40

 60

 80

 100

 120

1024 2048 4096 8192

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (kbps)

Risk Area
Splitting

Non−Splitting

(c)

Figure 4.16: SVM decision percentage of FuzzySVM[17] for Johnny (a) Depth
0 (b) Depth 1 (c) Depth 2.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (Mbps)

Risk Area
Splitting

Non−Splitting

(a)

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

S
V

M
 D

ec
is

io
n

 (
%

)

Bitrate (Mbps)

Risk Area
Splitting

Non−Splitting

(b)

Figure 4.17: Total SVM decision percentage of FuzzySVM[17] for depth 0, 1
and 2 (a) BQMall (b) Johnny.

52

Figure 4.18: CU Partition of a CTU encoded by FuzzySVM[17] at 1 Mbps, 4
Mbps, and 8 Mbps.

4.6 Discussion

4.6.1 Performance Comparison with CTU Level Sharing

To compare with our frame level sharing scheme [26], another sharing scheme such as

coding tree unit (CTU) level sharing have been implemented. Firstly, the motion infor-

mation of each CTU is analyzed by utilizing the frame differencing method. Secondly, the

CTU is categorized into two groups: moving region and non-moving region. Thirdly, the

PPs from GA and key frame are utilized for CTUs which are in the moving region and

non-moving region, respectively.

As shown in Figure 4.19, CTU level PP sharing can keep 0.37 dB, 0.31 dB, 0.2 dB, and

0.11 dB more than the proposed frame level at 1, 2, 4, and 8 Mbps, respectively, for class

A video sequence called ”Traffic” which is the higher resolution video sequence than full

HD and is cropped to get frame resolution of 2560×1600 in order to reduce the encoding

time. However, the proposed frame level can significantly reduce 19.7%, 19.5%, 19.1%, and

19% computational complexity more than CTU level at 1, 2, 4, and 8 Mbps, respectively.

Especially at high bit rate (8Mbps), the proposed method achieves a large time saving with

a comparable video quality compared with CTU level approach.

53

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d
B

)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.19: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Traffic (Class A). (b) Time saving of Traffic (Class A).

For a ”Kimono1” video sequence of class B with only a slow walking movement of a

Japanese girl in the foreground and dynamic background, the proposed approach can save

7.2%, 7.3%, 7.9%, and 7.9% computational time saving more than CTU level with the small

values of quality drop as 0.06 dB, 0.04 dB, 0.02 dB, and 0.01 dB at 1, 2, 4, and 8 Mbps,

respectively, as shown in Figure 4.20.

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d
B

)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.20: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Kimono1 (Class B). (b) Time saving of Kimono1 (Class B).

As shown in Figure 4.21, CTU level PP sharing can keep 0.11 dB, 0.09 dB, 0.05 dB,

54

and 0.03 dB more than the proposed frame level at 1, 2, 4, and 8 Mbps, respectively, for

”PartyScene” video sequence from class C which has fast moving objects in the foreground

and static background. However, the proposed frame level can reduce 5.9%, 6.3%, 6.9%, and

7.5% computational complexity more than CTU level at 1, 2, 4, and 8 Mbps, respectively.

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d
B

)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8
T

im
e

S
av

in
g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.21: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of PartyScene (Class C). (b) Time saving of PartyScene (Class C).

For low resolution video sequence called ”BlowingBubbles”, the proposed frame level

can save more 6.7%, 7.1%, 7.9%, and 8.5% than CTU level while CTU level scheme can

only keep 0.03 dB, 0.03 dB, 0.01 dB, and 0.01 dB more than the proposed at 1, 2, 4, and 8

Mbps, respectively, as shown in Figure 4.22.

55

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d
B

)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.22: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of BlowingBubbles (Class D). (b) Time saving of BlowingBubbles (Class D).

For a scene with only people’s faces and upper bodies movements in the foreground

and static background such as ”Johnny” from Class E, the proposed approach can save

7.2%, 7.8%, 8.5%, and 9% computational time saving more than CTU level with the small

values of quality drop as 0.05 dB, 0.02 dB, 0.01 dB, and 0.01 dB at 1, 2, 4, and 8 Mbps,

respectively, as shown in Figure 4.23.

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 1 2 3 4 5 6 7 8

P
S

N
R

 (
d
B

)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
S

av
in

g
 (

%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.23: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Johnny (Class E). (b) Time saving of Johnny (Class E).

In addition captured video sequences, there is one different class called class F which

56

contains video scenes which are not captured by camera and captured by device itself to

get the screen content such as ”ChinaSpeed”. For this video, CTU level PP sharing can

maintain a small PSNR such as 0.14 dB, 0.12 dB, 0.09 dB, and 0.07 dB more than the

proposed frame level under a large amount of time saving drop such as 8%, 8.1%, 8.4%,

and 8.6% at 1, 2, 4, and 8 Mbps, respectively, as shown in Figure 4.24. Due to these

experimental results for all classes (A to F) under LDP configuration, we effectively utilized

frame level sharing scheme to significantly reduce time saving under a negligible PSNR drop.

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 1 2 3 4 5 6 7 8

PS
N

R
 (d

B
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

T
im

e
Sa

vi
ng

 (%
)

Bitrate (Mbps)

FuzzySVM
Proposed
CTU Level

(b)

Figure 4.24: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of ChinaSpeed (Class F). (b) Time saving of ChinaSpeed (Class F).

4.6.2 RD Cost Calculation with Two Most Common Modes and CU Pre-

diction without Two Most common Modes

At the previous version of our proposed method, we have calculated the approximate RD

cost after encoding with two most common modes called SKIP/MERGE and Part 2N×2N

modes in RD cost calculation part. Actually, SKIP/MERGE mode is enough to calculate

the approximate RD according to the empirical results. Additionally, we have not used

these two common modes after predicting the CU size to save the computation time of

quadtree partitioning. However, there is a small loss in RD at low bit rate. Therfore, we

revised the previous version by using only the most common mode and adding two most

common modes after CU size prediction to get a better PSNR value. The flowcharts of

our previous version and current version of the proposed method [26] are shown in Figure

57

4.25. Table 4.4 shows the performance comparison of the original HM, FuzzySVM [17], the

previous version and the proposed method [26].

compressCTU with

cuDepth = 0

Calculate RD costs of SKIP/

MERGE and Part_2Nx2N modes

cuDepth < MaxDepth?

RD Cost Calculation on four sub-CUs

with cuDepth++

Yes

RD Cost Calculation

with cuDepth = d

 No

Apply GA to get the CU partition pattern

by using RD costs of 85 CUs

GASplit &&

cuDepth < MaxDepth?

CU size prediction

with cuDepth = d

No

Assign GASplit by using the

CU partition pattern of GA

End compressCTU

Calculate Part_2NxN, Part_Nx2N,

AMP and Intra modes

Yes

CU size prediction on

four sub-Cus with

cuDepth++

cuDepth = MaxDepth?

Calculate RD cost

Part_NxN

Yes

No

Select the best mode with

minimum RD cost

(a)

compressCTU with

cuDepth = 0

Calculate RD costs of SKIP/

MERGE

cuDepth < MaxDepth?

RD Cost Calculation on four sub-CUs

with cuDepth++

Yes

RD Cost Calculation

with cuDepth = d

 No

Apply GA to get CU partition pattern by

using RD costs of 85 CUs

GASplit &&

cuDepth < MaxDepth?

CU size prediction

with cuDepth = d

No

Assign GASplit by using CU

partition pattern of GA

End compressCTU

Calculate Part_2NxN, Part_Nx2N,

AMP and Intra modes

Yes

CU size prediction on

four sub-Cus with

cuDepth++

cuDepth = MaxDepth?

Calculate RD

cost Part_NxN

Yes

No

Select the best mode with

minimum RD cost

Calculate RD costs of SKIP/

MERGE and Part_2Nx2N modes

(b)

Figure 4.25: Flowcharts of previous and proposed GA-based fast CU partition-
ing.

58

Table 4.4: Performance comparison of HM16.5, start-of-the-art fast algorithm
[17], previous and proposed method [26]

Class Sequence
Bit rate Y-PSNR (dB) TS (%)
(Mbps) HM16.5 FuzzySVM[17] Previous Proposed[26] FuzzySVM[17] Previous Proposed[26]

B

Kimono1

1 36.2 36.1 35.5 35.7 61.4 67.3 69.4
2 38.7 38.6 38.2 38.4 54.8 66.8 68.2
4 40.8 40.8 40.5 40.6 46.8 68.2 67.2
8 42.2 42.1 42.0 42.1 45.8 67.1 65.9

ParkScene

1 33.3 33.2 32.4 32.7 61.1 67.1 69.7
2 35.4 35.3 34.7 34.9 57.3 64.2 66.8
4 37.6 37.5 37.1 37.3 51.5 64.6 65.2
8 39.7 39.6 39.3 39.5 46.2 65.1 63.4

Cactus

1 31.7 31.5 30.9 31.0 67.7 69.8 72.1
2 33.8 33.7 33.2 33.4 62.1 68.7 70.6
4 35.8 35.7 35.3 35.5 61.7 68.0 69.2
8 37.1 37.1 36.9 37.0 54.3 67.1 67.2

C

BQMall

1 34.7 34.5 33.8 34.1 60.4 64.0 65.6
2 37.3 37.2 36.7 36.9 56.8 63.8 63.9
4 39.6 39.5 39.2 39.3 51.0 64.0 62.4
8 41.5 41.5 41.3 41.4 47.6 66.1 62.8

PartyScene

1 29.6 29.5 28.8 29.0 58.9 63.5 64.6
2 32.1 32.0 31.4 31.7 54.3 63.6 62.7
4 34.8 34.7 34.3 34.5 48.7 64.5 61.6
8 37.7 37.6 37.4 37.5 42.6 65.1 60.4

BasketballDrillText

1 34.5 34.4 33.7 34.0 58.0 65.5 65.4
2 37.4 37.3 36.7 36.9 54.1 64.7 64.3
4 40.3 40.2 39.7 39.9 52.0 64.7 62.9
8 43.1 43.1 42.7 42.8 47.5 65.2 61.9

D

BQSquare

1 34.7 34.6 34.3 34.4 49.5 50.7 48.3
2 37.2 37.1 36.9 37.0 47.3 51.3 47.8
4 40.3 40.3 40.1 40.1 42.8 51.7 47.5
8 44.4 44.4 44.3 44.3 34.0 52.5 47.1

BlowingBubbles

1 35.0 34.9 34.7 34.8 48.8 49.4 47.3
2 37.8 37.8 37.6 37.7 44.3 49.5 45.9
4 40.9 40.9 40.7 40.8 41.1 50.4 45.4
8 45.3 45.2 45.1 45.1 34.6 51.0 45.4

E

Johnny

1 42.1 42.0 41.8 41.9 69.6 70.8 72.7
2 42.9 42.8 42.7 42.8 65.9 70.0 71.1
4 43.6 43.6 43.5 43.5 58.6 69.8 69.5
8 44.5 44.5 44.4 44.4 50.7 69.7 67.6

KristenAndSara

1 41.7 41.6 41.3 41.4 69.8 71.0 73.0
2 43.0 43.0 42.9 42.9 65.0 70.2 71.4
4 44.0 43.9 43.9 43.9 60.3 69.2 69.5
8 45.0 44.9 44.9 44.9 48.6 69.1 67.5

Vidyo4

1 41.1 40.9 40.7 40.8 62.5 70.5 72.6
2 42.5 42.4 42.3 42.3 60.0 69.5 71.1
4 43.7 43.7 43.5 43.6 57.4 68.9 69.5
8 45.1 45.0 45.0 45.0 51.7 68.6 67.8

All AVERAGE

1 35.9 35.7 35.3 35.4 60.7 64.5 65.5
2 38.0 37.9 37.6 37.7 56.5 63.8 64.0
4 40.1 40.1 39.8 39.9 52.0 63.9 62.7
8 42.3 42.3 42.1 42.2 45.8 64.2 61.5

59

4.6.3 GA-Based Fast CU Partitioning without Utilizing Temporal Cor-

relation and with QP

In order to know the advantages of temporal correlation, we proposes a fast CU depth

estimation algorithm based on genetic algorithm (GA)without utilizing temporal correla-

tion [27]. In [27], we focus the main important metric of fast encoding, TS (4.1), where

THM16.5(QPn) is the encoding time of the original HM 16.5 and TP (QPn) is FuzzySVM[17]

or GA-based Fast CU partitioning without temporal correlation method P [27] under Low

Delay P (LDP) configuration with four common QPs, i.e., 22, 27, 32 and 37. As shown

in Table 4.5, the experimental results show 69.2% computational time on average can be

reduced by the proposed method compared with HM16.5. Compared with start-of-the-art

fast encoding method, the proposed one can achieve 5.2% time saving on average under a

comparable BD-PSNR.

Table 4.5: Performance Analysis of the proposed method [27] with HM16.5 and
start-of-the-art fast algorithm, FuzzySVM [17].

Sequence FuzzySVM [17] Without temporal correlation [27]
BD-PSNR BD-BR TS BD-PSNR BD-BR TS

BQMall -0.126 3.340 58.5 -0.412 11.235 69.42
PartyScene -0.094 2.408 54.64 -0.405 10.664 60.47

Johnny -0.090 4.227 72.76 -0.095 10.045 74.12
KrisAndSara -0.106 3.670 69.9 -0.379 14.465 72.66

Average -0.104 3.411 63.9 -0.323 11.602 69.2
The units of BD-PSNR, BD-BR and TS are in dB, % and %, respectively.

Chapter 5

Conclusion and Future Works

HEVC is the newest video codec of the Joint Collaborative Team on Video Coding

(JCT-VC) which can save a 50% bit rate of H.264 under the same video quality because of

its advanced features such as a quadtree-based CU partition, a modified deblocking filter,

and 35 prediction modes for intra coding. However, these advanced features make the

computational complexity of HEVC to be extremely high. Among these features, quadtree-

based CU partition is the most expensive computational cost (over 80% in the HEVC test

model) due to a recursively exhaustive RDO search. Therefore, most of the fast algorithms

have focused on the CU partition by utilizing a statistical approach or learning approach

in order to save the encoding time of HEVC.

In this thesis, we propose a feature reduction approach on a fuzzy SVM method to

reduce the time consumed by some correlated features of the optimal feature sets. The

experimental results confirm that a feature reduction on a conventional method can save

the computational time with the same RD performance under LDP configuration with RC.

As we know, machine learning prediction can achieve 50% reduction for complexity and

that is a good approach to investigate more. After reduction some correlated features from

the best feature set, it subject that it is a good tendency to decrease the computational

complexity more than before. It may be possible to apply the feature reduction approach

to other conventional CU size decision algorithms.

However, according to our knowledge, all fast algorithms have not searched the whole

splitting pattern of each CTU by utilizing an optimization approach. Therefore, we utilize

a simple optimizer with a meaningful chromosome pattern and a reasonable fitness func-

tion to find a good splitting pattern for each CTU. In this thesis, we propose a CU size

decision method based on GA to reduce the computation complexity of the quadtree-based

CU partitioning. To the best of our knowledge, we are the one who firstly introduces CU

partitioning as an optimization problem which is solved by GA with an effective chromo-

some structure. In order to quickly find the fitness function of GA, the RD costs for each

CU are calculated by encoding CUs with the most common modes for PU. To further save

61

the computational complexity of CU partitioning, the temporal redundancy is considered

to share CU partitioning pattern within consecutive frames. Compared with the state-of-

the-art SVM based fast algorithm, the proposed method can reduce a higher computational

complexity at higher target bit rate under a negligible quality loss. In current communi-

cation networks including 5G, the available bandwidth is going up. Apparently, we can

increase the bit rate to be high and we can consider high bit rate in video coding. Our

method can get a comparable PSNR at high target bit rate. For the calculation cost for

small equipment, the reduction for calculation cost is an important issue.

In order to further extend this work, we can measure the subjective evaluation of our

proposed method. Additionally, We can optimize GA especially for creating a better initial

population than random population and using another less time-consumption input value

than RD cost to calculate the fitness function.

References

[1] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency video

coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC

video coding standard,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 560–576, 2003.

[3] JCT-VC, HM Software, [Online]. Available:

https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/tags/HM-16.5/. Accessed

on: Nov 5, 2016.

[4] S. Cho and M. Kim, “Fast CU splitting and pruning for suboptimal CU partitioning

in HEVC intra coding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 23, no. 9, pp. 1555–1564, Sep. 2013.

[5] B. Min and R. C. C. Cheung, “A fast CU size decision algorithm for the HEVC

intra encoder,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 25, no. 5, pp. 892–896, May 2015.

[6] T. Li, M. Xu, and X. Deng, “A deep convolutional neural network approach

for complexity reduction on intra-mode HEVC,” in 2017 IEEE International

Conference on Multimedia and Expo (ICME), Jul. 2017, pp. 1255–1260.

[7] T. Zhang, M. Sun, D. Zhao, and W. Gao, “Fast intra-mode and CU size decision for

HEVC,” Transactions on Circuits and Systems for Video Technology, vol. 27, no. 8,

pp. 1714–1726, Aug. 2017.

[8] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective CU size decision

method for HEVC encoders,” IEEE Transactions on Multimedia, vol. 15, no. 2,

pp. 465–470, Feb. 2013.

[9] X. Hou and Y. Xue, “Fast coding unit partitioning algorithm for HEVC,” in 2014 IEEE

International Conference on Consumer Electronics (ICCE), pp. 7–10, Jan. 2014.

[10] I. Zupancic, S. G. Blasi, E. Peixoto, and E. Izquierdo, “Inter-prediction optimizations

for video coding using adaptive coding unit visiting order,” IEEE Transactions on

Multimedia, vol. 18, no. 9, pp. 1677–1690, Sep. 2016.

[11] X. Shen, L. Yu, and J. Chen, “Fast coding unit size selection for HEVC based on bayesian

decision rule,” in 2012 Picture Coding Symposium, pp. 453–456, May 2012.

[12] K. Duan, P. Liu, K. Jia, and Z. Feng, “An adaptive quad-tree depth range prediction

mechanism for HEVC,” IEEE Access, vol. 6, pp. 54 195–54 206, 2018.

63

[13] X. Shen and L. Yu, “CU splitting early termination based on weighted SVM,” EURASIP

Journal on Image and Video Processing, vol. 2013, no. 1, p. 4, Jan. 2013.

[14] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz, “Fast HEVC encoding

decisions using data mining,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 25, no. 4, pp. 660–673, Apr. 2015.

[15] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine learning-based

coding unit depth decisions for flexible complexity allocation in high efficiency

video coding,” IEEE Transactions on Image Processing, vol. 24, no. 7, pp. 2225–

2238, Jul. 2015.

[16] A. Heindel, T. Haubner, and A. Kaup, “Fast CU split decisions for HEVC inter coding

using support vector machines,” in 2016 Picture Coding Symposium (PCS), pp.

1–5, Dec. 2016.

[17] L. Zhu, Y. Zhang, S. Kwong, X. Wang, and T. Zhao, “Fuzzy SVM-based coding unit

decision in HEVC,” IEEE Transactions on Broadcasting, vol. 64, no. 3, pp. 681–

694, 2018.

[18] H. Kim and R. Park, “Fast CU partitioning algorithm for HEVC using an online-learning-

based bayesian decision rule,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 26, no. 1, pp. 130–138, Jan. 2016.

[19] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong, and Z. Peng, “Binary and multi-

class learning based low complexity optimization for HEVC encoding,” IEEE

Transactions on Broadcasting, vol. 63, no. 3, pp. 547–561, Sep. 2017.

[20] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing complexity of HEVC:

A deep learning approach,” IEEE Transactions on Image Processing, vol. 27,

no. 10, pp. 5044–5059, Oct. 2018.

[21] Z. Pan, S. Kwong, M. Sun, and J. Lei, “Early merge mode decision based on motion

estimation and hierarchical depth correlation for HEVC,” IEEE Transactions on

Broadcasting, vol. 60, no. 2, pp. 405–412, Jun. 2014.

[22] Z. Pan, J. Lei, Y. Zhang, X. Sun, and S. Kwong, “Fast motion estimation based on

content property for low-complexity H.265/HEVC encoder,” IEEE Transactions

on Broadcasting, vol. 62, no. 3, pp. 675–684, Sep. 2016.

[23] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,

1996.

[24] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.).

Berlin, Heidelberg: Springer-Verlag, 1996.

64

[25] E. E. Tun, S. Aramvith, and Y. Miyanaga, “Feature Reduction on Fuzzy Svm-based

Coding Unit Decision in HEVC,” 2018 International Conference on Engineering,

Applied Sciences, and Technology (ICEAST), pp. 1–4.

[26] E. E. Tun, S. Aramvith, and Y. Miyanaga, “Fast Coding Unit Encoding Scheme for

HEVC Using Genetic Algorithm,” IEEE Access, pp. 68010–68021, May 2019.

[27] E. E. Tun, S. Aramvith, and Y. Miyanaga, “A Fast CU Depth Estimation Algorithm

for HEVC Inter Coding,” The 4th IEEE International Conference on Consumer

Electronics Asia 2019.

[28] G. Bjøntegaard, Calculation of Average PSNR Differences Between RD-Curves,

document M33, ITU-T Video Coding Experts Group, Austin, TX, USA, 2001.

65

VITA

Ei Ei Tun was born in 1986 in Taungoo, Myanmar. She received the B.C.Tech. degree in
computer technology from Computer University (Taungoo), Taungoo, Myanmar, in 2005, and
M.C.Tech. degree with flying colors in computer technology from the University of Computer
Studies, Yangon (UCSY), Myanmar, in 2010. She is currently a lecturer at UCSY, Myanmar and
pursuing the Ph.D. degree with Department of Electrical Engineering, Chulalongkorn University,
Thailand under a grant from AUN/SEED-Net, JICA. Her research interests are in the areas
of video coding, especially focus on the complexity reduction of the newest video coding
standards, HEVC. Ms. Ei Ei Tun was one of the Best Paper and Poster candidates in the 2018
International Conference on Engineering, Applied Sciences, and Technology (ICEAST) and
Asian Universities Alliance Postgraduate Academic Forum (AUAPAF), Tsinghua University,
Beijing, China, respectively.

List of Publications

[1] E. E. Tun, S. Aramvith, and Y. Miyanaga, “Feature Reduction on Fuzzy Svm-based
Coding Unit Decision in HEVC,” in 2018 International Conference on Engineering, Applied
Sciences, and Technology (ICEAST), July 2018, pp. 1–4. DOI: 10.1109/ICEAST.2018.8434467.

[2] E. E. Tun, S. Aramvith, and Y. Miyanaga, “Fast Coding Unit Encoding Scheme for
HEVC Using Genetic Algorithm,” in IEEE Access, May 2019, pp. 68010–68021. DOI: 10.
1109/ACCESS.2019.2918508.

[3] E. E. Tun, S. Aramvith, and Y. Miyanaga, “A Fast CU Depth Estimation Algorithm for
HEVC Inter Coding,” in The 4th IEEE International Conference on Consumer Electronics Asia
2019, 2019.

10.1109/ICEAST.2018.8434467
10.1109/ACCESS.2019.2918508
10.1109/ACCESS.2019.2918508

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Research Motivation and Problem Statement
	Contribution

	Chapter 2 Background and Literature Review
	Background
	Overview of HEVC
	The Hierarchical Quadtree-based CU Partitioning
	Genetic Algorithm

	Literature Review
	Fast Algorithms for Intra-coding of HEVC
	Fast Algorithms for Inter-coding of HEVC

	Chapter 3 Fast Coding Algorithm for High Efficiency Video Coding
	Reducing Redundant Feature from Fuzzy SVM-Based Coding Unit Decision in HEVC
	GA-Based Fast CU Partitioning
	Proposed Data Structure
	Proposed Fitness Function
	Selection, Crossover and Mutation
	Optimization Criteria
	Genetic Algorithm with the Proposed Chromosome and Fitness Function
	Overall Algorithm

	Chapter 4 Evaluation
	Test Video Sequences
	Experimental Setup
	Performance Metric
	Feature Reduction on Conventional Fuzzy SVM-based Approach
	GA-Based Fast CU Partitioning
	Performance Comparison with Original HM and State-of-the-art Approach
	Stability of the Proposed Method

	Discussion
	Performance Comparison with CTU Level Sharing
	RD Cost Calculation with Two Most Common Modes and CU Prediction without Two Most common Modes
	GA-Based Fast CU Partitioning without Utilizing Temporal Correlation and with QP

	Chapter 5 Conclusion and Future Works
	References
	VITA

