

บทที่ 3

แบบจำลองคณิตคาสตร์ของเครื่องระเหยหยดน้ำ เครื่องเพิ่ม/ลดความชื้น และเครื่องลดอุณหภูมิน้ำ

3.1 Configuration 1015-11

3.1.1 พิจารณาการแลกเปลี่ยนความร้อนของหยดน้ำและลมร้อนเฉพาะช่วงที่เป็นทรง กระบอกของเครื่องเท่านั้นไม่พิจารณาส่วนที่อยู่เหนือทรงกระบอกที่หยคน้ำวิ่งในแนวเฉียงและไม่ พิจารณาส่วนที่เป็นกรวะค้านล่าง คังรูป 3.1

3.1.2 แบ่งพื้นที่หน้าตัดของทรงกระบอกเป็นวงแหวน(annulus)โดยมีพื้นที่ในแต่ละวง แหวนเท่าๆ กัน ดังรูป 3.2

3.1.3 แบ่งความสูงของทรงกระบอกให้มีความสูงเล็กๆ ΔZ และจะอินทิเกรฅตัวแปร ต่างๆ เทียบกับค่า ΔZ ดังรูป 3.3

3.1.4 ทิศทางการ ใหลของหยคน้ำและลมร้อน จะ ใหลในทิศทางเคียวกันจากบนลงล่าง (Co-current flow)

3.1.5 จำนวนและการกระจายขนาคของหยคน้ำที่เข้าสู่เครื่องและในแต่ละวงแหวนไม่จำ เป็นต้องเท่ากัน แต่การจำลองจะแบ่งการกระจายขนาคของหยคน้ำที่เข้าสู่แต่ละวงแหวนเป็นช่วงๆ ขนาคช่วงละเท่าๆ กัน คังรูป3.4 และตาราง 3.1

3.1.6 การจำลองจะใช้วิธีรันท์- คัตตา ออเคอร์ที่ 4 (Fourth order Runge-Kutta) ในการ คำนวณ

รูป 3.2 พื้นที่หน้าตัดของเครื่อง

Class	Droplets	Diameter	Number	Number	Number	Total
number	class size	representing	droplets of	droplets of	droplets of	Number
(k)	(mm)	(micron)	annulus 1	annulus 2	annulus 3	of droplets
1	0-40	20	2.66E-09	1.60E-09	1.07E-09	5.33E-09
2	40-80	60	4.99E+00	2.99E+00	2.00E+00	9.98E+00
3	80-120	100	6.30E+03	3.78E+03	2.52E+03	1.26E+04
4	120-160	140	9.97E+04	5.98E+04	3.99E+04	1.99E+05
5	160-200	180	2.06E+05	1.24E+05	8.24E+04	4.12E+05
6	200-240	220	1.33E+05	7.99E+04	5.32E+04	2.66E+05
7	240-280	260	4.35E+04	2.61E+04	1.74E+04	8.70E+04
8	280-320	300	9.50E+03	5.70E+03	3.80E+03	1.90E+04
9	320-360	340	1.64E+03	9.81E+02	6.54E+02	3.27E+03
10	360-400	380	2.45E+02	1.47E+02	9.78E+01	4.89E+02
11	400-440	420	3.38E+01	2.03E+01	1.35E+01	6.76E+01
12	440-480	460	4.48E+00	2.69E+00	1.79E+00	8.96E+00
13	480-520	500	5.84E-01	3.50E-01	2.34E-01	1.17E+00
14	520-560	540	7.62E-02	4.57E-02	3.05E-02	1.52E-01
15	560-600	580	1.01E-02	6.04E-03	4.02E-03	2.01E-02
16	600-640	620	1.35E-03	8.12E-04	5.41E-04	2.71E-03
17	640-680	660	1.86E-04	1.12E-04	7.45E-05	3.73E-04
18	680-720	700	2.64E-05	1.58E-05	1.05E-05	5.27E-05
19	720-760	740	3.84E-06	2.30E-06	1.54E-06	7.68E-06
20	760-800	780	5.76E-07	3.46E-07	2.30E-07	1.15E-06
			5.00E+05	3.00E+05	2.00E+05	1.00E+06

ตาราง 3.1 ตัวอย่างจำนวนและการกระจายขนาดของหยดน้ำที่เข้าสู่เครื่อง

,

3.2 <u>สมมุติฐาน</u> (Assumption)

เนื่องจากปรากฎการณ์ที่เกิดขึ้นจริงภายในเครื่องระเหยหยคน้ำ เกรื่องเพิ่ม/ลดความชื้น และเครื่องลดอุณหภูมิน้ำมีความซับซ้อนมาก จำเป็นต้องอธิบายแบบจำลองหรือกระบวนการที่เกิด ขึ้นในอดุมคติด้วยสมการคณิตศาสตร์ ที่ซึ่งสามารถประมาณก่าคุณสมบัติที่เกิดได้จริง ดังนั้นวิทยา นิพนธ์ฉบับนี้จะอ้างถึงสมมุติฐานดังต่อไปนี้

3.2.1 ระบบเป็น steady state และไม่มีการสูญเสียพลังงานจากระบบ

3.2.2 หยดน้ำเป็นน้ำบริสุทธิ์มีลักษณะทรงกลมและกระจายตัวเพียงพอ ดังนั้นการ เคลื่อนที่และการระเทยจะเป็นอิสระต่อกัน ไม่มีการชนกันระหว่างหยดน้ำ

3.2.3 ทิศทางการเคลื่อนที่ของหยุดน้ำจะเคลื่อนเฉพาะในแนวคิ่งเท่านั้น นั่นคือหยุดน้ำ ไม่ออกนอกวงแหวนของมัน

3.2.4 หยุดน้ำวิ่งด้วยความเร็วแรกเริ่มเท่ากันและมีอุณหภูมิเท่ากันตลอดหน้าตัดของ เครื่อง

3.2.5 ลมร้อนที่เข้าสู่ระบบมีลักษณะเป็น plug flow นั่นคือลมร้อนมีความเร็ว อุณหภูมิ และความชื้นสม่ำเสมอเท่ากันตลอคหน้าตัดของเครื่อง

3.2.6 อิทธิพลจากผนังเครื่อง การแพร่ผสม และอัตราการถ่ายเทความร้อนในแนวระดับ มีน้อย

3.2.7 ระบบทำงานที่ความคันบรรยากาศ (1 atm)

3.3 สมการคุลมวลสารและพลังงาน และสมการการเคลื่อนที่

3.3.1 คุลมวลสารในเฟสของอากาศ (Gas-phase water balance), [kg/sec]

 $G_{A0} = [kg dry air/m^2 sec]$, $n = [-/m^2 sec]$ steady state : accumulation = 0

$$0 = 2\pi r \Delta r G_{a0} H \Big|_{z=z} - 2\pi r \Delta r G_{a0} H \Big|_{z=z+\Delta z} + \frac{h_c \pi D_p^2}{\lambda_p} \Big(T_a - T_p \Big) \left(n.2\pi r \Delta r \frac{\Delta Z}{V_p} \right)$$

หารด้วย $\Delta r \Delta Z$ ตลอดและ take $\lim_{\Delta r \to 0}$

$$0 = -2\pi r G_{a0} \frac{dH}{dZ} + \frac{h_c \pi D_p^2}{\lambda_p V_p} (T_a - T_p) (n.2\pi r)$$

$$\frac{dH}{dZ} = \frac{nh_c \pi D_p^2 (T_a - T_p)}{G_{a0} \lambda_p V_p}$$
(3.1)

3.3.2 คุณมวลสารรวม (Overall water balance), [kg/sec]

steady state : accumulation = 0

$$0 = 2\pi r \Delta r G_{a0} H \Big|_{z=z} - 2\pi r \Delta r G_{a0} H \Big|_{z=z+\Delta z}$$

$$+ \left(\frac{n\pi D_p^3 \rho_p}{6} \right) (2\pi r \Delta r) \Big|_{z=z} - \left(\frac{n\pi D_p^3 \rho_p}{6} \right) (2\pi r \Delta r) \Big|_{z=z+\Delta z}$$

หารด้วย $\Delta r \Delta Z$ ตลอดและ take $\lim_{\Delta r o 0}$

$$0 = -2\pi G_{a0} \frac{dH}{dZ} - 2\pi r \frac{n\pi\rho_p}{6} \frac{dD_p^3}{dZ}$$

$$0 = G_{a0} \frac{dH}{dZ} + \frac{3D_p^2 n\pi\rho_p}{6} \frac{dD_p}{dZ}$$

$$\frac{dH}{dZ} = -\frac{D_p^2 n\pi\rho_p}{2G_{a0}} \frac{dD_p}{dZ}$$
(3.2)
$$aun rs (3.1) = (3.2)$$

$$nh \pi D^2 (T - T) = -n\pi\rho D^2 dD$$

$$\frac{nn_c nD_p (I_a - I_p)}{G_{a0} \lambda_p V_p} = \frac{-nn \rho_p D_p}{2G_{a0}} \frac{dD_p}{dZ}$$

$$\frac{dD_p}{dZ} = \frac{-2h_c (T_a - T_p)}{\lambda_p V_p \rho_p}$$
(3.3)

3.3.3 คุลพลังงานในเฟสของน้ำ (Water-phase energy balance),[kJ/sec]

steady state : accumulation = 0

$$0 = \frac{n\pi D_p^3 \rho_p}{6} (2\pi r \Delta r C_p) (T_p - T_r) \bigg|_{z=z} - \frac{n\pi D_p^3 \rho_p}{6} (2\pi r \Delta r C_p) (T_p - T_r) \bigg|_{z=z+\Delta z}$$
$$+ n2\pi r \Delta r \frac{\Delta Z}{V_p} h_c \pi D_p^2 (T_a - T_p) - n2\pi r \Delta r \frac{\Delta Z}{V_p} k_g \pi D_p^2 (H_p - H) [\lambda_p + C_v (T_a - T_p)]$$

หารด้วย $\Delta r \Delta Z$ ตลอดและ take $\lim_{\Delta z \to 0}$

$$0 = \frac{-n\pi\rho_{p}(2\pi rC_{p})}{6} \frac{d\left[D_{p}^{3}(T_{p} - T_{r})\right]}{dZ} + \frac{n2\pi rh_{c}\pi D_{p}^{2}}{V_{p}}(T_{a} - T_{p})$$
$$-\frac{n2\pi rk_{g}\pi D_{p}^{2}}{V_{p}}(H_{p} - H)\left[\lambda_{p} + C_{v}(T_{a} - T_{p})\right]$$

$$\frac{D_{p}^{2}}{V_{p}} \left[k_{g} \lambda_{p} (H_{p} - H) + k_{g} C_{v} (H_{p} - H) (T_{a} - T_{p}) \right] - h_{c} (T_{a} - T_{p}) \\
= \frac{-\rho_{p} C_{p}}{6} \left[D_{p}^{3} \frac{dT_{p}}{dZ} + 3D_{p}^{2} (T_{p} - T_{r}) \frac{dD_{p}}{dZ} \right]$$
(3.4)

จากความสัมพันธ์ (Lewis relation)

$$k_g = \frac{h_c}{C_h}$$

โดยที่ $C_h = 4.1868(0.24 + 0.46H)$

และแทนค่าสมการ (3.3) ใน (3.4) และจัครูปสมการ

$$\frac{dT_{p}}{dZ} = \left(\frac{-6h_{c}}{\rho_{p}D_{p}V_{p}C_{p}}\right) \left[\frac{\lambda_{p}(H_{p}-H)}{C_{h}} + \frac{C_{v}(H_{p}-H)(T_{a}-T_{p})}{C_{h}} - (T_{a}-T_{p}) - \frac{C_{p}(T_{p}-T_{r})(T_{a}-T_{p})}{\lambda_{p}}\right]$$
(3.5)

3.3.4 คุลพลังงานรวม (Overall energy balance),[kJ/sec]

steady state : accumulation = 0

$$0 = \frac{n\pi D_{p}^{3}\rho_{p}}{6} (2\pi r\Delta rC_{p})(T_{p} - T_{r}) \bigg|_{z=z} - \frac{n\pi D_{p}^{3}\rho_{p}}{6} (2\pi r\Delta rC_{p})(T_{p} - T_{r}) \bigg|_{z=z+\Delta z}$$

$$+ 2\pi r\Delta rG_{a0}C_{h}(T_{a} - T_{r}) \bigg|_{z=z} - 2\pi r\Delta rG_{a0}C_{h}(T_{a} - T_{r}) \bigg|_{z=z+\Delta z}$$

$$+ 2\pi r\Delta rG_{a0}\lambda_{r}H \bigg|_{z=z} - 2\pi r\Delta rG_{a0}\lambda_{r}H \bigg|_{z=z+\Delta z}$$

$$M15 \mathring{A} 2 U \Delta r\Delta Z \text{ RABAUAL: take } \lim_{\Delta z \to 0}$$

$$0 = \frac{-n\pi \rho_{p}C_{p}}{6} \frac{d[D_{p}^{3}(T_{p} - T_{r})]}{dZ} - G_{a0} \frac{d[C_{h}(T_{a} - T_{r})]}{dZ} - G_{a0}\lambda_{r} \frac{dH}{dZ}$$

$$0 = \frac{-n\pi \rho_{p}C_{p}D_{p}^{3}}{6} \frac{dT_{p}}{dZ} - \frac{3n\pi \rho_{p}C_{p}D_{p}^{2}(T_{p} - T_{r})}{6} \frac{dD_{p}}{dZ}$$

$$-G_{a0}C_{h} \frac{dT_{a}}{dZ} - (4.1868 * 0.46)G_{a0}(T_{a} - T_{r})\frac{dH}{dZ} - G_{a0}\lambda_{r} \frac{dH}{dZ}$$

$$\frac{dT_{a}}{dZ} = \frac{-n\pi \rho_{p}C_{p}D_{p}^{3}}{6} \frac{dT_{p}}{dZ} - \frac{n\pi \rho_{p}C_{p}D_{p}^{2}(T_{p} - T_{r})}{2G_{a0}C_{h}} \frac{dD_{p}}{dZ}$$

$$-\left[\frac{(4.1868 * 0.46)(T_{a} - T_{r}) + \lambda_{r}}{C_{h}}\right]\frac{dH}{dZ}$$
(3.6)

แทนค่าสมการ (3.1),(3.3),(3.5) ใน (3.6) และจัครูปสมการ

$$\frac{dT_{a}}{dZ} = \left(\frac{nh_{c}\pi D_{p}^{2}}{V_{p}G_{a0}C_{h}}\right) \left[\frac{\lambda_{p}(H_{p}-H)}{C_{h}} + \frac{C_{v}(H_{p}-H)(T_{a}-T_{p})}{C_{h}} - (T_{a}-T_{p}) - \frac{C_{p}(T_{p}-T_{r})(T_{a}-T_{p})}{\lambda_{p}}\right] + \left(\frac{nh_{c}C_{p}\pi D_{p}^{2}}{V_{p}G_{a0}C_{h}\lambda_{p}}\right) (T_{p}-T_{r})(T_{a}-T_{p}) - \frac{(T_{p}(T_{p}-T_{r})(T_{a}-T_{p}))}{\lambda_{p}} - \left(\frac{nh_{c}\pi D_{p}^{2}}{V_{p}G_{a0}C_{h}\lambda_{p}}\right) (T_{a}-T_{p}) \left[(4.1868*0.46)(T_{a}-T_{r}) + \lambda_{r}\right]$$
(3.7)

3.3.5 ความเร็วของหยุ<u>คของเหลว</u> [m/sec] ความเรื่วสัมพัทธ์ , $V_r = \sqrt{V_{px}^2 + (V_{py} - V_a)^2}$ สมมุติให้มีการเคลื่อนที่แกน Y อย่างเคียว , $V_{\mu x}=0$ คังนั้น $V_r=V_{\mu y}-V_a$ แรงด้านทานการ ใหล, $R = C_D \frac{\pi D_p^2}{4} \frac{\rho_a V_r^2}{2}$ สัมประสิทธิความค้านทานการใหล, C_p $=\frac{24}{\text{Re}_{n}}$ $(\operatorname{Re}_p \leq 2)$ $=\frac{10}{\operatorname{Re}_{p}^{0.5}} \qquad (2 \le \operatorname{Re}_{p} \le 500)$ $(Re_{n} \ge 500)$ = 0.44โดยที่ Re_p = $\frac{D_p V_r \rho_a}{\mu}$ ดังนั้น $R_{py} = R\sin\beta = \left(\frac{\pi D_p^2 C_D \rho_a V_r}{8}\right) (V_{py} - V_a)$ ดังนั้นสมการการเคลื่อนที่ของหยุดของเหลว คือ $\frac{\rho_{p}\pi D_{p}^{3}}{6}\frac{dV_{py}}{dt} = \frac{\rho_{p}\pi D_{p}^{3}}{6}\left(\frac{\rho_{p}-\rho_{a}}{0}\right)g - \left(\frac{\pi D_{p}^{2}C_{D}\rho_{a}V_{r}}{8}\right)(V_{py}-V_{a})$ $\frac{dV_{py}}{dt} = \left(\frac{\rho_p - \rho_a}{\rho_a}\right)g - \left(\frac{3C_D\rho_a}{4D\rho_a}\right)(V_{py} - V_a)^2$ $\left(\frac{dZ}{dt}\right)\left(\frac{dV_{py}}{dZ}\right) = \left(\frac{\rho_p - \rho_a}{\rho}\right)g - \left(\frac{3C_D\rho_a}{4D\rho}\right)(V_{py} - V_a)^2$

$$\frac{dV_{py}}{dZ} = \left(\frac{\rho_p - \rho_a}{\rho_p}\right) \frac{g}{V_{py}} - \left(\frac{3C_D \rho_a}{4D_p \rho_p V_{py}}\right) (V_{py} - V_a)^2$$
(3.8)

3.4 การทำเป็นตัวแปรไร้มิดิ (Dimensionless)

$$\begin{split} D_{p0ave} &= \frac{\sum f_n (D_p) (D_p)}{100} & D_{pjk}^* = \frac{D_{pjk}}{D_{p0ave}} \\ \Delta Z^* &= \frac{\Delta Z}{D_t} & T_{pjk}^* = \left(\frac{T_{pjk} - T_{p0}}{T_{a0} - T_{p0}}\right) \\ T_{aj}^* &= \left(\frac{T_{aj} - T_{p0}}{T_{a0} - T_{p0}}\right) & T_r^* = \left(\frac{T_r - T_{p0}}{T_{a0} - T_{p0}}\right) \\ V_{pjk}^* &= \frac{V_{pjk}}{V_{p0}} & V_{a0}^* = \frac{V_{a0}}{V_{p0}} \\ H_{aj}^* &= H_{aj} & H_{jjk}^* = H_{jjk} \\ n_k^* &= \frac{n_k D_{p0ave}}{V_{p0}} & \alpha_{jk}^* = \frac{C_{pp} (T_{a0} - T_{p0})}{\lambda_{pjk}} \\ \beta_{jk}^* &= \frac{\lambda_{pjk}}{C_h (T_{a0} - T_{p0})} & \gamma_{jk}^* = \frac{h_{qjk} (T_{a0} - T_{p0})}{\lambda_{pjk} G_{a0}} \end{split}$$

3.5 <u>สรุปสมการแบบจำลองคณิตศาสตร์</u>

44

จากสมการ (3.1),(3.3),(3.5),(3.7) และ (3.8) ทำเป็นรูปไร้มิติและจัครูปจะได้

$$\frac{dH_{aj}^{*}}{dZ^{*}} = \pi \left(\frac{D_{t}}{D_{p0ave}}\right) \sum_{k=1}^{kclss} \left[\gamma_{jk}^{*} \left(\frac{n_{k}^{*} D_{pjk}^{*2}}{V_{pjk}^{*}}\right) \left(T_{aj}^{*} - T_{pjk}^{*}\right)\right]$$
(3.9)

$$\frac{dD_{pjk}^*}{dZ^*} = -2\left(\frac{D_t}{D_{p0ave}}\right)\left(\frac{h_{cjk}\left(T_{a0} - T_{p0}\right)}{\rho_{pjk}\lambda_{pjk}V_{p0}}\right)\left(\frac{T_{aj}^* - T_{pjk}^*}{V_{pjk}^*}\right)$$
(3.10)

$$\frac{dT_{pjk}^{*}}{dZ^{*}} = -6 \left(\frac{D_{t}}{D_{p0axe}} \right) \left(\frac{h_{cjk}}{\rho_{pjk}C_{pp}V_{p0}} \right) \left(\frac{1}{D_{pjk}^{*}V_{pjk}^{*}} \right) \\
\left[\beta_{jk}^{*} \left(H_{pjk}^{*} - H_{aj}^{*} \right) + \left(\frac{C_{v}}{C_{h}} \right) \left(T_{aj}^{*} - T_{pjk}^{*} \right) \left(H_{pjk}^{*} - H_{aj}^{*} \right) \right] \\
- \left(T_{aj}^{*} - T_{pjk}^{*} \right) - \alpha_{jk}^{*} \left(T_{aj}^{*} - T_{pjk}^{*} \right) \left(T_{pjk}^{*} - T_{r}^{*} \right) \right]$$
(3.11)

$$\begin{aligned} \frac{dT_{qi}^{*}}{dZ^{*}} &= \pi \left(\frac{D_{t}}{D_{p0aw}} \right)_{k=1}^{kets} \left[\begin{bmatrix} \beta_{jk}^{*} \left(H_{jjk}^{*} - H_{qj}^{*} \right) + \left(\frac{C_{v}}{C_{h}} \right) \left(T_{qj}^{*} - T_{jjk}^{*} \right) \left(H_{jjk}^{*} - H_{qj}^{*} \right) \right] \\ &- \left(T_{qi}^{*} - T_{jjk}^{*} \right) - \alpha_{jk}^{*} \left(T_{qj}^{*} - T_{jjk}^{*} \right) \left(T_{jjk}^{*} - T_{r}^{*} \right) \\ &\left[\beta_{jk}^{*} \gamma_{jk}^{*} \left(\frac{n_{k}^{*} D_{jjk}^{*2}}{V_{jjk}^{*}} \right) \right] \\ &+ \pi \left(\frac{D_{t}}{D_{p0aw}} \right)_{k=1}^{kets} \left[\gamma_{jk}^{*} \left(\frac{C_{pp}}{C_{h}} \right) \left(\frac{n_{k}^{*} D_{jjk}^{*2}}{V_{jjk}^{*}} \right) \left(T_{qj}^{*} - T_{jjk}^{*} \right) \left(T_{jjk}^{*} - T_{r}^{*} \right) \right] \\ &- \pi \left(\frac{D_{t}}{D_{p0aw}} \right) \left[\left(\frac{4.1868 * 0.46}{C_{h}} \right) \left(T_{qj}^{*} - T_{r}^{*} \right) + \frac{\lambda_{r} \left(T_{a0} - T_{p0} \right)}{C_{h}} \right] \right] \\ &\frac{kets}{k=1} \left[\gamma_{jk}^{*} \left(\frac{n_{k}^{*} D_{jk}^{*2}}{V_{jjk}^{*}} \right) \left(T_{qj}^{*} - T_{jjk}^{*} \right) \right] \\ &\text{stasum } V_{px} = 0 \tilde{\mathfrak{s}} \tilde{\mathfrak{s}} \tilde{\mathfrak{s}} \mathcal{I} V_{p} = V_{gy} \\ &\frac{dV_{pjk}^{*}}{dZ^{*}} = \left(\frac{\rho_{pjk} - \rho_{qj}}{\rho_{pjk}} \right) \left(\frac{gD_{t}}{V_{p0}^{*}} \right) \left(\frac{1}{V_{pjk}^{*}} \right) - \left(\frac{3C_{D}}{4} \right) \left(\frac{D_{t}}{D_{p0aw}} \right) \left(\frac{\rho_{qj}}{\rho_{pjk}} \right) \frac{\left(V_{jjk}^{*} - V_{a0}^{*} \right)^{2}}{V_{jjk}^{*} D_{jjk}^{*}} \right) \\ &\text{fau} \\ &h = - \frac{k_{qj}}{2} \left(2 O_{t} + 0.60 \sqrt{D_{t}^{*} | V_{t}^{*} - V_{t}^{*} | \left(\frac{C_{pa} \mu_{qj}}{P_{qj}} \right)^{0.33} \left(\frac{D_{p0aw} V_{p0} \rho_{qj}}{P_{0}^{0.5}} \right)^{0.5} \right] \\ \end{aligned}$$

$$h_{cjk} = \frac{k_{dj}}{D_{p0ave} D_{pjk}^{*}} \left\{ 2.0 + 0.60 \sqrt{D_{pjk}^{*} |V_{pjk}^{*} - V_{a0}^{*}|} \left(\frac{C_{pa} \mu_{aj}}{k_{dj}} \right)^{0.3} \left(\frac{D_{p0ave} V_{p0} \rho_{aj}}{\mu_{aj}} \right)^{0.5} \right\}$$
(3.14)

$$\hat{\nabla}_{vin} h_{dj}, C_{pa}, \mu_{aj} \text{ unar } \rho_{aj} \text{ hiupau } u \text{ parylivel with his}, T_{f} = \frac{\left(T_{a} + T_{p} \right)}{2}$$

3.6 <u>วิธีการคำนวณ</u>

การคำนวณการเปลี่ยนแปลงขนาด อุณหภูมิ และความเร็วของหยดน้ำ การเปลี่ยนแปลง อุณหภูมิและความชื้นของอากาศที่ความสูงต่างๆ ภายในเครื่องระเหยหยดน้ำ เครื่องเพิ่ม/ลคความ ชื้นอากาศ และเครื่องลดอุณหภูมิน้ำ จะคำนวณได้จากการแก้สมการดิฟเฟอเรนเซียลหลัก 5 สมการ คือสมการ (3.9),(3.10),(3.11),(3.12) และ (3.13) ซึ่งจะทำการคำนวณพร้อมๆ กันโดยใช้วิธีรันท์ -คัตศา ออเดอร์ที่4 จำนวนสมการที่ใช้ในการคำนวณจะขึ้นกับจำนวนวงแหวนของเครื่องและ จำนวนช่วงขนาดของหยดน้ำ คัวอย่างเช่น กรณีที่เครื่องถูกแบ่งออกเป็น 5 วงแหวน และหยดน้ำมี 20 ช่วงขนาดหรืออันตรภาคชั้น จำนวนสมการที่ใช้คำนวณพร้อมๆกันจะเท่ากับ (3*5*20) + (2*5) = 310 สมการ ซึ่งสามารถเขียนเป็นสมการทั่วไปได้ดังนี้

ค่าในวงเล็บแรกค้านขวาของสมการ (3.15) คือ จำนวนสมการที่ใช้คำนวณการเปลี่ยนแปลง ขนาค อุณหภูมิ และความเร็วของหยคน้ำ ค่าในวงเล็บที่สอง คือ จำนวนสมการที่ใช้คำนวณการ เปลี่ยนแปลงอุณหภูมิและความชื้นของอากาศ

การคำนวณสมการหลักทั้ง 5 จำเป็นต้องใช้ค่าคุณสมบัติต่างๆของน้ำและอากาศเป็นข้อมูลใน การคำนวณ ค่าคุณสมบัติต่างๆนี้จะทำการคำนวณใหม่ทุกครั้งขึ้นกับสภาวะในขณะนั้น (ดูวิธีการ คำนวณคุณสมบัติต่างๆในภาคผนวก)

เมื่อทำการคำนวณการเปลี่ยนแปลงคุณลักษณะของหยคน้ำและอากาศที่ความสูงแรกเสร็จ ข้อมูลที่คำนวณได้ที่ความสูงแรกจะใช้ในการคำนวณการเปลี่ยนแปลงคุณลักษณะของหยดน้ำและ อากาศที่ความสูงถัดไป และจะทำการคำนวณเช่นนี้เรื่อยไปจนกว่าการคำนวณจะเสร็จสมบูรณ์ดัง แสดงในรูป 3.5

รูป 3.5 ผังการคำนวณอย่างง่ายของโปรแกรมหลัก

3.7 ผลการทดสอบความถูกต้องของแบบจำลอง

3.7.1 กรณีที่หยุดน้ำและลมร้อนไม่มีความเร็วสัมพัทธ์

รูป 3.6 แสดงความสัมพันธ์ระหว่างคัชนีการระเทย (Evaporation index, y) กับสัคส่วน ของปริมาตรหยดน้ำที่ยังไม่ระเทย (Volume fraction unevaporated, F)ของหยดน้ำที่มีการ กระจายขนาดแบบ log-normal โดยมีส่วนเบี่ยงเบนมาตรฐาน, $\sigma = 0,0.2$ และ 0.4 เปรียบเทียบกับ ค่าที่ได้จากผลงานวิจัยของ Dickinson และ Marshall (23), ค่าของตัวแปรและพารามิเตอร์ต่างๆ ที่ใช้ในการจำลองแสดงไว้ในตาราง 3.2

จากรูป 3.6 พบว่าหยดน้ำที่มีการกระจายขนาดแคบกว่าจะระเหยเสร็จสมบูรณ์เร็วกว่า หยดน้ำที่มีการกระจายขนาดกว้างกว่า เนื่องจากหยดน้ำขนาดใหญ่ที่มีอยู่จำนวนมากจะมีพื้นที่ ผิวน้อย จึงเกิดอัตราการระเหยที่น้อยกว่า

เมื่อเปรียบเทียบแบบจำลองที่พัฒนาขึ้นกับผลงานวิจัย (23) พบว่ากรณีที่หยคน้ำมีขนาด เดียว ค่าที่ได้จากแบบจำลองจะมีค่าเท่ากัน ส่วนกรณีที่หยคน้ำมีหลายขนาด ค่าที่ได้จากแบบ จำลองจะมีค่าแตกต่างกันบ้างแต่มีแนวโน้มเดียวกัน ซึ่งอาจเนื่องมาจากสาเหตุดังต่อไปนี้

- การใช้ค่ากึ่งกลางในแต่ละช่วงขนาดของหยุดน้ำเป็นตัวแทนหยุดน้ำขนาดต่างๆ ใน ช่วงขนาดนั้น อาจไม่สามารถเป็นตัวแทนหยุดน้ำขนาดต่างๆ ได้ทั้งหมุดในสภาวะที่ เกิดขึ้นจริง
- การคำนวณค่าสัมประสิทธิการถ่ายเทความร้อนของแบบจำลองจะใช้ค่าอุณหภูมิ ฟิล์มของอากาศที่ได้จากการคำนวณใหม่ทุกครั้งคามอุณหภูมิของหยคน้ำและอากาศ ที่เปลี่ยนไป ต่างจากผลงานวิจัย (23) ซึ่งจะใช้เป็นค่าประมาณโดยคำนวณที่อุณหภูมิ เฉลี่ยคงที่ค่าหนึ่งเท่านั้น
- ค่าความหนีคและค่าความนำความร้อนของอากาศชื้นที่ใช้ในแบบจำลองจะคำนวณ โดยพิจารณาอากาศชื้นเป็นของผสมระหว่างไอน้ำและอากาศแห้ง ค่าความหนืคและ ค่าความนำความร้อนจะคำนวณใหม่ทุกครั้งขึ้นกับสัคส่วนของไอน้ำกับอากาศแห้ง ที่เปลี่ยนไป ต่างจากผลงานวิจัย (23) ซึ่งจะใช้เป็นค่าคงที่ไม่เปลี่ยนตามอุณหภูมิ
- ค่าคุณสมบัติต่างๆของน้ำ ไอน้ำ และอากาส เช่น ความจุความร้อนจำเพาะ ความหนา แน่น ความร้อนจำเพาะชื้นของอากาส ความร้อนแฝงของการระเหย ในแบบจำลอง จะคำนวณใหม่ทุกครั้งขึ้นกับอุณหภูมิของน้ำ ไอน้ำ และ อากาสที่เปลี่ยนไป ต่างจาก ผลงานวิจัย (23) ซึ่งจะใช้เป็นค่าคงที่ไม่เปลี่ยนตามอุณหภูมิ

ตาราง 3.2 ค่าของตัวแปรและพารามิเตอร์ต่างๆ ที่ใช้ในการทดสอบความถูกต้องของแบบจำลองใน เครื่องระเทยทยดน้ำ กรณีที่หยดน้ำและลมร้อนไม่มีความเร็วสัมพัทธ์ โดยที่หยดน้ำมีการกระจาย ขนาดแบบ log-normal,σ = 0,0.2 และ 0.4 โดยมีขนาดเฉลี่ย 200 ไมครอน

	$\Omega = 0$	σ=0.2	σ=0.4	
<u>ขนาดของเครื่อง</u>				
ความสูงของเครื่อง	10	10	10	m
เส้นผ่านศูนย์กลางของเครื่อง	4	4	4	m
<u>ลักษณะสมบัติของหยุดน้ำ</u>				
จำนวนหยคน้ำทั้งหมด	8767245	8256530	6919913	drop/m ² s
ขนาดเส้นผ่านสูนย์กลางที่ใหญ่ที่สุด	200	800	800	micron
ขนาดเส้นผ่านสูนย์กลางที่เล็กที่สุด	200	50	50	micron
อุณหภูมิของหยุดน้ำ	333.16	333.16	333.16	К
ความเรื่วของหยุดน้ำ	0.8	0.8	0.8	m/s
<u>ลักษณะสมบัติของลมร้อน</u>				
อุณหภูมิของลมร้อน	533.16	533.16	533.16	К
ความชื้นของถมร้อน	0.0	0.0	0.0	kg vapor/kg dry air
อัตราการใหลเชิงมวลของลมร้อน	0.5298	0.5298	0.5298	kg dry air/m ² s
<u>เงื่อนไขของการจำลอง</u>				
จำนวนวงแหวนของเครื่อง	1	1	1	annulus
จำนวนช่วงขนาดของหยดน้ำ	1	20	20	class
ความสูงเริ่มต้นของการจำลอง	0.0	0.0	0.0	m
สัคส่วนหยคน้ำที่ใช้หยุคการจำลอง	0.001	0.001	0.001	
Step size ที่ใช้ในการจำลอง	2*10⁻⁵	2*10⁻⁵	2*10 ⁻⁵	m
ความถี่ที่แสดงผลของการจำลอง	2500	2500	10000	
จำนวนหยุดน้ำในวงแหวนที่ 1	100.00	100.00	100.00	%
จำนวนหยดน้ำในช่วงขนาดที่ เ	100.00	0.00179	1.9117	%
จำนวนหยดน้ำในช่วงขนาดที่ 2		0.93684	10.061	%
จำนวนหยุดน้ำในช่วงขนาดที่ 3		14.0200	18.185	%
จำนวนหยดน้ำในช่วงขนาดที่ 4		35.0420	19.815	%

ā.	จำนวนหยดน้ำในช่วงขนาดที่ 5
	จำนวนหยดน้ำในช่วงขนาดที่ 6
	จำนวนหยดน้ำในช่วงขนาดที่ 7
	จำนวนหยดน้ำในช่วงขนาดที่ 8
	จำนวนหยดน้ำในช่วงขนาดที่ 9
	จำนวนหยดน้ำในช่วงขนาดที่ 10
	จำนวนหยดน้ำในช่วงขนาดที่ 11
	จำนวนหยุดน้ำในช่วงขนาดที่ 12
	จำนวนหยดน้ำในช่วงขนาดที่ 13
	จำนวนหยดน้ำในช่วงขนาดที่ 14
	จำนวนหยดน้ำในช่วงงนาดที่ 15
	จำนวนหยดน้ำในช่วงขนาดที่ 16
	จำนวนหยดน้ำในช่วงขนาดที่ 17
	จำนวนหยดน้ำในช่วงขนาดที่ 18
	จำนวนหยดน้ำในช่วงขนาดที่ 19
	จำนวนหยคน้ำในช่วงขนาคที่ 20

30.4900	16.627	%
13.9440	12.076	%
4.28360	8.0706	%
1.02560	5.1371	%
0.20989	3.1785	%
0.03895	1.9361	%
0.00682	1.1704	%
0.00115	0.70593	%
0.00019	0.42627	%
.32004*10 ⁻⁴	0.25832	%
.53541*10 ⁻⁵	0.15733	%
.90646*10 ⁻⁶	0.09641	%
.15596 * 10 ⁻⁶	0.05948	%
.27348*10 ⁻⁷	0.03696	%
.48974*10 ⁻⁸	0.02314	%
.89679*10 ⁻⁹	0.01460	%

รูป 3.6 เปรียบเทียบค่าที่คำนวณจากแบบจำลองกับผลงานวิจัยของ Dickenson และ Marshall กรณีที่หยดน้ำมีการกระจายขนาดแบบ log-normal และ ไม่มีความเร็วสัมพัทธ์กับลมร้อน

3.7.2 กรณีที่หยุดน้ำและลมร้อนมีความเร็วสัมพัทธ์

รูป 3.7 แสดงความสัมพันธ์ระหว่างดัชนีการระเหยกับสัดส่วนของปริมาตรหยดน้ำที่ยัง ไม่ระเหย ของหยดน้ำที่มีการกระจายขนาดแบบ log-normal โดยมีส่วนเบี่ยงเบนมาตรฐาน, σ = 0.4 ที่ขนาดเฉลี่ยของหยดน้ำ 50 100 และ 200 ไมครอน เปรียบเทียบกับค่าที่ได้จากผลงานวิจัย ของ Dickinson และ Marshall (23), ค่าของตัวแปรและพารามิเตอร์ต่างๆ ที่ใช้ในการจำลอง แสดงไว้ในตาราง 3.3

จากรูป 3.7 พบว่าหยดน้ำที่มีความเร็วแรกเริ่มเท่ากัน ผลของความเร็วสัมพัทธ์จะเด่นชัด ที่สุดกับหยดน้ำที่มีขนาดเล็ก เมื่อหยดน้ำมีขนาดเล็กลง ทั้งระยะทางที่ใช้ในการระเหยและระยะ ทางที่ใช้ในการลดความเร็วจะมีค่าลดลง อย่างไรก็ตามเมื่อเปรียบเทียบระยะทางที่ลดลงกับหยด น้ำขนาดใหญ่ พบว่าหยดน้ำขนาดเล็กจะมีการลดลงของระยะทางมากกว่า หยดน้ำขนาดเล็กจะมี สัดส่วนในช่วงที่ลดความเร็วเมื่อเทียบกับช่วงที่ความเร็วคงที่(ความเร็วบั้นปลาย)มากกว่า และมี ความเร็วเฉลี่ยมากกว่าหยดน้ำขนาดใหญ่ ดังนั้นหยดน้ำขนาดเล็กจึงใช้ระยะทางมากกว่าหยดน้ำ ขนาดใหญ่ในการที่จะระเหยน้ำในปริมาณเท่าๆกัน

เมื่อเปรียบเทียบแบบจำลองกับผลงานวิจัย (23) พบว่ามีแตกต่างกันบ้างแต่มีแนวโน้ม เดียวกัน ซึ่งอาจเนื่องจากสาเหตุเดียวกันกับข้อ 3.7.1 ดังได้กล่าวมาแล้ว คาราง 3.3 ค่าของตัวแปรและพารามิเตอร์ต่างๆ ที่ใช้ในการทคสอบความถูกต้องของแบบจำลองใน เครื่องระเหยหยคน้ำ กรณีที่หยคน้ำและลมร้อนมีความเร็วสัมพัทธ์ โดยที่หยคน้ำมีการกระจายขนาด แบบ log-normal,σ = 0.4 และมีขนาดเฉลี่ย 50,100 และ 200 ไมครอน

	$D_{p} = 50$	$D_{p} = 100$	$D_{p} = 200$	
<u>ขนาดของเครื่อง</u>				
ความสูงของเครื่อง	10	10	10	m
เส้นผ่านศูนย์กลางของเครื่อง	4	4	4	m
<u>ลักษณะสมบัติของหยุดน้ำ</u>				
จำนวนหยดน้ำทั้งหมด	441591405	55198772	6919060	drop/m ² s
ขนาดเส้นผ่านสูนข์กลางที่ใหญ่ที่สุด	250	500	800	micron
ขนาดเส้นผ่านสูนข์กลางที่เล็กที่สุด	0.0	0.0	0.0	micron
อุณหภูมิของหยุดน้ำ	333.16	333.16	333.16	K
ความเร็วของหยุดน้ำ	40.8	40.8	40.8	m/s
<u>ลักษณะสมบัติของลมร้อน</u>				
อุณหภูมิของลมร้อน	533.16	533.16	533.16	К9
ความชื้นของลมร้อน	0.0	0.0	0.0	kg vapor/kg dry air
อัตราการใหลเชิงมวลของลมร้อน	0.5298	0.5298	0.5298	kg dry air/m ² s
<u>เงื่อนไขของการจำลอง</u>				
จำนวนวงแหวนของเครื่อง	1	I	1	annulus
จำนวนช่วงขนาดของหยดน้ำ	20	20	20	class
ความสูงเริ่มต้นของการจำลอง	0.0	0.0	0.0	m
สัคส่วนหยคน้ำที่ใช้หยุคการจำลอง	0.001	0.001	0.001	
Step size ที่ใช้ในการจำลอง	2*10 ⁻⁵	2*10 ⁻⁵	2*10 ⁻⁵	m
ความถี่ที่แสคงผลของการจำลอง	2500	25000	25000	
จำนวนหยดน้ำในวงแหวนที่ เ	100.00	100.00	100.00	%
จำนวนหยดน้ำในช่วงขนาดที่ เ	0.02644	0.02644	0.00287	%
จำนวนหยดน้ำในช่วงขนาดที่ 2	4.1295	4.1295	1.0961	%
จำนวนหยดน้ำในช่วงขนาดที่ 3	19.445	19.445	8.9800	%
จำนวนหยดน้ำในช่วงขนาดที่ 4	26.399	26.399	18.768	%

จำนวนหยดน้ำในช่วงขนาดที่ 5	21.153	21.153	21.153	%
จำนวนหยดน้ำในช่วงขนาดที่ 6	13.310	13.310	17.573	%
จำนวนหยดน้ำในช่วงขนาดที่ 7	7.4471	7.4471	12.414	%
จำนวนหยดน้ำในช่วงขนาดที่ 8	3.9341	3.9341	8.0128	%
จำนวนหยดน้ำในช่วงขนาดที่ 9	2.0245	2.0245	4.9142	%
งำนวนหยดน้ำในช่วงขนาดที่ 10	1.0325	1.0325	2.9294	%
จำนวนหยดน้ำในช่วงขนาดที่ 11	0.52702	0.52702	1.7206	%
จำนวนหยดน้ำในช่วงขนาดที่ 12	0.27079	0.27079	1.0043	%
จำนวนหยดน้ำในช่วงขนาดที่ 13	0.14052	0.14052	0.58581	%
จำนวนหยดน้ำในช่วงขนาดที่ 14	0.07379	0.07379	0.34264	%
จำนวนหยุดน้ำในช่วงขนาดที่ 15	0.03925	0.03925	0.20144	%
จำนวนหยดน้ำในช่วงขนาดที่ 16	0.02115	0.02115	0.11920	%
จำนวนหยุดน้ำในช่วงขนาดที่ 17	0.01155	0.01155	0.07107	%
จำนวนหยดน้ำในช่วงขนาดที่ 18	0.00640	0.00640	0.04272	%
จำนวนหยดน้ำในช่วงขนาดที่ 19	0.00359	0.00359	0.02589	%
จำนวนหยดน้ำในช่วงขนาดที่ 20	0.00204	0.00204	0.01583	%

•

รูป 3.7 เปรียบเทียบค่าที่คำนวณจากแบบจำลองกับผลงานวิจัยของ Dickenson และ Marshall กรณีที่หยุคน้ำมีการกระจายขนาคแบบ log-normal,σ=0.4 และมีความเร็วสัมพัทธ์กับลมร้อน