THEORETICAL BACKGROUND

Introduction.

Nonlinear theories in continuum mechanics have been in
existence for many years with very limited applications. For most
practical problems, nonlinear analyses can be performed only with the
aid of numerical methods. In this chapter, the basic principles of
nonlinear structural mechanics cure reviewed , using the principle of
virtual displacements, a variational form of the incremental equation
of motion for nonlinear static analysis is derived for structures
undergoing large displacements and large strains. Then the
discretization of the equations of motion using the finte element
displacement formulation is discussed. The derivation of the element
matrices is performed for the particular case of a three dimensional
isoparametric hexahedral finite element.

An Incremental Nonlinear Formulation of Equations of Motion
for Finite Deformation.

1. Introduction to the Concept of the Incremental Nonlinear
Formulation of the Equations of Motion.

Basically, two diffemt approaches have been pursued in



7

the incremental nonlinear finite element analysis. In the first,
kinematic —and kinetic variables are referred to the initial
configuration.  This  procedure is generally called Lagrangian
formulation. In the second approach which is generally called
Eulerian, moving coordinate or update formulation, all the kinematic
and kinetic variables are referred to an updated configuration in each
load step. The Lagrangian and Eulerian formulation differ in the
identification and transformation of kinematic and kinetic variables.
Given consistent material laws, both descriptions are theoretically
equivalent because they use the same balance pricinples. The choice
between the two formulations, therefore, depends upon the ease and the
relative numerical effectiveness of the method. In this research,
nonlinear finite element formulation will be developed based on the
Lagrangian description of motion due to the following advantages.

(a) Large displacement effects are implicit in the strain
displacement relationships, so that the element property matrices need
not be explicitly transformed to account for updating of the nodal
coordinates resulting from changes in geometry.

(b) The material laws may be simpler to express because
the stress are always referred to the undeformed configuration.

(c) The stresses are obtained through the process of
simple additions whereas in the formulation wusing the Eulerian
description, the stresses will be obtained by transformation and
addition.

In the following section, consistent formulation of
equations of motion for finite deformation response will be developed
using the concept of the incremental theory in connection with the



8

principle of virtual work. Kinematic and kinetic variables are derived
from the basic theories in continuum mechanics. The formulation

presented here closely follows those appearing in references (10,11).

Conceptually, the formulation of the incremental nonlinear
equations of motion requires that the path of deformation of a body be
divided into a number of equilibrium states , 3 ,..., ", "1 ..,

where ° and ~ are the initial and final states of the

deformation  respectively, while is an arbitrary intermediate
state. It is assumed that all of state variables such as stresses,
strains and displacements, together with the loading history, are

known up to the " state and the state variables in the "+1 state are
required next. Then the equation of incremental virtual work between
the state " and "+1 s established to express the equilibrium of the
body in the state "+1 . However, the configuration at 1+l is unknown,
and therefore all the state variables must be referred to a known or
previously calculated equilibrium state. In principle, any one of the
already calculated equilibrium states can be used. Basically, the
state variables are referred to either the initial ° state or the

current equilibrium " state and the corresponding formulations are
called Lagrangian formulation and Eulerian respectively. The stresses
and strains in the first formulation are the second Piola-Kirchhoff
stress and the Green-Lagrange strain, while those in the second
formulation are the Cauchy stress and strain. The incremental process
for the next required equilbrium state is typical and would be applied

repetitively until the final state, - , has been reached.

Consider the motion of the body as shown in Figure 2.1.
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There are three configulations in its path of deformation that are of

interest, i.e.,
(@) the undeformed configuration €0,
(b) the current deformed configuration €1, and
(c) a second deformed configuration €2
taken as a neighboring configuration to the current deformed

configuration €1,

The state variables in configuration €1 and €2 are defined

as follows:

S » E ', »HI . Ifl in €1
L 1.8y Zf’ in €2
where 1, E10, 1, 11l and f1 are stresses, strains, displacements,
surface tractions and body forces, respectively; a left superscript

indicates the configuration of the body in which the quantity occurs.

The incremental decomposition of the state variables are

given by

=‘ 1 + 1y <2_Ia>

'*1, =E,, + E,, <2-1b)

:\ * ) (2.1c)
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where 1), EtJ and 1 are incremental stress, incremental strain and
incremental displacement between ¢ and C2.

There are three state variables describing the state of
deformation that are stresses, strains and displacements. These state
variables are related by the following natural relations:

(a) Kinematic Relations or Strain-displacement Relations

(b) Equilibrium Equations

(c) Constitutive Relations

2. Kinematic Relations.

The incremental strain E  expressed in terms of
displacements can be decomposed into a linear and nonlinear components

as follow,
" o (2.2)
in which
2el, = 11, + ,11+ UK11 1UuK|, + \ 11 uk|J (2*3)
, (2.4)

where a vertical bar indicates the covariant derivative in the

undeformed configuration CQ.

3. Equilibrium Equations.
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An incremental nonlinear equations of motion describing the
deformation of the body between the two neighboring configuration 1
and c. will be derived from the principle of virtual work.

Consider the body in its deformed  equilibrium
configuration Cj. The virtual work of the external forces in moving
through an infinitesimal virtual displacement 1 from the current

state is given by

1ext = Jsu, \ da+t Jsu, 11 dv (2.5)

In which 1a is the part of the surface area in ¢l which has prescribed
surface tractions, and v is the volume of the body in ¢ . da and dv
are the differential area and volume of the body in Cx, respectively.

The virtual work done by the internal forces in
configuration ¢ in an arbitrary virtual displacement 1 can be

expressed as

144 = {15,151y (25
"V

in which °v is the volume of the body in Co and dv is the differential
volume of the body in €0.

The equation of virtual work in configuration ¢l can be
obtained by equating equation (2.6) with equation (2.5), i.e.,
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/1 5eu dv = J 11t1da + J 1 1£1 dv (2.7)

°V A ]

In order to develop the incremental virtual work equation
between configuration c¢1 and C2, the virtual work equation in the
deformed equilibrium configuration C2 has to be established. This can
be done by following the same procedures similar to those for the

deformed configuration Cx. That is

s \xt = J lwida+ J 121dv (2.8)

in  which ZA is the part of the surface area of the body in c2 which
has prescribed surface tractions, ZV is the volume of the body in C2,
and da and dv are the differential area and volume of the body in C2,

respectively.

The virtual work done by the internal forces in
configuration C2 in an arbitrary virtual displacement 1 can be
expressed as

2, o, «E.J dv (2.9)

Therefore, equation of virtual work in configuration C2 is

obtained by equating equation (2.9) with equation (2.8), i.e.,
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[ 2, 5 dv = [51\ da+ [ 12f av (2.10)
v 2A AY
Since
S, - 1 . (2.1a)
U, - 4 (2.1c)

Substituting the above relations into equation (2.10), resulting in

j casu t 1) sefs v 1) dv= j 1\ odat T o1ala
°V ’A 2V
(2.11)
The incremental virtual work between configuration ¢1 and

C2 can be obtained by subtracting equation (2.7) from (2.11), i.e.,

/| es,/50,, + + dv

= Jsul2t da + J 12f dv - JsuiN,da + Jsul*fldv : (2.12)
2A A% 1A Vv

Equation (2.12) can be interpreted that the incremental
virtual work of the body forces and surface tractions in the deformed

equilibrium configuration C1 and cz must equal the incremental virtual
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work of the state of stress in these configurations.
4. Constitutive Relation.

The incremental equations of motion (2.12) are valid for
any type of material irrespective of its constitutions. However, the
application of these equations to physical nonlinear problems requires
detailed knowledge of the material characterization, specifically the

relationship between incremental stress and incremental strain.

For elastic materials, the incremental stress 1, s
linearly related to the incremental strain, Ejj. That is

- (2.13)

1IN

in which C“%._N_are the components of the constitutive matrix.

5. Incremental Nonlinear Equations of Motion with

Equilibrium Corrections.

The solution of the equations of motion (2.12) cannot be
achieved directly since they are nonlinear in displacement increments.
Therefore, it needs to be linearized for practical applications.
However, the process of linearization must take account of three
effects as follows:

(@) It is sufficient to assume the linear stress-strain
relationship in the general form of equation (2.13).

(b) If the relationship (2.13) is substituted into
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equation (2.12) it would result in terms such as:

CLIMN (e™ 5 +"U b5eil)
ma C.JMN *V™ H
which are nonlinear in the incremental displacements. The

linearization process requires that these terms be omitted.
(c) If the prescribed surface tractions are deformatic
dependent, the external virtual work integrals in configuration C2 can

be evaluated approximately.

Due to the above linearization and computational
inaccuracies, the current deformed configuration c1l may not be in

complete equilibrium, thus resulting in residual work. That is,

) . S sv,\ wat /« ,,f,dV - / ‘ ' Se,, dV (214)

*A a v

To prevent excessive departure of the solution from the
true response, the corrective term (Equation 2.14) should be added to

the right hand side of equation (2.12). Thus we have

jes.se, e 0)+181knl) dv=/  21Ma + /su,2fwv - pS1 Udv
v 2A v v

(2.15)

The incremental nonlinear equation (2.15) will be solved

by using the linearized form and applying the load in small

016441
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increments together with an iterative process for equilibrium
correction. Furthermore, it will be assumed that the components of the
surface tractions are always known in the reference system and are
defined per unit of undeformed area and volume. Therefore, the

integral expressions can be approximated by the following expression:

3 da+ 3 dv -~ o+ LA+ 5 Lxllv (2.16)

%A 2y °A v

The equations of motion suitable for using as a basis for

discretization by the finite element method then take the form:

= J 2, dA+ J 2f, dv- J 1 ,jSe,adv (2.17)

(o] 0] (0]

A \Y \Y

Finite Element Formulation of Equations of Motion for

Finite Deformation.
1. Introduction.

In the previous section, the incremental equations of
motion have been derived in a variational form. In order to develop
finite element formulation, discretization techniques w ill be used to
decompose the global form of equations of motion into a discrete type

of equations. The concepts of the finite element method, its
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mathematical foundations and the discretization techniques are well
established and a comprehensive study of these subjects can be found

in many texts (e.g.,12,13,14).

A basic characteristic of the finite element method is
that a typical element can be isolated from the element assemblage,
and its behavior can be studied independently of the behavior of the
other elements. Moreover, the assembly process is independent of the
linearity or nonlinearity of the system, and complete mathematical
model is established by a simple mapping. Therefore, in the following
section, only a single finite element should be considered, within the
scope of this research, the typical element to be used for the
discrete analysis is the isoparametric hexahedral finite element, and

its element property matrices will be derived in detail.

2. Discretization of Equations of Motion by Finite

Element Method.

Consider a single isoparametric element and introduce

a local approximation of the displacement field within the element by

N(x) = 0mx) €@nK : 1,2 (2.18)

o
1

where <¢UK(x) are the components of the displacement of material
coordinate X, in configuration C . Om(x) are the interpolation
functions at node m "qXIK are the components of displacement at node

m. The index mis assumed over all nodes of the element.
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For the isoparametric finite element, the incremental
displacement between configuration c1 and C2 and the coordinates of
the material point are interpolated similarly using the above

functions. That is

K(x) = 0m(x) gnK (2.19)
; = om(x) (2.20)
) = 0m(x) *x, . yoa =172 (2.21)

where qrK axe the components of the incremental displacement at node
m X and ox_ are the components of nodal coordinates in the

m K

configurations GG and c”, respectively.

Substituting the stress-strain relation (2.13) into the

incremental equations of motion (2.17) yields

I ¢ ¢ aMN emn Sel) o+ cIMN ( emn v 5 ¢ >

O
\%
+ T + 1 D dv
IIM N \an 11 ! 1
= J 1% 1dA+ [/ 1lze1 dv - J Sel dv (2.22)
O o] 0]
A Y \%

Thus, the following discretized equations of motion for a

typical finite element are obtained.
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59.C{KL(1q) + K”*q) + Kz(gq.q) + KQ(1S)}gql = <5g.c2p - XR1 (2.23)
where
5q.KL.g = [/ C,JMN e” fieia dv (2.24a)
°v

5q9.Ki.q = / C:UIVN (en 5 1 + TMSe,, ) dV (2.24b)

8g.Ka.g = [/ C,Jml ™ « dv (2.24c¢)

Sq.KQ.q = f 1S -4 dv (2.z4d)

v

5q/R - 1 1SH se, dv (2.24¢)
v

Sq.2p = ) ,2t, dA + Jsu, 2f, dv (2.24f)
o o,
A

In the above arrays, KL is the linear stiffness matrix,
including initia ldisplacement effect; Kx and K2 arenonlinear
stiffness matrices, a linear andquadratic functions of the
incremental displacement q respectively; KG is the geometric stiffness
m atrix, a function of the initial stress *S; 2p is the generalized

nodal loads due to the body forces and conservative surface tractions;
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X is the consistent nodal load vector in equilibrium with the state

of stress in configuration C1.

By neglecting the nonlinear terms Kx and K2 , a
linearized form of the finite element formulation of the nonlinear

equations of motion for finite deformation is given by

Sq.CIK*g) + KQ(1S)lql = Sq.c2p - 1 (2.25)

Equation (2.25) represents a system of nonlinear equations
in the unknown nodal displacement components, describing the
incremental finite deformation of an element between the current

deformed configuration cl1 and a neighboring deformed configuration C2.

3. Three Dimensional Isoparametric Finite Element Matrices.

3.1 Linear Isoparametric Hexahedral Element. In this
section, the element matrices for a general 8-node isoparametric
hexahedral element are given in detail. Geometry and transformations

(mappings) of coordinates are given in Figure 2.2.

3.1.1 Components of Stresses and Strains. For the
three dimensional analysis , the component of stress and strain are as

follow:

(E. 2E., 2E, ,gqas (2.26a)

= 33 12 23 s13> (3.26b)



3.1.2 Interpolation Functions. For an 8-node
isoparametric  hexahedral element as shown in Figure 2.2, the
interpolation functions for the corner nodes written in terms of the

natural coordinates (r,s,t) are given by

om(r, ,t) = 1/8 (I+r.rm)(l+s.sm) (I+t.tra (2.27)

in whichm=1,...,8 and (r mtn) =+1,-1.

m?

In a matrix form we have

(1+r)(1-s)(1-1)

(L+r)(1+s)(1-t)

(1-r)(1+s)(1-1)

(1-r)(1-s)(1-1)

0 1 < > (2 .28)

(1+r)(1-s)(1+1)

(1+r)(1+s)(1+1)

(1-r)(1+s)(1+t)

(1-1)(1-s)(1+1)
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3.1.3 Strain-displacement Transformation. The
decomposition of the incremental strain into a linear and nonlinear

components which given by equation (2.2) becomes:

en
33 ‘33
— < (2.29)
24, 2e. 27 1
2E 2e, 5 23
2E 13 2e13 2 13

An explicit relation between the nonlinear
strains and nodal displacements w ill be evident when the evaluation of
the geometric stiffness is considered in the next section. The
relation between linear strains and nodal displacements from equation

(2.3) can be written in terms of deformation gradients as:

2e, = ( " UK ,> kit ( : K1 ) ®ord (2.306.)
where k3 = the Kronecker delta
That is
e 'FU (2.30b)
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where V is the matrix of material deformation gradients in the

current configuration cl and 9 is the vector of displacement gradients.

\V =

<+<'11 0 0 <m,1 0 0 £31 0 0
0 £12 0 0 I+ f22 0 0 <m,2 0
0 0 £13 0 0 £23 0 0 -£33
<'12 <+<mll 0 <+<'2, 1 0 <2 <m1 0
0 <'l, <'l, 0 r o <+<'22 0 <+<m, <m,?2
<a, 0 <+<mll <2, 0 a1 <+<m, 0 <41

(231)

where

9X1

X2

fiz3 =

9X3
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fZ! - 9
9X1
f22 = 1£
9X,
n23 = X
ax3
f3X = * x
f2 = X
oX2
£33 = 3 (2.32)
OX3
and g = ( 1 1 1 2 2 2 3 3 3) (2.33)

X19XZ 9X3 X1 X2 X3 X1 X2 X3

where the superscript T denotes the transpose of a vector or a matrix.

Thedisplacementgradients and *u11J are
related to the nodal displacementsthrough thelocal approximations of

the displacement field, equations (2.18 and 2.19). That is

ua = N.q (2.34a)
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aul oT 0 0

X1
9x1
1 oT 0 0
X2
oX2
9U1 oT 0 0
ox3 x3
U2 0 oT 0 <i1
X1
9x1
au2 > - 0 oT 0 A
e q2 |
X2
X2
U2 0 oT 0 q3
X3
9Xx3
X1
9x1
9U3 0 0 oT
X2
oX2
U3 0 0 oT
9Xx3 x3

(2.34b)
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and 18 N. 1g (2,35)
1 1 1 1 1 1

I T 1.1
where (9 19 19y 9 29 29 29 39u39 3>

9X1 9X2 9X3 9X1 9X2 9X3 9X1 9x2 9X3

(2.36)

Commas in equation (2.34b) indicate "partial derivative with respect
to". Finally, the linear strain-displacement transformation matrix B

can be obtained from equations (2.30 and 2.34) as follows:
e = V.N.g = B.g (2.37)

3.1.4 Jacobian Transformation. To
derivative of the interpolation function Om(r, ,t) with respect to the
global coordinates X1 , X2 and X3, a Jacobian transformation is
needed to relate derivatives with respect to the local (r, ,t) system

to those with respect to the global axes. That is

9 x1., X2., 3,r 9
or 9X1
9s ax?2
9 x1., X2,, X3., 9

ot 0X3,

calculat



where,

Inversely,

9X1

19X3.

where,

al?

Al3

X2>8 X3t

X33 x1n

X1l.s xz .,

X3

., X2,

T
Xi.s = 9 ,s X1 )
4 ¢
¢ » S XZ y
-
Xa.s 5 ¢ s Xa
All a2l
Ap ISQ A,
Aia A23
- X3iS X2~
- X213 x>t
- X 2. X 1 t
- X2., X3.

27

2, * ¢ % ] XZ
T
X3, 2 X3
(2.39)
N
9
9r
9 > (2.40)
9s
9
—
(90
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22 Xiwxg 3 - Xg 0 Ky

Xz,r* X1,4t ) Xi,r* X2,lt

31 X2’r Xg* - Xg oy Xz,

32 Xgae Ky Ke Ky

3 Kw Yo = Ko X (2.41)
where det J = XDr. Axl + X21L ax: + X311 AlL3 (2.42)

Therefore, 0T , 0T and OT can he

'x 1 X2 RS

calculated from (2.40) as follows:

0 1 ¢caclOT(1+A210T>5 + A310TA (2.43)
Xl det J

0 1 ¢ A12 <T,, + A22 OT,S + A32 <T.* 3 (2-44)
) det J

0 1 c A3 0Til + Az3 0T>S + A33 0T>t (2.45)
X3 det ]

Also, the differential volume dv is given by

dv. = (det J) dr ds dt (2.46)
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3.2 Evaluation of Element Matrices. The element matrices
required, to solve the discrete finite element equations of motion
(2.25) can be obtained by evaluating the virtual work integrals (2.24)

using the Gaussian quadrature formulas for numerical integrations.

3.2.1 Linear Element Stiffness Matrix. The linear

element stiffness matrix is given by the integral (2.24a) as

ke = 9BT.c.Bdv (2.47)
v

For the purpose of numerical integration, it is written in the natural

coordinates as

KiI = i f f bT* C * B det J e« dr dt (2.48)

The direct application of one dimensional numerical integration

formula yields

Kt = 11l 1A oBT(ry J.v-ctr,. J.v-BQV ,,tk
i j k
edet J(rl,sj,tk) (2.49)
3.2.2 Geometric Stiffness M atrix. The geometric

stiffness matrix can be obtained by evaluating the integral (2.24d) as

follows:
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SqKGq = [ ‘S,5« Ly Qv (2.24d)
v

where the nonlinear incremental strain 13 is given by

) V
, (aul)2 + ( 2)° + (3
X1 Xt
2
\ 2 (3UL)2 + ( 2) + <93
X2 9X2 X2
2
% 3 ( 1)2+ ( 2) + <93
9X3 X3
< > = < > (2.50)
2\ 7 L 1T 1+ 2 2+ 93913

9X1 X2 X1 X2 X1 X2

2\ 3 ¢c 1 1+ 2 2+ 9393;
A X3 X2 X3 X2 X3

2\ 3 C 1 1+ 2+ 3 3;:
X1 X3 X1 9x3 X1 X3

To put T)13 into a symmetric form with respect to 1 13, we can write
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1 1 1 < !
zX li.j = < 1 1 1) 11 12 13 1
9X1 X2 X3 X1
XSp1 Y22 ¥ o8
<
sy 32 33 1
9X3
+ < 2 2 2 Xv 112 X 3 2
9X1 X2 X3 X1
X, Xe X 3 2"
<
X2
X 1 Xz X 3 2
X3
1
3 3) X 7 13 3
9X2 gy3 X1
X . Xz X 3
< -3
ax2 "
X X z X a 3
X3

(2.51a)



32

_yTa-1 - (2.51b)
in which is given by equation (2.33) and 1 is given by
s,1 ‘s12
Viar 12z 123
155 1gy Sa
it Yae Has
o201 luzz  lse2s
Ka *332 1833
S VN V.
s21  s22  s23
a1 a2 1as
(2.52)

Substituting for from equation (2.34) into equation (2.51) yields
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1 "y, = 7~ qT CI0T.C1SD.i:i0.q (2.53)

and by taking the variation with respect to nonlinear strain as

1Su 6Yij = <®&T ON\DT.cXSD.UND.q (2.54)

Therefore, the geometric stiffness matrix in a symmetric form is

KG = J NJT. 110 dv (2.55)

°v

or in the natural coordinates as

111
Kg = /A det J . dr ds dt (2.56)
-1 -1 -2
numerically
- Z11¥«l», (r1S]L L)L (. L, L, )]

ij k
.det J(r 1S j,tk) (2.57)

3.2.3 Equivalent Nodal Load Vector *R for
Equilibrium Correction. This is given by evaluating in the integral
(2.24e) as follows:

5gT.1R = [/ ~1J "~eu A (2.58)

Oy
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That is

JBI/s dv (2.59)

*R

where

(1)T= (X1 182 w o corvr 3y 3, (».60)

In the (r,s,t) system we then have

1 1 1
1R = J j J BT .1 detd . drds dt (2.61)
1 -1 -1
or numerically
IR = I1ZW 1wk @BT(rl,sJ, tk).1S(rl,sJ,tk):.detJ(rl,sJ,tk)
i j k
(2.62)
3.2.4 Consistent Nodal Load Vector 2p .

nodal load vector, 2p, is obtained from the evaluation of the body
forces and surface tractions by the conventional finite element

method. That is

p =  JINIT{2>.dA + | 101T.{2f>.dV (2.63)

0] (0]

A \Y

con:
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in which [Ni is the displacement transformation which relates
displacements of the loaded surface to the nodal displacements; {2t>
is the vector of surface tractions; [0i is the matrix of
interpolation functions given by equations (2.19,2.27); and {2f> s

the vector of body forces. The intregrals in the equation (2.63) are

calculated numerically.

i 10507990
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