Effects of Sizing Agents on Silanol Condensation of Silane in Solution

Ms. Pachreeya Kulanuch

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College
Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma
and Case Western Reserve University

1996
ISBN 974-633-593-6

Thesis Title

Effects of Sizing Agents on the Silanol

Condensation of Silane in Solution

By

Ms. Pachreeya Kulanuch

Program

Polymer Science

Thesis Advisors

1. Prof. Hatsuo Ishida

2. Dr. Nantaya Yanumet

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee:

(Prof. Hatsuo Ishida)

(Dr. Nantaya Yanumet)

(Dr. Suwabun Chirachanchai)

ABSTRACT

##942005

: MAJOR POLYMER SCIENCE

KEY WORDS: SILANE, SIZING AGENT, SILANOL CONDENSATION

PACHREEYA KULANUCH: EFFECTS OF SIZING AGENTS ON

SILANOL CONDENSATION OF SILANE IN SOLUTION. THESIS

ADVISORS: PROF.HATSUO ISHIDA AND DR. NANTAYA

YANUMET, 40 PP. ISBN 974-633-593-6

In the production of fiber glass in industry, silane coupling agent is not the only ingredient which is applied onto the glass fiber surface. There are other agents which are also treated on the glass fiber surface to provide additional properties such as fiber protection, lubrication, antistatic properties and so on. These sizing agents are expected to have an effect on the silanol condensation of silane. Fourior transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) have been used to investigate the role of sizing agents on the silanol condensation. It was found that each type of sizing agents affects the condensation by different means depending on the interactions between silane and each type of sizing agents.

บทคัดย่อ

พัชรียา กุลานุช: ผลกระทบของสารเติมแต่งต่อปฏิกิริยาควบแน่นของ สารคู่จับไซเลนในสารละลาย (Effects of Sizing Agents on Silanol Condensation of Silane in Solution) อาจารย์ที่ปรึกษา: ศ. ดร. ฮัทสุโอะ อิชิดะ (Professor Hatsuo Ishida), และ ดร. นันทยา ยานุเมศ, 40 หน้า ISBN 974-633-593-6

ในอุตสาหกรรมการผลิตใยแก้ว สารคู่จับไซเลนไม่ใช่สารชนิด
เดียวที่ใช้เคลือบไปบนผิวของใยแก้ว แค่ยังมีสารเดิมแต่งชนิดอื่นๆ
ที่ใช้เคลือบบนผิวของใยแก้วเพื่อเพิ่มคุณสมบัติบางชนิด เช่น เพื่อปกป้อง
พื้นผิว, หล่อลื่นพื้นผิวและป้องกันไฟฟ้าสถิตย์ที่เกิดขึ้นบนพื้นผิว สารเดิม
แต่งเหล่านี้มีผลกระทบต่อปฏิกิริยาควบแน่นของสารคู่จับไซเลน

ในการวิจัยนี้ได้มีการศึกษาบทบาทของสารเติมแค่งที่มีผลกระทบ
ต่อปฏิกิริยาควบแน่นของสารคู่จับไซเลนโดยใช้ฟูเรียร์ทรานสฟอร์ม
อินฟราเรดสเปคโตรสโคปีและเจลเพอมีเอชั่นโครมาโตกราฟฟี ผลการ
ศึกษาพบว่าสารเติมแต่งแต่ละชนิดมีผลกระทบต่อปฏิกิริยาควบแน่นของ
สารคู่จับไซเลนด้วยกลไกที่แตกต่างกัน ขึ้นอยู่กับอันดรกิริยาที่เกิดขึ้น
ระหว่างสารเติมแต่งชนิดนั้นกับสารคู่จับไซเลน

ACKNOWLEDGMENTS

The author would like to dedicate this thesis and express her grateful thanks to Prof. Hatsuo Ishida, her advisor, who originated this thesis. Without his supervision, kind suggestion and constant guidance, this work would not be successful.

Similarly, she would like to thank Dr. Nantaya Yanumet, her coadvisor, for her bounty and help.

Moreover, she would like to express her thanks to the graduate students in Prof. Ishida's group at Case Western Reserve University for their special help all the time she was there.

The author is also indebted to The Petroleum Authority of Thailand and USAID for their financial supports.

Finally, she would like to pass her gratitude to her parents and sister for their love and understanding. Additionally, she would like to thank Mr. Manasade Ngawhirunpat and Ms. Kasinee Hemvichian for their help and encouragement.

TABLE OF CONTENTS

CHAPTER	₹	PAGE
	Title Page	i
	Abstract	iii
	Acknowledgments	v
	Table of Contents	vi
	List of Tables	ix
	List of Figures	xi
I INTR	RODUCTION	
	1.1 Definition of "Coupling Agent"	1
	1.2 Silane Coupling Agent	1
	1.2.1 General structure of silane coupling	;
	agent	2
	1.2.2 Nature of silane in solution	2
	1.2.3 Structure of silane on glass fiber	
	surface	4
	1.2.4 γ-Methacryloxypropyltrimethoxy	
	silane (γ-MPS)	5

CHAPTER	PAGE
1.3	Sizing Agents6
	1.3.1 Film forming sizing agent8
	1.3.2 Lubricating sizing agent9
1.4	Objective10
II EXPERI	MENTAL PROCEDURE
2.1	Materials11
2.2	Equipment12
2.3	Preparation of model treating system
	consisting of film forming sizing agent13
2.4	Preparation of model treating system
	consisting of lubricating sizing agent13
2.5	Measurements
	2.5.1 Fourior transform infrared
	spectroscopy (FTIR)14
	2.5.2 Gel permeation chromatography
	(GPC)14
III RESUL	TS AND DISCUSSION
3.1	Film forming sizing agent15

CHAPTER	
3.2 Lubricating sizing agent	24
IV CONCLUSIONS	37
REFERENCES	39

LIST OF TABLES

TABLE	PAGE	
1 Typical components of glass fiber sizing agents	7	

LIST OF FIGURES

FIGURE		'AGE	
	3-1	Structural formulae of PVAc	15
	3-2	FTIR spectra of the model system containing PVAc	
		at different percent weight	16
	3-3	The curve fitting for the carbonyl stretching band of	
		model sizing system consisting of PVAc	18
	3-4	The plot of H-bonded C=O of PVAc ratio as a function	
		of %wt. PVAc	19
	3-5	The plot of H-bonded C=O of γ-MPS molecules ratio	
		as a function of %wt. PVAc	21
	3-6	The postulated micelle-like structure morphology of	
		the model sizing system containing PVAc	22
	3-7	The plot of relative absorbance of Si-OH at 904 cm ⁻¹ /	
		1635 cm ⁻¹ as a function of %PVAc contents	23
	3-8	GPC chromatograms of γ-MPS oligomers at different	
		drying time	25
	3-9	GPC chromatograms of the model system consisting	
		of 10 % mol PEGat different drying time	26
	3-10	FTIR spectra of PEG, γ-MPS hydrolyzates and the	
		model system consisting of PEG	27

FIGURE		PAGE
3-11	FTIR spectra of carbonyl region of the model sizing	
	system	28
3-12	The plot of relative intensity of (H-bonded C=O)/	
(H-bonded C=O + non H-bonded C=O) of γ-MPS	
n	nolecules as a function of %mol PEG	29
3-13	GPC chromatograms of the model system consisting	
	of 20 % mol PEG at different drying time	31
3-14	The condensation between neighboring silane	
	molecules	32
3-15	GPC chromatograms of the model system consisting	
	of 50 % mol PEG. at different drying time	33
3-16	GPC chromatograms of the model system consisting	
	of 80 % mol PEGat different drying time	35