REFERENCES

- Barton, J.W., Fitzgerald, T.P., Lee, C., O'Rear, E.A. and Harwell, J.H., (1988), Admicellar Chromatography: Separation Concentration of Isomers Using Two-Dimensional Solvents, <u>Sep. Sci. Technol.</u>, Vol. 23, pp. 637-660.
- Beltran, F.J., Gonzalez, M., Rivas, J. and Marin, M., (1994), Oxidation of Mercoprop in Water with Ozone and Ozone Combined with Hydrogen Peroxide, <u>Ind. Eng. Res.</u>, Vol. 33, pp. 125-136.
- Bitting, D. and Harwell, J.H., (1987), Effect of Counterions on Surfactant Surface Aggregates at the Alumina /Aqueous Solution Interface, <u>Langmuir</u>, Vol. 3, pp. 500-507.
- Eisenhauer, H.R., (1971), Dephenolization by Ozonolysis, <u>Wat. Res.</u>, Vol. 5, pp. 467-472.
- Esumi, K., Ono, Y., Ishizuka, M. and Meguro, K., (1988), Interaction between Hydrocarbon and Fluorocarbon Surfactants on Monodispersed Ferric Hydro Sols, Colloid Surf., Vol. 32, pp. 139-147.
- Esumi, K., Sakamoto, Y. and Meguro, K., (1990), Mixed Bilayers of Anionic and Nonionic Surfactants on Alumina, <u>J. Colloid Interface Sci.</u>, Vol. 134, No. 1, pp. 283-288.
- Fendler, J. and Fendler, E., (1970), <u>Micellar Catalysis</u>. in Advances in Physical Organic Chemistry, Gold, V. (Editor), Academic: New York, pp. 271-353.
- Frommer, D.W., (1967), Ore Flotation Enhanced by Surfactants Adsorbed onto Media, J. Am. Oil Chem. Soc., Vol 44, pp. 270-284.
- Gurol, M.D. and Vatistas, R., (1987), Oxidation of Phenolic Compounds by Ozone and Ozone+U.V. Radiation: A Comparative Study, <u>Wat.</u> <u>Res.</u>, Vol. 21, No. 8, pp. 895-900.

- Harwell, J.H., Hoskins, J.C., Schechter, R.S. and Wade, W.H., (1985),
 Pseudophase Separation Model for Surfactant Adsorption: Isomerically Pure Surfactant, <u>Langmuir</u>, Vol. 1, pp. 251-262.
- Hogine, J. and Badder, H., (1976), The Role of Hydroxy Radical Reactions in Ozonation Processes in Aqueous Solutions, <u>Wat. Res.</u>, Vol. 10, pp. 377-288.
- Lee , B.H., Christian, S.D., Tucker, E.E. and Scamehorn J.F., (1990), Solubilization of Mono-Dichlorophenols by Hexadecylpyridinium Chloride Micelles: Effects of Substituent Groups, <u>Langmuir</u>, Vol. 6, pp. 230-235.
- Lee , B.H., Christian, S.D., Tucker, E.E. and Scamehorn J.F., (1991), Substituent Group Effects on the Solubilization of Polar Aromatic Solutes (Phenols, Anilines, and Benzaldehydes) By N-Hexadecylpyridinium Chloride, J. Phys. Chem., Vol. 95, No. 1, pp. 360-365.
- Lee, C., Yeskie, M.A., Harwell, J.H. and O' Rear, E.A., (1990), Two-Site Adsolubilization Model of Incorporation of Alcohols into Adsorbed Surfactant Aggregates, <u>Langmuir</u>, Vol. 6, pp. 1758-1762.
- Levitz, P. and Van Damme, H., (1986), Fluorescence Decay Study of the Adsorption of Nonionic Surfactant at the Solid-Liquid Interface.
 2. Influence of Polar Chain Length, <u>J. Phys. Chem.</u>, Vol. 90, pp. 1302-1310.
- Levitz, P., Van Damme, H. and Keravis, D., (1984), Fluorescence Decay Study of the Adsorption of Nonionic Surfactant at the Solid-Liquid Interface.1. Structure of the Adsorption Layer on a Hydrophilic Solid, J. Phys. Chem., Vol. 88, pp. 2228-2235.

- Nakamura, K. and Morikawa, Y., (1982), Separation of Surfactant Mixtures and Their Homologs by High Performance Liquid Chromatography, <u>JAOCS</u>, Vol. 59, No. 1, pp. 64-68.
- Nayyar, S.P., Sabatini, D.A. and Harwell, J.H., (1994), Surfactant Adsolubilization and Modified Admicellar Sorption of Nonpolar, Polar and Ionizable Organic Contaminants, <u>Environ. Sci.</u> <u>Technol.</u>, Vol. 28, No. 11, pp. 1874-1881.
- Netzer, L. and Sagiv, J., (1983), A New Approach to Construction of Artificial Monolayer Assemblies, <u>J. Am. Chem. Soc.</u>, Vol 105, pp. 674-676.
- Nunn, C.C., Schechter, R.S. and Wade, W.H., (1982), Visual Evidence Regarding the Nature of Hemimicelles through Surface Solubilization of Pinacyanol Chloride, <u>J. Phys. Chem.</u>, Vol. 86, pp. 3271-3172.
- Ogawa, H., Koh, T., Taya, K. and Chihara, T., (1994), Catalysis at the Toluene/Water Interface: Octadecyl Immobilized H-ZSM-5 Catalyst Promoted Hydrolysis of Water-Insoluble Esters, J. Catal., Vol. 148, pp. 493-500.
- O'Haver, J.H., Harwell, J.H., O'Rear, E.A., Snodgrass, L.J. and Waddell, W.H., (1994), In Situ Formation of Polystyrene in Adsorbed Surfactant Bilayers on Precipitated Silica, <u>Langmuir</u>, Vol. 10, pp. 2588-2593.
- Romsted, L.S., (1977), <u>A General Kinetic Theory Rate Enhancements for</u> <u>Reactions between Organic Substrates and Hydrophilic Ions in</u> <u>Micellar System</u>, in Micellization, Solubilization and Microemulsions Vol. 2, Mital, K.L. (Editor), Plenum Press, pp. 509-530.

- Romsted, L.S., (1984), <u>Micellar Effects on Reaction Rates and Equilibria</u>, in Surfactants in Solution Vol. 2, Mital, K.L. and Lindman, B. (Editors), Plenum Press, pp. 1015-1067.
- Rosen, M.J., (1989), Surfactants and Interfacial Phenomena, (2nd Edition), John Wiley & Sons, Inc., New York, 196-202.
- Scamehorn, J.F. and Harwell, J.H., (1988), <u>Surfactant-Based Treatment of</u> <u>Process Streams</u>, in Surfactants in Chemical/Process Engineering, Wasan, D.T., Ginn, M.E. and Shah, D.O. (Editors), Marcel-Dekker, Inc., pp. 77-126.
- Scamehorn, J.F., Schechter, R.S. and Wade, W.H., (1982), Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous Solutions.1. Isomerical Pure Anionic Surfactants, <u>J. Colloid</u> <u>Interface Sci.</u>, Vol. 85, pp. 463-478.
- Smith, G. A., Christian, S.D. and Tucker, E.E., (19897), Group Contribution Model for Predicting the Solubilization of Organic Solutes by Surfactant Micelles, <u>Langmuir</u>, Vol. 3, pp. 598-599.
- Somasundaran, P. and Fuerstenau, D.W., (1966), Mechanism of Alkyl Sulfonate Adsorption at the Alumina-Water Interface, <u>J. Phys.</u> <u>Chem.</u>, Vol. 70, pp. 90-96.
- Throughton, E.B., Brain, C.D., Whiteside, G.M., Allara, D.L. and Porter, M.D., (1988), Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Asymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups, <u>Langmuir</u>, Vol 4, pp. 365-385.
- Uchiyama, H., Christain, S.D., Scamehorn, J.F., Abe, M. and Ogino, K., (1991), Solubilization of 2-Phenylethanol by Dodecyldimethylamine Oxide in Aqueous Solution, <u>Langmuir</u>, Vol. 7, pp. 95-100.

- Wolff, S., (1982), Optimization of Silane-Silica OTR Compounds.1. Variations of Mixing Temperature and Time During the Modification of Silica with Bis-(3-Triethoxipropyl)-Tetrasulfide, <u>Rubber Chem. & Tech.</u>, Vol. 55, pp. 967-989.
- Wu, J., Harwell, J.H. and O'Rear, E.A.,(1987), Two-Dimensional Reaction Solvents: Surfactant Bilayers in the Formation of Ultrathin Films, <u>Langmuir</u>, Vol. 3, pp. 531-537.
- Wu, J., Harwell, J.H. and O'Rear, E.A. and Christian, S.D., (1988), Application of Thin Films to Porous Mineral Oxides Using Two-Dimensional Solvents, AIChE J., Vol. 34, pp. 1511-1518.
- Yeskie, M.A., (1988), Ph.D. Dissertation, University of Oklahoma.
- Yu, C., Wong, D.W. and Lobban, L.L., (1992), Catalysis of the Hydrolysis of Trimethyl Orthobenzoate by Adsorbed Sodium Dodecyl Sulfate, <u>Langmuir</u>, Vol. 8, pp. 2582-2584.
- Yu, C., (1995), Ph.D. Dissertation, University of Oklahoma.

APPENDIX A

Figure A.1 DTA curve of ODS silica (30.0 mg and 20-850 °C).

APPENDIX B

Table A.1 CTAB adsorption isotherm on silica Hi-Sil[®]233 System : 14 ml of aqueous solution, 0.7 g of silica, pH ≈ 7

Initial concentration of	Equilibrium concentration	Adsorbed CTAB
CTAB (µM)	of CTAB (µM)	(µmoles/g)
3000	1861.17	22.77
4000	2131.41	37.37
6000	2216.79	75.66
7000	2305.61	93.89
8000	2353.65	112.93
9000	2512.96	129.74
10000	2513.82	149.72
15000	3145.97	237.08
17500	4833.09	253.34
20000	7504.49	249.91
22500	9523.64	259.53
25000	11551.60	268.97
27500	13486.70	280.27
30000	15699.7	286.01
32500	18122.00	287.56
35000	19700.70	305.99
37500	22523.50	299.53
40000	24509.30	291.81
42500	26610.90	317.78
45000	29549.00	309.02

.

Table A.2 ODS adsorption isotherm on silica Hi-Sil [®] 233
System : 180 ml of toluene with ODS, 6.00 g of silica

Initial concentration of	Equilibrium Concentration	Adsorbed ODS
ODS (µM)	of ODS (µM)	(µmoles/g)
4239.91	1020.92	96.20
7066.52	2368.72	140.31
9893.12	4218.70	169.36
15193.00	7735.21	222.39
21199.55	11191.54	298.37
28266.06	16924.38	337.76
49465.61	37576.22	352.32

Table A.3 Effect of phenol on CTAB adsorptionSystem : 14 ml of aqueous solution, 0.7 g of silica

Initial concentration of	Equilibrium concentration	Adsorbed CTAB
CTAB (µM)	of CTAB (µM)	(µmoles/g)
2937.06	1889.04	21.41
3916.08	2042.25	38.28
4895.10	2094.26	57.22
5874.13	2227.90	74.49
6853.15	2273.72	93.55
7832.17	2325.79	112.49
8811.17	2396.95	131.03
9790.21	2424.35	150.47
14685.31	2831.53	242.16
19580.42	6616.78	262.83
22027.97	8691.88	272.44
24475.52	11071.70	273.82
29370.63	15000.50	293.56
34265.73	19703.60	297.48
39160.84	23662.50	316.61
44055.94	28695.40	313.79

Table A.4 Effect of TCE on CTAB adsorption

System : 14 ml of aqueous solution, 0.7 g of silica

Initial concentration of	Equilibrium concentration	Adsorbed CTAB
CTAB (µM)	of CTAB (µM)	(µmoles/g)
4000	2033.57	39.33
5000	2139.96	57.20
6000	2240.66	75.19
7000	2299.65	94.01
8000	2357.68	112.85
9000	2395.41	132.09
10000	2440.66	151.19
15000	3131.76	237.36
17500	4516.03	259.68
20000	6579.56	268.41
22500	8687.88	286.24
30000	15750.30	284.99
35000	20218.10	295.63
40000	25328.80	293.42
45000	29527.90	309.44

Table A.5 Adsolubilzation of phenol into CTAB admicelles
System : 14 ml of aqueous solution, 0.7 g of silica

Equilibrium concentration	Equilibrium concentration	Adsolubilized phenol
of CTAB (µM)	of phenol (µM)	(µM)
1889.04	1770.14	6.70
2042.25	1670.03	8.74
2094.26	1607.08	10.03
2227.90	1550.54	11.18
2273.72	1507.30	12.07
2325.79	1419.60	13.86
2396.95	1380.08	14.67
2424.35	1330.83	15.67
2831.53	1165.63	19.04
6616.78	1166.05	19.04
8691.88	1204.87	18.24
11071.70	1222.80	17.88
15000.50	1301.20	16.27
19703.60	1323.82	15.81
23662.50	1424.52	13.76
28695.40	1430.46	13.63

Equilibrium concentration	Equilibrium concentration	Adsolubilized phenol
of ODS (µM)	of phenol (µM)	(μM)
0	2097.90	0
1020.82	1921.12	3.84
2388.72	1812.05	6.12
4218.70	1711.23	8.36
7735.21	1601.12	10.92
11191.54	1582.26	11.61
16924.38	1528.89	12.96
37576.32	1518.23	13.28

Table A.6 Adsolubilization of phenol into bonded ODSSystem : 14 ml of aqueous solution, 0.7 g of ODS silica

Table A.7	Adsolubilization of TCE into CTAB admicelles
System : 14	and of aqueous solution, 0.7 g of silica

Equilibrium concentration	Equilibrium concentration	Adsolubilized TCE
of CTAB (µM)	of TCE (µM)	(μM)
2033.57	4.51	0.071
2139.96	4.20	0.077
2240.66	3.94	1.082
2299.65	3.71	0.086
2357.68	3.40	0.093
2395.41	3.16	0.097
2440.66	2.81	0.104
3131.76	2.62	0.108
4516.03	2.76	0.105
6579.56	3.23	0.096
8687.88	3.20	0.097
15750.30	4.04	0.080
20218.10	3.99	0.080
25328.80	4.34	0.074
29527.90	4.45	0.072

Equilibrium concentration	Equilibrium concentration	Adsolubilized TCE
of ODS (µM)	of TCE (µM)	(μM)
0	8.038	0
1020.82	4.260	0.078
2388.72	3.260	0.100
4218.70	2.700	0.113
7735.21	2.072	0.130
11191.54	1.972	0.134
16924.38	1.900	0.137
37576.32	1.806	0.140

Table A.8 Adsolubilization of TCE into bonded ODSSystem : 14 ml of aqueous solution, 0.7 g of ODS silica

Agitation speed (rpm)	% ODS desorption
1	-
2	-
3	-
4	0
5	0
6	0
7	2.93
8	4.60

Table A.9 Effect of agitation speed on desorption of ODS from silicaSystem : 50 ml of aqueous solution, 0.1 g of silica or ODS silica

Agitation time (min.)	% ODS desorption	
5	-	
10	-	
20	-	
30	0	
50	-	
60	0	
70	-	
90	-	
120	0.93	
180	2.78	

Table A.10 Effect of agitation time on desorption of ODS from silicaSystem : 50 ml of aqueous solution, 0.1 g of silica or ODS silica

pH values	% ODS desorption at	% ODS desorption at
	210 rpm	360 грт
2.34	-	-
2.88	0	1.85
3.84	_	-
4.58	0	0.93
6.78	0	0.93
7.1	-	-
10.14	-	-
10.61	0	0

Table A.11	Effect of pH on desorption of ODS from silica
System : 50	ml of aqueous solution, 0.1 g of silica or ODS silica

Temperature (°C)	% ODS desorption
10	-
15	-
25	0
35	0
45	2.93
50	-
55	3.70

Table A.12 Effect of temperature on desorption of ODS from silicaSystem : 50 ml of aqueous solution, 0.1 g of silica or ODS silica

Table A.13 Stability of ODS silica at various ozone concentrations
System : 100 ml of aqueous solution, 0.15 g of ODS silica, pH ≈ 7

Oxidation time	Normallized remaining amount of carbon on silica surface		
(min.)	after oxidizing with ozone (Cm/Co)		
1	$78 \text{ gO}_3/\text{cm}^3$	$117 \text{ gO}_3/\text{cm}^3$	$150 \text{ gO}_3/\text{cm}^3$
5	-	0.94	-
10	-	0.92	0.90
20	0.936	0.91	0.88
30	-	0.89	0.87
35	0.91	-	-
40	-	0.86	0.83
45	0.90	-	0.77
50	-	-	-
57	0.88	-	-
80	0.86	-	-

Table A.14 Stability of ODS silica under ozone concentration at various pH values

System : 100 ml of aqueous solution, 0.15 g of ODS silica, 150 g of O_3/cm^3

Oxidation time	Normallized remaining amount of carbon on silica surface		
(min.)	after oxidizing with ozone (Cm/Co)		
	pH 4	pH 7	pH 11
5	-	-	0.92
10	-	0.90	0.91
15	0.87	-	-
20	-	-	0.90
22	-	0.88	-
30	0.84	-	0.88
40	0.81	0.81	-
50	0.76	-	-
80	-	0.72	-

CURRICULUM VITAE

Name :	Mr. Chainarong Thakulsukanant
Birth Date :	August 9, 1972
Nationality :	Thai
University Education :	
1990-199	4 B.Sc. (Hons.) in Ind. Chem.
	Faculty of Science, King Mongkut's Institute of
	Technology Ladkrabang