REFERENCES

- Amiridis, M.D., Wachs, I.E., Deo, G., Jehng, J., and Kim, D.S. (1996) Reactivity of V₂O₅ catalysts for the selective catalytic reduction of NO by NH₃: influence of vanadia loading, H₂O, and SO₂. Journal of Catalysis, 161, 247-253.
- Bhuttacharyya, A. and Hall, D.B. (1992) New triborate-pillared hydrotalcites. Inorganic Chemistry, 31, 3869-3870.
- Cheng, L.S., Yang, R.T., and Chen, N. (1996) Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia. Journal of Catalysis, 164, 70-81.
- Chibwe, K. and Jones, W. (1989) Synthesis of polyoxometalate-pillared layered double hydroxides via calcined precursors. <u>Chemistry of Materials</u>, 1, 489-490.
- Dimotakis, E.D. and Pinnavaia, T.J. (1990) New route to layered double hydroxides intercalated by organic anions: Precursors to polyoxometalate-pillared derivatives. <u>Inorganic Chemistry</u>, 29, 2393-2394.
- Drezdzon, M.A. (1988) Synthesis of isopolymetalate-pillared hydrotacite via organic-anion-pillared procusor. <u>Inorganic Chemistry</u>, 27, 4628-4632.
- Eatl, G., Knozinger, H. and Wettkamp, J. (Eds.). (1998) <u>Handbook_of</u> <u>Heterogeneous Catalysis</u>. New York: McGraw-Hill, Inc.
- Heck, R.M. and Farrauto, R.J. (1995) <u>Catalytic Air Pollution Control ; Commercial</u> <u>Technology</u>. New York: Van Nostrard Reinhold.
- Kozhevnikov,I.V. (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. <u>Chemical Reviews</u>, 98, 171-198.
- Kwon, T., Tsigdinos, G.A., and Pinnavaia, T.J. (1988) Pillaring of layered double hydroxides (LDH's) by polyoxometalate anion. <u>Journal of American</u> <u>Chemical Society</u>, 110, 3653-3654.
- Kwon, T. and Pinnavaia, T.J. (1989) Pillaring of a layered double hydroxide by polyoxometalates with Keggin-ion structures. <u>Chemistry of Materials</u>, 1, 381-383.

- Li, L., Ma, S., Liu, X., Yue, Y., Huii, J., Xu, R., Bao,Y., and Rocha, J. (1996) Synthesis and characterization of tetraborate pillared hydrotalcite. Chemistry of Materials, 8, 204-208.
- Long, R.Q. and Yang, R.T. (1999a) Selective catalytic reduction of nitric oxide by ammonia over Fe³⁺-exchanged TiO₂-pillared clay catalysts. <u>Journal of</u> <u>Catalysis</u>, 186(2), 254-268.
- Long, R.Q. and Yang, R.T. (1999b) Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia. Journal of <u>Catalysis</u>, 188, 332-339.
- Long, R.Q. and Yang, R.T. (2000a) Selective catalytic reduction of NO with ammonia over V₂O₅ doped TiO₂-pillared clay catalysts, <u>Applied Catalysis</u> <u>B: Environmental</u>, 24, 13-21.
- Long, R.Q. and Yang, R.T. (2000b) The promoting role of rare earth oxides on Feexchanged TiO₂-pillared clay for selective catalytic reduction of nitric oxide with ammonia, <u>Applied Catalysis B: Environmental</u>, 27, 87-95.
- Long, R.Q. and Yang, R.T. (2000c) Catalytic performance and characterization of VO²⁺-exchaned titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia. <u>Applied Catalysis B: Environmental</u>, 196, 73-85.
- National institute for resources and environment (1995) Thermal decomposition of hydrotalcite-like compounds. <u>NIRE Annual Report</u>.
- National institute for resources and environment (1999) Synthesis and application of hydrotalcite-type anionic clays. <u>NIRE Annual Report</u>.
- Ohtsuka, K. (1997) Preparation and properties of two-dimensional microporous pillared interlayered solid. <u>Chemistry of Materials</u>, 9, 2039-2050.
- Ogawa, M. and Asai, S. (2000) Hydrothermal systhesis of layered double hydroxide-deoxycholate intercalation compounds. <u>Chemistry of Materials</u>, 12, 3253-3255.
- Rochanutama, S. (2003) <u>Polyoxoanion-pillared Hydrotalcite-type Clay Based</u> <u>Catalysts for Selective Catalytic Reduction of NO by NH₃</u>. M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College. Chulalongkorn University, Bangkok.

- Satterfield, C.N. (1991) <u>Heterogeneous Catalysis in Industrial Practice</u>. 2nded. New York: McGraw-Hill, Inc.
- Shen, J., Kobe, J.M., Chen, Y., and Dumesic, J.A. (1994) Synthesis and surface acid/base properties of magnasium-aluminium mixed oxides obtained from hydrotalcites. <u>Langmuir</u>, 10, 3902-3908.
- Townsend, W. (2001) Adsorption of Metal Cations by Anion Clay Hydrotalcite. New York: Van Nostrard Reinhold.
- Ulibarri, M., Labajos, F.M., Rives, V., Trujillano, R., Kagunya, W., and Jones, W. (1994) Comparative study of the synthesis and properties of vanadateexchanged layered double hydroxide. <u>Inorganic Chemistry</u>, 33, 2592-2599.
- Wachs, I.E., Deo, G., Weckhuysen, B.M., Andreini, A., Vuurman, M.A., de Boer,
 M., and Amiridis, M.D. (1996) Selective catalytic reduction of NO with
 NH₃ over supported vanadia catalysts. Journal of Catalysis, 161, 211-221.
- Wang, J.W., Tian, Y., Wang, R., and Clearfield, A. (1992) Pillaring of layered double hydroxides with polyoxometalates in aqueous solution without use of preswelling agents. <u>Chemistry of Materials</u>, 4, 1276-1282.
- Willi, R., Maciejewski, M., Gobel, U., Koppel, R.A., and Baiker, A. (1997) Selective reduction of NO by NH₃ over Chromia on Titania catalyst: investigation and modeling of the kinatic behavior. <u>Journal of Catalysis</u>, 166, 356-367.
- Yang, R.T., Chen, J.P., Kikkinides, E.S., Cheng, L.S. (1992) Pillared clays as superior catalysts for selective catalytic reduction of NO with NH₃. <u>Industrial & Engineering Chemistry Research</u>, 31, 1440-1445,
- Yang, R.T. (1995) Ion-exchanged pillared-clays : a new class of catalysts for selective catalytic reduction of NO by hydrocarbon and by ammonia. <u>Journal of Catalysis</u>, 155, 414-417.
- Yong, Z., Meta., V., and Rodrigues, A.E. (2001) Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 40, 204-209.

APPENDICES

Appendix A Calculation of NO conversion and $N_2\!/N_2O$ selectivity.

Figure A1 SCR process flow diagram (for calculation).

F°	=	Flow rate in to reactor (ml/min)
y°	=	Volume fraction of NO in F°
F'	=	Flow rate out from reactor (ml/min)
y'	=	Volume fraction of NO in F'
$F^{\prime\prime}$	=	Flow rate after water trapping (ml/min)
<i>y''</i>	=	Volume fraction of NO in F''

1. <u>NO Conversion</u>

NO Conversion =
$$\frac{y \circ_{NO} F \circ - y'_{NO} F'}{y \circ_{NO} F \circ}$$

2. Volume fraction of N₂O

Volume fraction of N_2O in product can be determined by O_2 balance O_2 balance

In reactor = Out reactor $2y \circ_{O_2} F \circ + y \circ_{NO} F \circ = 2y \circ_{O_2} F' + y \circ_{NO} F' + 2y \circ_{NO_2} F' + y \circ_{NO_2} F' + y \circ_{H_2O} F'$ $y \circ_{N_2O} = 2y \circ_{O_2} \frac{F \circ}{F'} + y \circ_{NO} \frac{F \circ}{F'} - 2y \circ_{O_2} + y \circ_{NO_2} + 2y \circ_{NO_2} + y \circ_{H_2O}$

3. Volume fraction of H_2O

	If water amount produced per run	=	A g
	Testing temperature	=	ТК
	Running time	=	t min
Volume of water produced		=	A g* 0.0821 L/mol K* T K
			18 g/mol* 1 atm
		=	B liter
	Volume of water produced per min	=	B g* 1000 ml
			tmin
		=	V ml/s
	y H ₂ O	=	V / F′

4. N₂/NO, N₂O/NO, and H₂O/NO selectivity

N ₂ /NO Selectivity	=	$\frac{y'_{N_2}}{y^{\circ}_{NO}}\frac{F^{\circ}}{F'} - y'_{NO}$
N ₂ O/NO Selectivity	=	$\frac{y'_{N_2O}}{y^{\circ}_{NO}} \frac{F^{\circ}}{F'} - y'_{NO}$
H ₂ O/NO Selectivity	=	$\frac{y'_{H_2O}}{y^{\circ}_{NO}}\frac{F^{\circ}}{F'} - y'_{NO}$

5. <u>N₂/N₂O Selectivity</u> N₂/N₂O Selectivity = $\frac{y'_{N_2}}{y'_{N_2} - y'_{N_2O}}$

Appendix B Raw data.

Table B1 The d-spacing of all pillared-clays

Types of pillared clay	2θ (°)	d-spacing (Å)
1. DA-clay		
- Dried 110°C	2.65	32.90
- Calcined 250°C	3.14	28.11
- Calcined 300°C	3.78	23.36
- Calcined 350°C	11.26*	7.86*
- Calcined 400°C	11.28*	7.86*
- Calcined 500°C	42.62 [*]	2.11*
2. PW ₁₂ -clay		
- Dried	6.02	14.67
- Calcined 250°C	6.02	14.67
- Calcined 350°C	11.86*	7.46*
- Calcined 500°C	42.92 [*]	2.11*
3. SiW_{12} -clay		
- Dried	6.02	14.67
- Calcined 250°C	6.02	14.67
- Calcined 350°C	8.92*	9.91*
- Calcined 500°C	42.74*	2.11*

*data taken from the first peak observed

Figure B1 XRD patterns of fresh $H_3PW_{12}O_{40}$, $H_3PW_{12}O_{40}$ calcined at 500°C, fresh $H_4SiW_{12}O_{40}$, and $H_4SiW_{12}O_{40}$ calcined at 500°C.

Catalyst	Surface area (m^2/g)	Pore volume (cc/g)	Average pore diameter (Å)
1. DA-clay			
- Calcined 350°C	48.71	0.14	114.60
- Calcined 500°C	125.60	0.26	82.68
2. PW_{12} -clay			
- Calcined 350°C	78.99	0.25	127.40
- Calcined 500°C	107.90	0.24	90.53
3. SiW_{12} -clay			
- Calcined 350°C	77.87	0.17	86.52
- Calcined 500°C	116.30	0.18	109.2

 Table B2
 BET characterization

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	1.6	99.8	0.2	0	0		
200	1.5	99.8	0.2	0	0		
250	2.2	99.8	0.2	0	0		

Table B3 SCR activity test of 0.1 g DA-clay calcined at 250°C for 12 hours

Table B4	SCR	activity	test of 0.1	g PW	12-clay	calcined	at 250°	^o C for	12 hours
----------	-----	----------	-------------	------	---------	----------	---------	--------------------	----------

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	5.6	99.4	0.6	0	0		
200	5.1	99.6	0.4	0	0		
250	6.2	99.9	0.1	0	0		

 $^{a}N_{2}/N_{2}O$ selectivity $^{b}N_{2}O/N_{2}$ selectivity

Table B5 SCR activity test of 0.1 g SiW_{12} -clay calcined at 250°C for 12 hours

Temperature	NO Conversion				
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	5.9	99.9	0.1	0	0
200	6.3	99.7	0.3	0	0
250	6.3	99.8	0.2	0	0

 $^aN_2/N_2O \ \text{selectivity} \quad \ ^bN_2O/N_2 \ \text{selectivity}$

Temperature	NO Conversion	Selectivity (%)						
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O			
150	6.2	99.8	0.2	0	0			
200	6.2	99.5	0.5	0	0			
250	6.2	99.7	0.3	0	0			
300	6.6	99.7	0.3	0	0			
350	6.6	99.5	0.5	0	0			

 Table B6
 SCR activity test of 0.1 g DA-clay calcined at 350°C for 12 hours

 $^aN_2/N_2O \ selectivity \qquad ^bN_2O/N_2 \ selectivity$

Table B7 SCR activity test of 0.1 g PW_{12} -clay calcined at 350°C for 12 hours

Temperature	NO Conversion	Selectivity (%)					
(°C) (%)		N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	6.1	99.9	0.1	0	0		
200	6.2	99.9	0.1	0	0		
250	6.3	99.7	0.3	0	0		
300	6.0	99.9	0.1	0	0		
350	6.2	99.9	0.1	0	0		

 $^aN_2/N_2O \ \text{selectivity} \quad \ ^bN_2O/N_2 \ \text{selectivity}$

Table B8	SCR a	activity (test of 0.1	g	SiW_1	2-clay	calcined	at	350°	C fo	or 12	2 hour	S
----------	-------	------------	-------------	---	---------	--------	----------	----	------	------	-------	--------	---

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N_2^a	N ₂ O ^b	NO ₂	H ₂ O
150	6.2	99.6	0.4	0	0
200	6.3	99.4	0.6	0	0
250	6.2	99.8	0.2	0	0
300	6.3	99.7	0.3	0	0
350	6.7	99.9	0.1	0	0

 $^aN_2/N_2O \ selectivity \ \ \ ^bN_2O/N_2 \ selectivity$

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	10.3	99.7	0.3	0	0
200	11.8	99.8	0.2	0	0
250	11.8	99.8	0.2	0	0
300	14.7	99.6	0.4	0	0
350	16.2	99.8	0.2	0	0
400	19.1	99.4	0.6	0	0
450	20.6	99.6	0.4	0	0

Table B9 SCR activity test of 0.1 g DA-clay calcined at 500°C for 12 hours

Temperature	NO Conversion	Selectivny (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	11.8	99.7	0.3	0	0
200	13.2	99.7	0.3	0	0
250	13.4	99.8	0.2	0	0
300	15.0	99.7	0.3	0	0
350	19.0	99.6	0.4	0	0
400	26.5	99.4	0.6	0	0
450	31.2	99.4	0.6	0	0

 $^aN_2/N_2O \ \text{selectivity} \quad \ ^bN_2O/N_2 \ \text{selectivity}$

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	10.3	99.5	0.5	0	0
200	11.8	99.4	0.6	0	0
250	11.8	99.4	0.6	0	0
300	17.9	99.8	0.2	0	0
350	18.5	99.3	0.7	0	0
400	22.1	99.4	0.6	0	0
450	26.5	99.3	0.7	0	0

Table B11 SCR activity test of 0.1 g SiW₁₂-clay calcined at 500°C for 12 hours

Table B12	SCR activit	y test of 0.1	g DA-clay	calcined at	900°C for	12 hours
-----------	-------------	---------------	-----------	-------------	-----------	----------

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	5.7	99.9	0.1	0	0
200	7.6	99.6	0.4	0	0
250	7.6	99.7	0.3	0	0
300	8.7	99.5	0.5	0	0
350	9.4	99.8	0.2	0	0
400	11.8	99.6	0.4	0	0
450	15.1	99.9	0.1	0	0

 $^{a}N_{2}/N_{2}O$ selectivity $^{b}N_{2}O/N_{2}$ selectivity

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	13.2	99.4	0.6	0	0
200	13.2	99.4	0.6	0	0
250	14.7	99.5	0.5	0	0
300	16.3	99.8	0.2	0	0
350	17.6	99.6	0.4	0	0
400	20.7	99.2	0.8	0	0
450	26.0	99.4	0.6	0	0

Table B13 SCR activity test of 0.1 g PW_{12} -clay calcined at 900°C for 12 hours

Table B14 SCR activity test of 0.1 g SiW_{12} -clay calcined at 900°C for 12 hour
--

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	7.1	99.4	0.6	0	0
200	7.1	99.9	0.1	0	0
250	8.3	99.7	0.3	0	0
300	9.9	99.8	0.2	0	0
350	10.6	99.2	0.8	0	0
400	15.9	99.1	0.9	0	0
450	17.3	99.1	0.9	0	0

 $^aN_2/N_2O \ selectivity \qquad {}^bN_2O/N_2 \ selectivity$

Temperature	NO Conversion	Selectivity (%)			
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O
150	11.8	99.7	0.3	0	0
200	12.4	99.4	0.6	0	0
250	12.4	99.7	0.3	0	0
300	14.7	99.7	0.3	0	0
350	19.1	99.6	0.4	0	0
400	26.5	99.5	0.5	0	0
450	30.9	99.2	0.8	0	0

Table B15 SCR activity test of 0.1 g Fe-DA-clay calcined at 500°C for 12 hours

 $^aN_2/N_2O \ selectivity \ \ \ ^bN_2O/N_2 \ selectivity$

Table B16 S	SCR activity test	of 0.1g Fe-PW ₁₂ -	clay calcined at	500°C for 12 hours
-------------	-------------------	-------------------------------	------------------	--------------------

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	11.8	99.8	0.2	0	0		
200	13.2	99.8	0.2	0	0		
250	13.7	99.8	0.2	0	0		
300	15.7	99.5	0.5	0	0		
350	20.6	99.6	0.4	0	0		
400	30.9	99.7	0.3	0	0		
450	39.9	99.4	0.6	0	0		

 $^aN_2/N_2O \ selectivity \qquad {}^bN_2O/N_2 \ selectivity$

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	11.8	99.4	0.6	0	0		
200	11.8	99.9	0.1	0	0		
250	11.8	99.5	0.5	0	0		
300	18.2	99.7	0.3	0	0		
350	19.1	99.7	0.3	0	0		
400	25.1	99.6	0.4	0	0		
450	29.4	99.4	0.6	0	0		

Table B17 SCR activity test of 0.1 g Fe-SiW₁₂-clay calcined at 500°C for 12 hours

Table B18	SCR	activity t	est of 0.2 g	g Fe-DA	-clay	calcined	at	500°	С	for	12	hours
-----------	-----	------------	--------------	---------	-------	----------	----	------	---	-----	----	-------

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	15.6	99.6	0.4	0	0		
200	16.5	99.6	0.4	0	0		
250	17.1	99.7	0.3	0	0		
300	19.3	99.6	0.4	0	0		
350	24.1	99.0	1.0	0	0		
375	26.5	99.0	1.0	0	0		
400	31.2	99.1	0.9	0	0		
450	35.6	99.0	1.0	0	0		

 $^{a}N_{2}/N_{2}O \ \text{selectivity} \quad \ ^{b}N_{2}O/N_{2} \ \text{selectivity}$

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ^b	NO ₂	H ₂ O		
150	16.0	99.8	0.2	0	0		
200	17.9	99.8	0.2	0	0		
250	18.4	99.1	0.9	0	0		
300	22.4	99.1	0.9	0	0		
350	26.6	99.3	0.7	0	0		
375	29.1	99.2	0.8	0	0		
400	36.9	99.0	1.0	0	0		
450	46.3	99.2	0.8	0	0		

Table B19 SCR activity test of 0.2g Fe-PW₁₂-clay calcined at 500°C for 12 hours

Table B20	SCR activity tes	t of 0.2 g Fe-SiW ₁	2-clay calcined a	t 500°C for 12 hours
-----------	------------------	--------------------------------	-------------------	----------------------

Temperature	NO Conversion	Selectivity (%)					
(°C)	(%)	N ₂ ^a	N ₂ O ⁵	NO ₂	H ₂ O		
150	15.6	99.7	0.3	0	0		
200	16.0	99.7	0.3	0	0		
250	16.0	99.2	0.8	0	0		
300	23.1	99.4	0.6	0	0		
350	24.6	99.3	0.7	0	0		
375	26.9	99.3	0.7	0	0		
400	30.4	99.3	0.7	0	0		
450	34.3	99.0	1.0	0	0		

 $^{a}N_{2}/N_{2}O$ selectivity $^{b}N_{2}O/N_{2}$ selectivity

CURRICULUM VITAE

Name: Mr. Thakul Wongkerd

Date of Birth: November 7, 1979

Nationality: Thai

University Education:

1998-2002 Bachelor Degree of Science in Industrial Chemistry, Faculty of Applied Science, King Mongkut's Institute of Technology North Bangkok, Bangkok, Thailand.