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ABSTRACT
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Many industrial processes utilize pipes and equipments that are operated in
two-phase flow regimes. In a two-phase gas-liquid co-current vertical flow, there
exist a number of different flow regimes, of which the most important are the bubble,
the slug, the chum, and the annular regimes. Experiment was carried out in a vertical
transparent tube with 0.019 m in diameter and 3 m in length and pressure gradients
were measured by the pressure taps connected to a U-tube manometer. Water and
50 vol% glycerol solution were used as the working fluids whose kinematic
viscosities were 0.85x10'6 m2s to 4.0x10"6m2s, respectively. We varied superficial
air velocity, yair, between 0.0021-58.7 m/s, superficial water velocity, ywaar between
0-0.121 m/s, and superficial aqueous glycerol solution, Jsolutio» between 0-0.1053
mfs. The effect of liquid viscosity on the flow regimes and the corresponding
pressure gradients along the vertical flow were investigated. As liquid viscosity
increases, the boundaries of the bubble, the bubble-slug, and the slug flow regimes in
aqueous glycerol solution shift to the right relative to those of pure water. But the
boundaries for the chum, the annular and the mist flow regimes remain nearly the
same. As Reynolds number of air, (Re)air, increases the pressure gradients decreases
in the bubble, the slug, and the slug-chum flow regimes. But in the annular and the
mist flow regimes, the pressure gradients increases with increasing Reynolds number
of air (Rejair. Finally, the experimentally measured pressure gradient values are
compared and are in good agreement with the theoretical values.
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