MFI ZEOLITE SYNTHESIS VIA SOL-GEL PROCESS WITH MICROWAVE TECHNIQUE AND APPLICATION AS OXIDATIVE DEHYDROGENATION CATALYST

Phairat Phiriyawirut

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2005

ISBN 974-9651-78-2

122243008

Thesis Title:	MFI Zeolite Synthesis via Sol-Gel Process with Microwave
	Technique and Application as Oxidative Dehydrogenation
	Catalyst
By:	Phairat Phiriyawirut
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit
	Prof. Alexander M. Jamieson
	Assoc. Prof. Rathanawan Magaraphan
	Asst. Prof. Sirirat Jitkarnka

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantayn Januart. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantayo Lanunet.

(Assoc. Prof. Nantaya Yanumet)

the

(Prof. Alexander M. Jamieson)

(Asst. Prof. Siriyat Jitkarnka)

(Asst. Prof. Tawan Sooknoi)

(Assoc. Prof. Sujitra Wongkasemit)

Magaron

(Assoc. Prof. Rathanawan Magaraphan)

(Assoc. Prof. Sumaeth Chavader)

ABSTRACT

4492001063: Polymer Science Program
Phairat Phiriyawirut: MFI Zeolite Synthesis via Sol-gel Process with
Microwave Technique and Application as Oxidative
Dehydrogenation Catalyst
Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, Prof.
Alexander M. Jamieson, Assoc. Prof. Rathanawan Magaraphan, and
Asst. Prof. Sirirat Jitkarnka, 133 pp. ISBN 974-9651-78-2
Keywords: Silatrane/Alumatrane/Zeolite/MFI/Silicalite/VS-1/Oxidative
Dehydrogenation

Silatrane and alumatrane were prepared via the oxide one-pot synthesis process and used as precursors for synthesis of MFI zeolite family, i.e., silicalite, ZSM-5 and VS-1. Numerously synthetic factors including chemical composition and conditions were investigated to understand role of individual factors on zeolite morphology and elemental composition. Different templates produce different morphologies and growth directions of MFI crystals due to the steric effect of the template molecule. Morphology of synthesized zeolite is also altered by water content. Various factors, influencing the VS-1 zeolite properties, were investigated. Using the novel silatrane precursor, VS-1 zeolites with high vanadium loading can be prepared via hydrothermal synthesis. The influence of VS-1 zeolite synthesis parameter from silatrane precursor on the catalytic properties in oxidative dehydrogenation has been studied. Propane conversion increases as increasing vanadium content while selectivity slightly decreases. Tetrahedral vanadium within zeolite is believed to be responsible for the selectively oxidative dehydrogenation while the extrinsic vanadium or polymeric species are responsible for over oxidation, selectively giving high carbon monoxide and carbon dioxide. A shorter contact time gives higher product yield and conversion though lower in selectivity.

บทคัดย่อ

ไพรัตน์ พิริยวิรุตม์ : การสังเคราะห์ซีโอไลต์ประเภทเอมเอฟไอโดยกระบวนการโซล เจลด้วยการใช้เทคนิคไมโครเวฟ และการประยุกต์ใช้ในปฏิกิริยาออกซิเดทีปดีไฮโครจีเนชัน (MFI Zeolite Synthesis via Sol-Gel Process with Microwave Technique and Application as Oxidative Dehydrogenation Catalyst) อ. ที่ปรึกษา : รองศาสตราจารย์ คร. สุจิตรา วงศ์เกษม จิตต์, ศาสตราจารย์ คร. อเล็กซานเดอร์ เอ็ม เจมิสัน, รองศาสตราจารย์ คร.รัตนวรรณ มกรพันธ์ และ ผู้ช่วยศาสตราจารย์ คร. ศิริรัตน์ จิตการก้า 133 หน้า ISBN 974-9651-78-2

สารประกอบไซลาเทรน และอลูมาเทรน ถูกสังเคราะห์ได้ด้วยกระบวนการสังเคราะห์ ออกไซด์วันพอท และนำมาใช้เป็นสารตั้งค้นในการสังเคราะห์ซีโอไลต์ที่มีโครงสร้างจำพวกเอม เอฟไอ ได้แก่ สิลิกาไลต์ แซทเอสเอมไฟฟ์ และ วีเอสวัน มีการศึกษาปัจจัยต่างๆ ทั้งทางด้าน และภาวะของการสังเคราะห์ว่าจะมีผลอย่างไรต่อลักษณะและสมบัติองค์ประกอบ ดงค์ประกอบ ทางเคมีของซีโอไลต์ที่สังเคราะห์ได้ ลักษณะที่ต่างกันของสารแม่แบบยังมีผลต่อลักษณะของผลึก ซิโอไลต์ที่ได้ ซึ่งเป็นผลจากการเบียคบังกันของสารแม่แบบเมื่อปรากฏอยู่ในโครงสร้างของซึ ้โอไลต์ และยังพบว่า การเปลี่ยนแปลงปริมาณของน้ำในการสังเคราะห์ส่งผลต่อลักษณะของผลึกซี โอไลต์เช่นกัน และได้มีการศึกษาปัจจัยต่างๆที่มีผลต่อการสังเคราะห์วีเอสวันซีโอไลต์เช่นกัน การ สามารถเตรียมสารวีเอสวัน โคยมีวานาเคียมใน ใช้สารตั้งค้นประเภทไซลาเทรน์นั้นพบว่า โครงสร้างสูงได้ ในการทคสอบสมบัติทางด้านการทำปฏิกิริยาของวีเอสวันซีโอไลต์ด้วยปฏิกิริยา ปฏิกิริยาของสารตั้งต้น โพรเพนเกิดเพิ่มขึ้นเมื่อมีปริมาณวา ออกซิเคทีปคีไฮโครจีเนชันพบว่า นาเดียมในซีโอไลต์เพิ่มขึ้น โดยที่ความจำเพาะของปฏิกิริยาที่ให้ผลิตภัณฑ์โพรพีนลคลงเล็กน้อย พบว่าวานาเคียมในสภาวะที่มีสัญฐานของอะตอมในแบบเตตระฮิครอลน่าจะมีความจำเพาะเจาะจง ที่ให้ออกไซคของการ์บอนเป็นผลิตภัณฑ์มากกว่า ในปฏิกิริยาออกซิเคทีฟคีไฮโครจีเนชัน ้วานาเดียมอะตอมในแบบออกตะฮีดรอล นอกจากนี้ การทดลองยังพบว่า การปรับแต่งอัตราเร็ว ใหลผ่านของแก็สมีผลต่อความจำเพาะเจาะจงของปฏิกิริยาเช่นกัน ระยะเวลาที่สั้นลงของปฏิกิริยา จะช่วยให้ผลิตภัณฑ์มีความจำเพาะเจาะจงมากขึ้น แต่จะทำให้มีการเกิดปฏิกิริยาของสารตั้งต้น ิลคลง

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge my research advisor, Assoc. Prof. Sujitra Wongkasemjit for her guidance, inspiration and chance for my Ph.D. I greatly appreciate Assist. Prof. Rathanawan Magaraphan for her recognition of my desire for Ph.D. study, and let me to work under supervision of Assoc. Prof. Sujitra Wongkasemjit. Asst. Prof. Sirirat Jitkarnka is acknowledged for her kind suggestion on catalytic testing. I would like to gratefully acknowledge my advisor at Case Western Reserve University, Prof. Alexander M. Jamieson, for his support while having been doing research in USA, and his help to revise my work. I would like to acknowledge Prof. Mark R. De Guire for his advice and suggestion during doing research at Case Western Reserve University.

I would like to acknowledge the technical assistance C.P.O. Poon Arjpru who constructed reactor and did maintenance lab instrument. Mr. Sanit Prinakorn is acknowledged for glassware design and blowing. It is my pleasure to thank all other technical staff who helped me on my research work. Special acknowledgement goes to our research affairs staff who taught us how to use all instruments and maintenance all of the instruments in good condition. Ms. Prichajean Nakornthap, Mrs. Aree Soungsri and Mrs. Bumpenruedee Prasomsaeng are acknowledged for their helps in providing good service in reference database search. It is absolutely unforgettable to acknowledge Mr. Prasit Srikaew and Mr. Suchart Thongkurn to serve and provide us good video and audio in our classroom. Mr. Narong Petchsuk and Mr. Suwichan Thongtam are acknowledged for providing us good computer service and management of college network.

It is my pleasure to acknowledge our PPC teachers who teach and suggest me, both knowledge in our discipline and experience in everyday life. I would like to acknowledge financial support from Thailand Research Fund, Ratchadapisake Sompote Fund, Chulalongkorn University and Postgraduate Education and Research Program in Petroleum and Petrochemical Technology (ADB).

I would like to acknowledge all friends and colleagues who entertained and made me happy. It is unforgettable to acknowledge my parents and family.

TABLE OF CONTENTS

	Title P	age			i
	Abstra	ict (ii	n Englis	sh)	iii
	Title Page Abstract (in English) Abstract (in Thai) Ackowledgements Table of Contents List of Tables List of Figures Abbreviations APTER I INTRODUCTION II LITERATURE REVIEW II EXPERIMENTAL 3.1 Materials 3.2 Instruments 3.3 Precursor Synthesis 3.3.1 Alumatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (Si-TEA) 3.4 Zeolite MFI Synthesis 3.4.1 Pure Silicate MFI (Silicalite) 3.4.2 Aluminosilicate MFI (Silicalite)		iv		
	Title Page Abstract (in English) Abstract (in Thai) Ackowledgements Table of Contents List of Tables List of Figures Abbreviations Abbreviations Abbreviations II INTRODUCTION II LITERATURE REVIEW III EXPERIMENTAL 3.1 Materials 3.2 Instruments 3.3 Precursor Synthesis 3.3.1 Alumatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (Si-TEA) 3.4 Zeolite MFI Synthesis 3.4.1 Pure Silicate MFI (Silicalite) 3.4.2 Aluminosilicate MFI (ZSM5)		v		
	Title Page Abstract (in English) Abstract (in Thai) Ackowledgements Table of Contents List of Tables List of Figures Abbreviations Abbreviations Abbreviations Abbreviations II INTRODUCTION II LITERATURE REVIEW III EXPERIMENTAL 3.1 Materials 3.2 Instruments 3.3 Precursor Synthesis 3.3.1 Alumatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (Si-TEA) 3.4 Zeolite MFI Synthesis 3.4.1 Pure Silicate MFI (Silicalite) 3.4.2 Aluminosilicate MFI (ZSM5) 3.4.3 Vanadium MEI (VS 1)		vi		
	Title Page Abstract (in English) Abstract (in Thai) Ackowledgements Table of Contents List of Tables List of Figures Abbreviations APTER I INTRODUCTION II LITERATURE REVIEW III EXPERIMENTAL 3.1 Materials 3.2 Instruments 3.3 Precursor Synthesis 3.3.1 Alumatrane Synthesis (AI-TIS) 3.3.2 Silatrane Synthesis (Si-TEA) 3.4 Zeolite MFI Synthesis 3.4.1 Pure Silicate MFI (Silicalite)		x		
	List of	Fig	ures		xi
	Abbre	viati	ons		xvi
CHA	APTER				
	I INTRODUCTION			1	
	II LITERATURE REVIEW		4		
	III	EX	PERIN	IENTAL	9
		3.1	Materi	als	9
		3.2	Instrur	nents	9
		3.3	Precur	sor Synthesis	10
			3.3.1	Alumatrane Synthesis (Al-TIS)	10
			3.3.2	Silatrane Synthesis (Si-TEA)	11
		3.4	Zeolite	e MFI Synthesis	11
			3.4.1	Pure Silicate MFI (Silicalite)	11
			3.4.2	Aluminosilicate MFI (ZSM5)	11
			3.4.3	Vanadium MFI (VS-1)	12
		3.5	Oxidat	ive Dehydrogenation of Propane by VS-1 Catalyst	12

38

38

V	MFI ZEOLITE SYNTHESIS DIRECTLY FROM				
	SILATRANE VIA SOL-GEL PROCESS AND				
	MICROWAVE TECHNIQUE				
	4.1 Abstract	14			
	4.2 Introduction	15			
	4.3 Experimental	17			
	4.4 Results and Discussion	19			
	4.5 Conclusions	25			
	4.6 Acknowledgements	25			
	4.7 References	26			

V MORPHOLOGY STUDY OF MFI ZEOLITE SYNTHESIZED DIRECTLY FROM SILATRANE AND ALUMATRANE VIA THE SOL-GEL PROCESS AND MICROWAVE HEATING 5.1 Abstract

5.2	Introduction	39
5.3	Experimental	41
5.4	Results and Discussion	44
5.5	Conclusions	50
5.6	Acknowledgements	50
5.7	References	51

VI VS-1 ZEOLITE SYNTHESIZED DIRECTLY FROM

SILATRANE	67
6.1 Abstract	67
6.2 Introduction	68
6.3 Experimental	69
6.4 Results and Discussion	71
6.5 Conclusions	80

CHAPTER			PAGE
	6.6 Acknowl	edgements	80
	6.7 Reference	es	81
VII	OXIDATIVE	DEHYDROGENATION OF PROPANE	
	OVER VS-1	ZEOLITE SYNTHESIZED FROM	
	SILATRANH	C	98
	7.1 Abstract		98
	7.2 Introduct	ion	99
	7.3 Experime	ental	101
	7.4 Results a	nd Discussion	104
	7.5 Conclusio	ons	111
	7.6 Acknowl	edgements	112
	7.7 Reference	es	113
VIII	CONCLUSI	ONS AND RECOMMENDATIONS	121
	REFERENC	ES	123
	APPENDIC	ES	
	Appendix A	Reactor diagram for testing VS-1 zeolite	
		by oxidative dehydrogenation reaction	127
	Appendix B	Constructing calibration of hydrocarbon	
		compound with FID detector.	
		(GS-Alumina Column)	128
	Appendix C	Constructing calibration of gas carrier,	
		reactance and carbon oxide product with	
		TCD detector. (PlotQ and Molseive column)	129
	Appendix D	Sample calculation of conversion, selectivity	

and carbon balance.

130

CURRICULUM VITAE

132

LIST OF TABLES

TABL	PAGE	
	CHAPTER IV	
4.1	Peak positions and assignments in the FTIR spectrum of	

4.1	reak positions and assignments in the rank spectrum of	
	synthesized silatrane	29

CHAPTER V

5.1	FAB ⁺ -MS Spectrum of alumatrane	54
5.2	FAB ⁺ -MS Spectrum of silatrane	55
5.3	Si/Al ratios of MFI Specimens by XRF Analysis	56

CHAPTER VI

6.1	ESR Parameters of vanadium species in VS-1 synthesized	
	from the formula Si: V: TPA-Br: H ₂ O of 40: 1: 4: 2800	85
6.2	The effect of formulation on Si/V ratio of VS-1, made using	
	the ratio $H_2O/V=70$ with 84 hr aging and 20 hr heating at	
	180°C, determined by XRF	86

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Structure of Atrane Compound	4
2.2	Schematic presentation of the TPA-directed	
	polycondensation process of TEOS (From J. Phys. Chem. B	
	1999, 103, 4965)	6

CHAPTER IV

4.1	XRD spectrum of synthesized silatrane	30
4.2	Effect of heating time on reaction of SiO ₂ : 0.1 TBA: 0.4 OH	
	: 0.4 Na ⁺ : 114 H ₂ O at 150°C, after 84 hr aging time a) 5 hr,	
	b) 10 hr, c) 15 hr and d) 20 hr	31
4.3	XRD patterns of products formed from reaction of SiO ₂ : 0.1	
	TBA: 0.4 OH ⁻ : 0.4 Na ⁺ : 114 H ₂ O at 150°C after 84 hr aging	
	time, at heating times of: a) 5 hr b) 10 hr c) 15 hr and d) 20	
	hr	32
4.4	Effect of aging time on morphology of products formed	
	from SiO ₂ : 0.1 TBA: 0.4 OH ⁻ : 0.4 Na ⁺ : 114 H ₂ O mixtures	
	with heating for 20 hr at 150°C: a) 36 hr, b) 60 and c) 84 hr	33
4.5	Effect of temperature on products formed from SiO ₂ : 0.1	
	TBA: 0.4 OH ⁻ : 0.4 Na ⁺ : 114 H ₂ O after 84 hr aging time and	
	heating at: a) 120°C for 10 hr, b) 120°C for 20 hr and	
	c)180°C for 10 hr	34
4.6	Effect of template concentration on products formed from	
	SiO ₂ : x TBA: 0.4 OH ⁻ : 0.4 Na ⁺ : 114 H ₂ O after aging for 84	
	hr and heating at 150°C for 20 hr: TBA/Si ratios, x, are a)	
	0.017, b) 0.034, c) 0.1 and d) 0.15 with aged	35

4.7	Effect of hydroxide concentration on products formed from		
	SiO ₂ : 0.1 TBA: x OH ⁻ : 0.4 Na ⁺ : 114 H ₂ O after aging for 84		
	hr and heating at 150°C for 20 hr: OH/Si ratios, x, are a) 0.3,		
	b) 0.4 and c) 0.5	36	
4.8	The effect of dilution on products formed from SiO ₂ : 0.1		
	TBA: 0.4 OH^- : 0.4 Na^+ : xH ₂ O, after 84 hr aging time and		
	heating at150°C for 20 hr: H ₂ O/Si ratios, x, are a) 85, b) 150		
	and c) 250	37	

CHAPTER V

5.1	XRD patterns of a) alumatrane, a') alumina oxide,		
	b) silatrane and b') fumed silica	57	
5.2	TGA analysis of a) alumatrane and b) silatrane	58	
5.3	Effect of aging time on morphology of pure silicate MFI		
	using the formulation of SiO_2 : 0.1TPA: 0.4NaOH: 114H ₂ O		
	with 10 hr heating at 150°C. Aging times are: a) 12 hr, b) 36		
	hr, c) 60 and d) 84 hr	59	
5.4	Crystal morphologies of pure silicate MFI with different		
	templates: a) TBA template aged for 84hr and heated at 150		
	°C for 15 hr, and b) TPA template MFI aged for 84 hr and		
	heated at 150 °C for 15 hr	60	
5.5	Effect of heating time on XRD patterns of pure silicate MFI		
	a) TBA template after 84 hr aging and b) TPA template after		
	60 hr aging	61	
5.6	Effect of alumatrane content on MFI morphology using		
	TBA template at Si/Al ratios of a) 75, b) 50 and c) 25	62	
5.7	Effect of alumatrane content on MFI morphology using TPA		
	template at Si/Al ratios of a) 75, b) 50, c) 25 and d) 10	63	

5.8	Morphology of MFI with formulation Si/Al/TPA/NaOH/	
	$H_2O = 10/1/1/4/1140$ after aging at RT for 60 hr and heating	
	at 150°C for 15 hr	64
5.9	Effect of hydroxide concentration on MFI morphology using	
	the formulation Si/Al/TPA/NaOH/H ₂ O = $25/1/2.5/x/2850$	
	with $x = NaOH/Al$ ratios of a) 5, b) 10 and c) 15	65
5.10	Effect of sodium cation concentration on MFI morphology	
	using the formulation Si/Al/TPA/OH ⁻ / $H_2O =$	
	25/1/2.5/10/2850 at Na ⁺ /Al ratios of a) 10, b) 15 and c) 20	66

CHAPTER VI

6.1	SEM micrographs of VS-1 samples produced at the reaction	
	temperature of 150°C with varying H_2O/Si ratios: a) 50, b)	
	70 and c) 100	87
6.2	UV-visible spectroscopy of VS-1 samples produced at the	
	reaction temperature of 150° C with varying H ₂ O/Si ratios: a)	
	50, b) 70 and c) 100	88
6.3	SEM of VS-1 samples produced at the reaction temperature	
	of 180°C with varying H_2O/Si ratios: a) 50, b) 70 and c) 100	89
6.4	UV-visible spectroscopy of VS-1 samples produced at the	
	reaction temperature of 180°C with varying H_2O/Si ratios: a)	
	50, b) 70 and c) 100	90
6.5	ESR visible spectroscopy of VS-1 samples produced at the	
	reaction temperature of 180°C with varying H_2O/Si ratios: a)	
	50, b) 70 and c) 100	91

6.6	SEM micrographs of VS-1 samples produced at the reaction	
	temperature of 180°C, having the Si/V ratio fixed at 40, with	
	the H_2O/Si ratio at 70, while varying the NaOH/V ratio at: a)	
	12, b) 16, c) 20; and with the H_2O/Si ratio at 50 while	
	varying the NaOH/V ratio at d) 12, e) 16 and f) 20	92
6.7	UV-visible spectroscopy of VS-1 samples produced at the	
	reaction temperature of 180°C, having the Si/V ratio fixed at	
	40, with the H_2O/Si ratio at 70, while varying the NaOH/V	
	ratio at: a) 12, b) 16, c) 20; and with the H_2O/Si ratio at 50	
	while varying the NaOH/V ratio at d) 12, e) 16 and f) 20	93
6.8	ESR spectroscopy of VS-1 samples prepared using the	
	formula Si: V: TPA-Br: NaOH: $H_2O = 40$: 1: 4: 12: 2800: a)	
	as-synthesized sample, b) reduced sample after calcination	
	and c) reduced, calcined and washed sample	94
6.9	SEM micrographs of VS-1 samples prepared with the	
	vanadium concentration fixed at a Si/V ratio of 25 and	
	varying the NaOH/V ratio at a) 7.5, b) 10 and c) 12.5	95
6.10	UV-visible spectroscopy of VS-1 samples prepared with the	
	vanadium concentration fixed at a Si/V ratio of 25 and	
	varying the NaOH/V ratio at a) 7.5, b) 10 and c) 12.5	96
6.11	ESR results of VS-1 samples prepared using the formula Si:	
	V: TPA-Br: NaOH: H ₂ O formula = 40: 1: 4: 20: 2800: a) as-	
	synthesized sample and b) reduced, calcined and washed	
	sample	97

CHAPTER VII

7.1 Relationship between vanadium loading concentration and		
	vanadium content in a) as-synthesized and b) 1 N	
	ammonium acetate treated VS-1 zeolite	116

7.2	Propane conversion and propylene selectivity using VS-1	
	zeolites with varying vanadium contents at different reaction	
	temperatures	117
7.3	Conversion of propane ($ullet$) and oxygen (\blacksquare), and product	
	selectivity, at a C_3H_8 to O_2 feed ratio of 2, is plotted as a	
	function of temperature, for VS-1 zeolites synthesized using	
	two different sodium hydroxide concentrations (Low sodium	
	hydroxide concentration \equiv NaOH/V = 3 (Si/V=477) and	
	high sodium hydroxide concentration \equiv NaOH/V = 5	
	(Si/V=880))	118
7.4	Conversion of propane ($ullet$) and oxygen (\blacksquare), and product	
	selectivity, at a C_3H_8 to O_2 feed ratio of 2, is plotted as a	
	function of temperature, for as-synthesized (Si/V=281) and	
	ammonium acetate-treated (Si/V=477) VS-1	119
7.5	Conversion of propane ($ullet$) and oxygen (\blacksquare), and product	
	selectivity, at a C_3H_8 to O_2 feed ratio of 2, and a reaction	
	temperature of 450°C, is plotted as a function of space	
	velocity for VS-1 zeolite synthesized using the formula	
	$Si/V/TPA/NaOH/H_2O = 40/1/4/12/2800$	120

ABBREVIATIONS

Al-TIS	Alumatrane
DR-UV	Diffuse Reflectance Ultraviolet-Visible Spectroscopy
EDX or EDS	Energy Depressive X-ray Spectroscopy
EG	Ethylene Glycol
ESR	Electron Spinning Resonance Spectroscopy
EPR	Electron Paramagnetic Resonance Spectroscopy
FAB^+-MS	Fast Atomic Bombardment Mass Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy
MFI	Mobile Five (Material code refer to ZSM-5 topology)
ODH	Oxidative Dehydrogenation
OOPS	Oxide One Pot Synthesis
SEM	Scanning Electron Microscope
Si-NMR	Silicon Nuclear Magnetic Resonance Spectroscopy
Si-TEA	Silatrane
STA	Simultaneous Thermal Analysis
TBA	Tetra Butyl Ammonium
TEA	Triethanolamine
TEOS	Tetraethyl Ortho Silicate
TGA	Thermal Gravimetric Analysis
TIS	Tri-isopropanolamine
TPA	Tetra Propyl Ammonium
TPABr	Tetra Propyl Ammonium Bromide
ТРАОН	Tetra Propyl Ammonium Hydroxide
TPD	Temperature Program Desorption
ТРО	Temperature Program Oxidation
TPR	Temperature Program Reduction
TS-1	Titanium-silicalite
VS-1	Vanadium-silicalite
XRD	X-ray Diffraction Spectroscopy
XRF	X-ray Fluorescence Spectroscopy