REFERENCES

- Agag, T., and Takeichi, T. (2000) Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. <u>Polymer</u>, 41, 7083-7090.
- Abdelmouleh, M., Bouft, S., Salah, A.B., Belgacem, M.N., and Gandini, A. (2002) Interaction of silane coupling agents with cellulose. <u>Langmuir</u>, 18, 3203-3208.
- Abdelmouleh, M., Bouft, S., Belgacem, M.N., Duarte, A.P., Salah, A.B., and Gandini, A. (2004) Modification of cellulose fibers with functionalized silanes: development of surface properties. <u>International Journal of</u> <u>Adhesion and Adhesives</u>, 24, 43-54.
- Alvarez, V.A., and Vazquez, A. (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites <u>Polymer Degradation</u> <u>and Stability</u>, 84, 13-21.
- Aziz, S.H., and Ansell, M.P. (2004) The effect of alkalization and fiber alignment on the mechanical and physical properties of kenaf and hemp bast fiber composites: Part 1- polyester resin matrix. <u>Composites Science and Technology</u>, 63, in press.
- Bledzki, A.K., and Gassan, J. (1999) Composites reinforced with cellulose based fibers. <u>Progress in Polymer Science</u>, 24, 221-274.
- Cahn, R.W., Haasen, P., and Kramer, E.J. (1993) Structure and Properties of fiber composites. <u>Materials Science and Technology</u>, 13, New York: VCH Publishers.

- Dansiri, N., Yanumet, N., Ellis, J.W., and Ishida, H. (2002) Resin transfer molding of natural fiber reinforced composites. <u>Polymer Composite</u>, 23, 352-360.
- Devi, L.U., Bhagawan, S.S., and Thomas, S. (1997) Mechanical properties of pine apple leaf fiber-reinforced polyester composites. <u>Journal of Applied Polymer</u> <u>Science</u>, 64, 1739-1748.

- Dunkers, J., and Ishida, H. (1999) Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. Journal of <u>Polymer Science</u>, 37, 1913-1921.
- Felix, J.M., and Gatenholm, P. (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. <u>Journal of Applied Polymer</u> <u>Science</u>, 42, 609-620.
- Gassan, J., and Gutowski, V.S. (2000) Effect of corona discharge and UV treatment on the properties of jute-fiber epoxy composites. <u>Composites Science and</u> <u>Technology</u>, 60, 2857-2863.
- Ghosh, P., and Ganguly, P.K. (1993) The fiber-reinforced polyester resin composites: Effect of different types and degrees of chemical modification of jute on performance of the composites. <u>Plastics, Rubber and Composites</u> <u>Processing and Applications, 20, 171-177.</u>
- Goodwin, V. (1997) Application of Polybenzoxazine for natural fiber reinforced plastics. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Hemvichian, K., Laobuthee, A., Chirachachai, S., and Ishida, H. (2002) Thermal decomposition processes in polybenzoxazine model dimers investigated by TGA-FTIR and GC-MS. <u>Polymer Degradation and Stability</u>, 76, 1-15.
- Ishida, H., and Allen, D.J. (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. <u>Polymer</u>, 37, 4487-4495.
- Ishida, H., and Allen, J. (1996) Physical and mechanical characterization of nearzero shrinkage polybenzoxazines. Journal of Polymer Science, 34, 1019-1030.
- Ishida, H., and Rimdusit, S. (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. <u>Thermochimica Acta</u>, 320, 177-186.
- Ishida, H. (1996) U.S. Patent 5 543 516.
- Jang, J., and Yang, H. (2000) Toughness improvement of carbonfiber/polybenzoxazine composites by rubber modification. <u>Composite</u> <u>Science and Technology</u>, 60, 457-463.

- Joffe, R., Andersons, J., and Wallstrom, L. (2003) Strength and adhesion characteristics of elementary flax fibers with different surface treatments. <u>Composites: Part A</u>, 34, 603-612.
- Joly, C., Gauthier, R., and Chabert, B. (1996) Physical chemistry of the interface in polypropylene/cellulose-fber composites. <u>Composites Science and</u> <u>Technology</u>, 56, 761-765.
- Joseph, K., Varghese, S., Kalaprasad, G., Thomas, S., Prasannakumari, L., Koshy, P., and Pavithran, C. (1996). Influence of interfacial adhesion on the mechanical properties and fracture behavior of short sisal fibre reinforced polymer composites. <u>European Polymer Journal</u>, 32, 1243-1250.
- Joseph, S., Sreekala, M.S., Oommen, Z., Koshy, P., and Thomas, S. (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibers and glass fibers. <u>Composite Science and Technology</u>, 62, 1857-1868.
- Lewin, M., and Pearce, E.M. (1998) <u>Handbook of Fiber Chemistry</u>, 2nd Edition. New York: Mercel Dekker.
- Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, Georg, and Kroschwitz, J.I.
 (1987) Fibers, vegetable. <u>Encyclopedia of polymer science and engineering</u>, 7, 16-19.
- Mishra, S., Naik, J.B., and Patil, Y.P. (2000) The compatibilizing effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. <u>Composites Science and Technology</u>, 60, 1729-1735.
- Ning, X., and Ishida, H. (1994) Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazine and their polymers. Journal of Polymer Science, 32, 1121-1129.
- Ning, X., and Ishida, H. (1994) Phenol materials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanism and dynamic mechanism properties. <u>Journal of Polymer Science</u>, 32, 921-927.
- Plueddemann, E.P. (1982) Silane Coupling Agents, New York: Elsevier.

- Rodriguez, Y., and Ishida, H. (1995) Catalyzing the curing reaction of a new benzoxazine-based phenolic resin. <u>Journal of Applied Polymer Science</u>, 58, 1751-1760.
- Rong, M.Z., Zhong, M.Q., Liu, Y., Yang, G.C., and Zheng, H.M. (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisalreinforced epoxy composites. <u>Composite Science and Technology</u>, 61, 1437-1447.
- Sreekala, M.S., and Thomas, S. (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. <u>Composite Science and</u> <u>Technology</u>, 63, 861-869.
- Shen, S.B., and Ishida, H. (1996) Development and characterization of highperformance polybenzoxazine composites. <u>Polymer Composites</u>, 17, 710-719.
- Shen, S.B., and Ishida, H. (1996) Processing and characterization of carbon fiberreinforced polynaphthoxazine composite. <u>Journal of Materials Science</u>, 31, 5945-5952.
- Suprapakorn, N. (1996) Effect of CaCO₃ on the mechanical and rheological properties of benzoxazine resin and polybenzoxazine. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
- Takeichi, T., Zeidam, R., and Agag, T. (2002) Polybenzoxazine/clay hybrid nanocomposites: influence of preparation method on the curing behavior and properties of -polybenzoxazines. <u>Polymer</u>, 43, 45-53.
- Tanaka, K., Minoshima, K., Grela, W., and Komai, K. (2002) Characterization of the aramid/epoxy interfacial properties by means of pull-out test and influence of water absorption. <u>Composites Science and Technology</u>, 62, 2169-2177.
- Valadez-Gonzalez, A., Cerrantes-Uc, J.M., Olayo, R., and Herrera-Franco, P.J (1999) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. <u>Composite: Part B</u>, 30, 309-320.

- Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R., and Herrera-Franco, P.J (1999) Chemical modification of henequen fibers with an organosilane coupling agent. <u>Composite: Part B</u>, 30, 321-331.
- Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., and Verpoest,
 I. (2003) Influence of processing and chemical treatment of flax fibers on their composites. Composites Science and Technology, 63, 1241-1246.
- Wambua, P., Ivens, J., and Verpoest, I. (2003) Natural fibers: can they replace glass in fiber reinforced plastics?. <u>Composites Science and Technology</u>, 63, 1259-1264.
- Wang, Y.X., and Ishida, H. (1999) Cationic ring opening polymerization of benzoxazines. <u>Polymer</u>, 40, 4563-4570.
- Zafeiropoulos, N.E., Williams, D.R., Baillie, C.A., and Matthews, F.L. (2002) Engineering and characterization of the interface in flax fiber/polypropylene composite materials. Part I. Development and investigation of surface treatments. <u>Composites: Part A</u>, 33, 1083-1093.

APPENDICES

Appendix A Calculations

A1 Percent weight loss of sisal fibers after NaOH treatment

About 1 g of sisal fibers were dried at 110 °C for 2 h and weight immediately. Fibers were immersed in the NaOH solutions, concentration of 2, 4, and 6 percent by weight (wt%), at room temperature for 1, 5, and 24 h. Amount of fibers in each condition is about 1 g. The treated fibers were rinsed several times by distilled water until neutral. Then fibers were dried in an oven for 2 h at 110°C and then weight immediately.

A2 Tensile strength of fibers

Tensile tests of single sisal fibers were carried out using Lloyd universal testing machine, LRX. A gage length of 50 mm was employed with a crosshead speed of 10 mm/min in accordance with ASTM C1557-03. Twenty single fibers of 15 cm were tested. The cross-sectional area of fibers was determined by SEM.

$$T = F/A$$

where:

T = tensile strength, Pa

F = force to failure, N, and

A = fiber cross-sectional area at fracture plane, m^2

٠

Sample	Weight of fiber (g)	Treatment Time (hours)		(hours)
Bumpie		1	5	24
	weight of untreated fibers	1.8326	1.8574	1.8549
Ι	weight of treated fibers	1.7100	1.7248	1.7196
	%weight loss	6.69	7.14	7.29
	weight of untreated fibers	1.8512	1.8786	1.8631
II	weight of treated fibers	1.7224	1.7392	1.7028
	%weight loss	6.96	7.42	8.60
Average	%weight loss average	6.82	7.28	7.95

 Table B1
 Percent weight loss of sisal fibers after 2% NaOH treatment

Table B2 Percent weight loss of sisal fibers after 4% NaOH treatment

Sample	Weight of fiber (g)	Treatment Time (hours)			
- F -		1	5	24	
	weight of untreated fibers	1.8692	1.8685	1.9462	
Ι	weight of treated fibers	1.7112	1.7035	1.7529	
	%weight loss	8.45	8.83	9.93	
	weight of untreated fibers	1.8608	1.8911	1.9556	
П	weight of treated fibers	1.7054	1.6989	1.7391	
	%weight loss	8.35	10.16	11.07	
Average	%weight loss average	8.40	9.50	10.50	

Sample	Weight of fiber (g)	Treatment Time (hours)		(hours)
Sample		1	5	24
	weight of untreated fibers	1.8397	1.9191	1.8713
Ι	weight of treated fibers	1.6545	1.7089	1.6171
	%weight loss	10.07	10.95	13.58
	weight of untreated fibers	1.8443	1.9297	1.8609
П	weight of treated fibers	1.6493	1.6959	1.6039
	%weight loss	10.57	12.12	13.81
Average	%weight loss average	10.32	11.54	13.70

.

.

.

.

Table B3 Percent weight loss of sisal fibers after 6% NaOH treatment

Time	Tintucated	0.10/ ADC	0.50/	NaOH/	NaOH/
(s)	Unirealed	0.1%γ-APS	0.5%γ-APS	0.1% γ-APS	0.5%γ-APS
0.0	61.7	72.3	82.8	69.0	89.4
0.1	59.5	70.6	81.2	68.0	87.2
0.2	59.1	69.1	79.6	67.6	86.5
0.3	55.8	67.4	78.6	66.0	85.3
0.4	53.6	66.2	76.8	65.4	85.3
0.5	48.3	64.8	75.0	64.6	85.0
0.6	-	64.2	73.7	64.0	85.0
0.7	-	63.6	73.1	63.0	84.7
0.8	11.6	62.1	72.4	62.2	84.5
0.9	-	60.8	71.6	61.1	84.5
1.0	-	58.6	70.8	60.5	84.2
1.1	-	58.3	69.5	59.8	84.2
1.2	8.1	56.6	67.8	58.8	84.0
1.3	-	52.6	66.7	57.6	83.8
1.4	-	-	65.5	57.2	83.5
1.5	5.1	-	64.5	56.8	83.3
1.6	-	-	63.6	55.5	83.2
1.7	-	-	63.9	-	83.0
• 1.8	-	-	58.5	-	82.8
1.9	-	-	-	-	82.3
2.0	-	-	-	-	82.2

Table B4 Water contact angle of untreated and γ -APS treated sisal fibers

Time		0.10/ 0.00	0.50/. CDC	NaOH/	NaOH/
(s)	Untreated	0.1%γ-GPS	0.5%γ-GPS	0.1% γ-GPS	0.5%γ-GPS
0.0	61.7	72.0	77.1	78.3	78.58
0.1	59.5	69.7	75.6	77.8	77.3
0.2	59.1	67.9	74.5	77.4	76.9
0.3	55.8	66.1	71.8	77.0	76.7
0.4	53.6	65.3	68.8	76.3	76.1
0.5	48.3	63.1	67.1	76.2	75.5
0.6	-	61.2	64.5	75.0	75.3
0.7	-	59.4	65.5	74.1	74.3
0.8	11.6	59.0	63.7	74.0	74.0
0.9	-	58.5	63.4	73.8	73.2
1.0	-	57.7	62.7	73.6	72.7
1.1	-	57.4	62.1	72.7	72.2
1.2	8.1	56.7	61.0	72.5	71.8
1.3	-	-	57.1	71.6	71.3
1.4	-	-	-	70.8	70.1
1.5	5.1	-	-	69.0	69.3
1.6	-	-	-	68.3	67.9
1.7	-	-	-	66.7	66.8
1.8	-	÷	-	64.2 •	65.9
1.9	-	-	-	-	64.4
2.0	-	-	-	-	62.5

Table B5 Water contact angle of untreated and γ -GPS treated sisal fibers

.

-

Sample	Tensile strength of sisal-benzoxazine/epoxy composites (MPa)				
	0% vol. fiber	5% vol. fiber	10% vol. fiber	15% vol. fiber	
Ι	26.1	23.6	34.7	65.3	
П	18.7	23.9	55.2	57.5	
Ш	30.1	24.0	53.3	48.6	
IV	17.1	24.1	39.0	75.5	
V	26.9	30.9	40.8	69.5	
Average	23.7	25.3	44.6	63.3	
S.D.	5.6	3.1	9.1	10.5	

 Table B7
 Young's modulus of sisal-benzoxazine/epoxy composites at different fiber

 volume fraction

Sample	Young's modulus of sisal-benzoxazine/epoxy composites (MPa)				
	0% vol. fiber	5% vol. fiber	10% vol. fiber	15% vol. fiber	
Ι	4324.0	9439.1	8789.4	14259.7	
П	3280.3	8389.9	9759.3	14277.5	
Ш	6087.1	7564.2	6694.7	12327.1	
IV •	6209.8	7449.7	9876.2	12116.6	
	5268.5	5438.1	10783.2	11029.0	
Average	5033.9	7656.2	9180.5	12802.0	
S.D.	1237.6	1473.8	1558.8	1426.6	

Sample	Flexural strength of sisal-benzoxazine/epoxy composites (MPa)					
	0% vol. fiber	5% vol. fiber	10% vol. fiber	15% vol. fiber		
Ι	58.7	57.2	65.0	82.3		
П	70.5	74.7	64.3	76.3		
Ш	73.1	67.2	70.7	66.3		
IV	74.8	64.5	71.7	72.9		
V	76.6	87.9	91.0	85.4		
Average	70.8	70.3	72.6	76.6		
S.D.	7.1	11.7	10.8	7.6		

Table B8 Flexural strength of sisal-benzoxazine/epoxy composites at different fiber

 volume fraction

 Table B9
 Flexural modulus of sisal-benzoxazine/epoxy composites at different fiber

 volume fraction

Sample	Flexural modulus of sisal-benzoxazine/epoxy composites (MPa)				
Bampie	0% vol. fiber	5% vol. fiber	10% vol. fiber	15% vol. fiber	
Ι	1714.9	1765.2	2827.3	2881.7	
II	1877.2	1838.4	2548 4	2893.7	
Ш	1858.9	1835.8	2340.9	2685.0	
IV	1182.9	1804.0	2478.9	3441.1	
V	1824.5	1879.5	2431.4	3348.2	
Average	1691.7	1824.6	2525.4	3049.9	
S.D.	291.3	42.7	184.9	327.1	

Sample	Impact strength of sisal-benzoxazine/epoxy composites (MPa)				
	0% vol. fiber	5% vol. fiber	10% vol. fiber	15% vol. fiber	
Ι	36.8	69.1	157.3	215.3	
Ш	28.5	56.4	171.3	242.8	
Ш	22.4	65.2	155.3	196.1	
IV	28.1	65.4	145.4	248.5	
V	16.4	72.9	163.2	254.8	
Average	26.4	65.8	158.5	231.5	
S.D.	7.6	6.1	9.6	24.9	

 Table B10 Impact strength of sisal-benzoxazine/epoxy composites at different fiber

 volume fraction

Sample	Tensile strength of sisal-benzoxazine/epoxy composites (MPa)				
Dampie	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy	
Ι	44.7	34.7	65.4	51.3	
Ш	35.2	55.2	59.9	46.0	
Ш	34.1	53.3	54.1	54.1	
IV	• 49.3	39.0	52.3	53.6	
V	51.6	40.8	53.8	41.9	
Average	43.0	44.6	57.1	49.4	
S.D.	8.0	9.1	5.4	5.3	

Sample	Young's modulus of sisal-benzoxazine/epoxy composites (MPa)					
	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy		
Ι	11217.6	8789.4	5998.7	5185.9		
П	8200.5	9759.3	5911.3	6705.9		
Ш	.8082.8	6694.7	9469.9	5770.4		
IV	11513.4	9876.2	5083.0	5562.9		
V	12146.4	10783.2	6485.5	5329.4		
Average	10232.1	9180.5	6589.7	5710.9		
S.D.	.1938.0	1558.8	1687.1	599.3		

 Table B12
 Young's modulus of sisal-benzoxazine/epoxy composites at different

 matrix composition

Table B13	Flexural	strength	of	sisal-	benzoxazine/epoxy	composites	at	different
matrix comp	osition							

Sample	Flexural strength of sisal-benzoxazine/epoxy composites (MPa)							
Bampie	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy				
Ι	60.4	65.0	93.6	102.3				
П	93.9	64.3	112.5	99.8				
Ш	51.4	70.7	96.6	104.3				
IV	59.9	71.7	90.7	109.6				
V	59.6	91.0	85.2	105.9				
Average	65.0	72.6	95.7	104.4				
S.D.	16.6	10.8	10.3	3.7				

Sample	Flexural modulus of sisal-benzoxazine/epoxy composites (MPa)							
Bumpie	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy				
Ι	2876.9	2827.3	2318.1	2503.1				
Ш	2953.2	2548.4	2504.9	1696.1				
Ш	2715.0	2340.9	2564.4	1796.2				
IV	3607.7	2478.9	2521.2	2610.9				
V	2862.5	2431.4	2524.6	2602.4				
Average	3003.1	2525.4	2486.6	2241.7				
S.D.	348.8	184.9	96.7	455.8				

 Table B15
 %Tensile strain at break of sisal- benzoxazine/epoxy composites at different matrix composition

	Sample	%Tensile stra	in at break of sisal	-benzoxazine/epo	xy composites
	Sumpre	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy
	Ι	0.711	0.725	1.436	1.302
	Π	0.859	1.087	0.846	1.195
	Ш	0.765	1.114	0.819	1.195
	IV	0.752	0.765	1.235	1.007
.,	V	0.805	• 0.832	1.007	0.859
	Average	0.778	0.905	1.069	1.112
	S.D.	0.056	0.183	0.264	0.177

Sample	Toughness of sisal-benzoxazine/epoxy composites (MPa)								
Bampie	25%w epoxy	50%w epoxy	75%w epoxy	100%w epoxy					
Ι	0.094	0.131	0.246	0.287					
П	0.193	0.117	0.336	0.352					
Ш	0.085	0.193	0.227	0.298					
IV	0.094	0.14	0.206	0.281					
·V	0.134	0.221	0.182	0.365					
Average	0.120	0.160	0.239	0.317					
S.D.	0.045	0.044	0.059	0.039					

 Table B17 Tensile strength of sisal- benzoxazine/epoxy composites with different

 fiber surface modifications

Fiber	Tens	Tensile strength of sisal- benzoxazine/epoxy composites (MPa)							
treatment	Ι	П	Ш	IV	V	Average	S.D.		
Untreated	34.7	55.2	53.3	39.0	40.8	44.6	9.1		
NaOH	44.2	48.7	42.4	29.4	36.4	40.2	7.5		
γ-APS	33.6	45.0	33.9	49.6	38.4	40.1	7.0		
NaOH/y-APS	47.5	21.2	46.1	29.3	47.9	38.4	12.3		
γ-GPS	37.3	49.8	51.0	43.7	43.6	45.1	5.5		
NaOH/y-GPS	56.2	47.7	39.0	41.2	55.4	47.9	7.9		

Fiber	Your	Young's modulus of sisal- benzoxazine/epoxy composites (MPa)							
treatment	Ι	П	Ш	IV	V	Average	S.D.		
Untreated	8789.4	9759.3	6694.7	9876.2	10783.2	9180.5	1558.8		
NaOH	12878.2	8704.1	11977.1	21071.9	14254.0	13777.0	4561.4		
γ-APS	7212.0	23222.2	7107.0	8784.5	10422.7	11349.7	6773.4		
NaOH/γ-APS	12071.5	13902.4	10193.6	10989.8	9326.2	11296.7	1773.7		
γ-GPS	10316.9	8738.1	10725.1	8316.0	8495.6	9318.3	1117.4		
NaOH/γ-GPS	8047.8	7168.0	8029.7	6595.8	7531.6	7474.6	613.7		

 Table B18 Young's modulus of sisal- benzoxazine/epoxy composites with different

 fiber surface modifications

 Table B19
 Flexural strength of sisal- benzoxazine/epoxy composites with different

 fiber surface modifications

Fiber	Flexural strength of sisal- benzoxazine/epoxy composites (MPa)							
treatment	Ι	П	Ш	IV	V	Average	S.D.	
Untreated	65.0	64.3	70.7	71.7	91.0	72.6	10.8	
NaOH	68.1	76.0	90.7	88.0	84.1	81.4	9.3	
γ-APS	63.1	88.2	68.5	80.3	81.8	76.4	10.2	
NaOH/y-APS	72.5	94.6	76.5	64.4	72.1	76.0	11.3	
γ-GPS	72.0	75.0	64.9	76.3	73.8	72.4	4.4	
NaOH/γ-GPS	80.7	111.8	81.8	74.6	84.3	86.6	14.5	

.....

Fiber	Flexu	Flexural modulus of sisal- benzoxazine/epoxy composites (MPa)							
treatment	I	Ш	ш	IV	V	Average	S.D.		
Untreated	2827.3	2548.4	2340.9	2478.9	2431.4	2525.4	184.9		
NaOH	2933.4	2626.0	3091.6	2530.6	2345.2	2705.4	303.2		
γ-APS	2545.9	2643.7	3134.1	2466.1	2390.1	2636.0	293.9		
NaOH/γ-APS	2498.9	2696.1	2494.7	2638.3	2315.9	2528.8	147.8		
γ-GPS	2938.2	2934.8	2579.0	2537.0	2738.8	2745.5	189.9		
NaOH/y-GPS	2434.3	2893.9	2655.9	2869.7	2958.4	2762.4	215.7		

Table B20 Flexural modulus of sisal- benzoxazine/epoxy composites with different

 fiber surface modifications

 Table B21 Impact strength of sisal- benzoxazine/epoxy composites with different

 fiber surface modifications

Fiber	Impa	Impact strength of sisal- benzoxazine/epoxy composites (MPa)							
treatment	Ι	П	Ш	IV	V	Average	S.D.		
Untreated	157.3	171.3	155.3	145.4	163.2	158.5	9.6		
NaOH	67.8	70.1	67.3	71.8	73.5	70.1	2.6		
γ-APS	109.3	135.1	113.6	109.6	116.7	116.9	10.6		
NaOH/γ-APS	95.9	56	47	61.3	50.7	62.2	19.6		
γ-GPS	94.7	66.8	105.2	70.1	129.7	93.3	26.0		
NaOH/y-GPS	36.5	66.1	46.8	55.6	67.9	54.6	13.2		

Sample		Tensile strength of sisal fibers (MPa)							
Sample	Untreated	2 % NaOH	4 % NaOH	6 % NaOH					
1	464.0	347.2	229.6	191.3					
2	514.8	443.8	343.9 -	196.7					
3	520.3	341.6	290.0	289.0					
4	505.1	345.8	249.0	331.3					
5	482.9	334.2	274.7	268.1					
6	555.4	239.2	375.6	347.1					
7	512.0	262.2	338.8	215.9					
8	472.1	371.8	333.6	323.8					
9	425.2	279.8	312.3	286.7					
10	446.0	233.5	241.4	331.2					
Average	446.2	319.9	298.9	278.1					
S.D.	39.0	65.8	49.6	58.5					

 Table B22
 Tensile strength of sisal fibers after NaOH treatment for 1 h

 Table B23
 Tensile strength of sisal fibers after 6% NaOH treatment

Sample		Tensile strength of	f sisal fibers (MPa)	
Sample	Untreated	1 h treatment	5 h treatment	24 h treatment
1	464.0	191.3	338.9	238.9
2	514.8	196.7	225.4	190.8
3	520.3	289.0	162.2	248.4
4	505.1	331.3	187.0	248.4
5	482.9	268.1	173.5	264.3
6	555.4	347.1	193.6	271.0
7	512.0	215.9	241.5	210.8
8	472.1	323.8	292.0	241.6
9	425.2	286.7	354.5	207.8
10	446.0	331.2	267.0	278.4
Average	446.2	278.1	243.6	240.0
S.D.	39.0	58.5	68.2	28.8

	Tensile strength of sisal fibers (MPa)					
Sample	Untreated	NaOH	γ-APS	NaOH/	γ-GPS	NaOH/
				γ-GPS		γ-GPS
1	464.0	338.9	258.4	173.1	503.1	378.6
2	514.8	225.4	202.8	277.9	329.0	314.9
3	520.3	162.2	224.5	160.7	494.8	340.2
4	505.1	187.0	335.5	197.0	503.8	325.2
5	482.9	173.5	218.1	157.8	487.2	298.6
6	555.4	193.6	212.5	193.0	566.4	351.3
7	512.0	241.5	297.3	212.3	452.7	266.8
8	472.1	292.0	225.2	171.0 ·	477.0	330.1
9	425.2	354.5	249.2	184.6	401.7	275.2
10	446.0	267.0	225.6	160.9	623.4	346.1
Average	446.2	243.6	223.5	172.6	440.8	294.3
S.D.	39.0	68.2	42.0	36.0	80.9	34.8

 Table B24
 Tensile strength of untreated and modified sisal fibers

ł

CURRICULUM VITAE

Name: Ms. Suchada Tragoonwichian

Date of Birth: June 5, 1981

Nationality: Thai

University Education:

1999-2002 Bachelor Degree of Science in Chemistry, Faculty of Science, Cholalongkorn University, Bangkok, Thailand

Working Experience:

2001	Position:	Internship student		
	Company name:	ESSO (Thailand) Co., Ltd		

Proceedings:

Tragoonwichian, S., and Yanumet, N. (2004, December 1-3) Synthesis of diamine-based benzoxazine monomer. <u>Proceedings of SmartMat-'04 The</u> <u>International Conference on Smart Materials</u>, Chiangmai, Thailand.