การสร้างเครื่องควบคุมและการทดสอบ

6.1 การสร้างเครื่องควบคุม

 (1) บอร์ดหลักของระบบ (System main board) ใช้ card system SDA-88
[12] มีลักษณะของฮาร์ดแวร์เป็น rack โดยจะแบ่งวงจรออกเป็นบอร์ดตามหน้าที่การทำงาน ซึ่งแต่ละบอร์ดจะเชื่อมโยงกันผ่านบัส UROCON ประกอบด้วยบอร์ด 3 บอร์ด ดังนี้

- CPU Board (รูปที่ 6.1)
- Memory Board (รูปที่ 6.2)
- Timer & Communication (รูปที่ 6.3)

รูปที่ 6.1 แผ่นวงจรซีนียู

รูปที่ 6.2 แผ่นวงจรหน่วยความจำ

รูปที่ 6.3 แผ่นวงจร Timer & Communication

.

(2) วงจรอ**ินพุฑและเอาท์พุท** อินเตอร์เฟสกับสัญญาณภายนอกทั้งแบบอนาลอด และ ดิจิตอล ได้ออกแบบเป็นแผ่นวงจรพิมพ์ ดังรูปที่ 6.4

7

รูปที่ 6.4 แผ่นวงจรอินพุทและเอาท์พุทของเครื่องควบคุมเชิงเลข

(3) วงจร<mark>นป้นนิมน์และแสดงผล</mark> ออกแบบและต่อวงจรด้วยการเดินสาย Wire Wrap แบ่งเป็น 2 บอร์ด คือ

- บอร์ดแสดงผลและแป้นนิมน์ด้านหน้า (รูปที่ 6.5)
- บอร์ดแสดงผลและแป้นบิมพ์ด้านข้าง (รูปที่ 6.6)

6.2 การทดสอบชองแวร์ของเคืองควบคุม

การพัฒนาซอฟแวร์มีขั้นตอน ดังนี้

เขียนโปรแกรมควบคุมระบบโดยใช้ภาษา PLM-86 [13] และ ASSEMBLY
[14] ซึ่งจะได้โปรแกรม file.plm และ file.asm ตามลำดับ การเขียนโปรแกรมจะแบ่ง
เขียนเป็นโมดูล เพื่อง่ายต่อการทดสอบและแก้ไขโปรแกรม

(2) ใช้ Compiler PLM86 แปลง file.plm เป็น file.obj
ใช้ Compiler ASM86 แปลง file.asm เป็น file.obj

(3) การแปลง file.obj เป็น file.h (Intel Hex 16 บิท) ใช้ iAPX 86,88 Family Utilities [15] ดังนี้

- LINK86 รวมหลายๆ file.obj เป็น 1 โมดูล ได้ file.lnk

- LOC86 กำหนดตำแหน่งของ Segment Register ต่างๆของโปร แกรม โดยเปลี่ยน file.lnk เป็น file.loc

- OH86 เปลี่ยน file.loc เป็น file.h

(4) ใช้โปรแกรม INTELH ซึ่งเชียนชิ้นเองเนื้อเปลี่ยน file.h เป็น file.hex
(Intel Hex 8 บิท) เนื่องจากการเชียนโปรแกรมลงบน ROM โดยใช้ EPROM
Programmer CLK3000 และ การโหลด file.hex ลงบนโปรแกรม DEBUG ต้องใช้ไฟล์
ที่มี ฝอร์แมท Intel Hex 8 บิท

(5) การทดสอบซอนแวร์ขณะนัฒนาโปรแกรม แบ่งการทดสอบเป็น 2 ลักษณะ ดังนี้
– ทดสอบบนไมโครคอมพิวเตอร์ โดยไม่ต้องใช้ฮาร์ดแวร์ของเครื่องควบคุม
เช่น โปรแกรมการบวก ลบ ดูณ หาร เลขทศนิยม การทดสอบทำโดยใช้โปรแกรม DEBUG
อ่าน file.hex มาทดสอบ

ทดสอบบนฮาร์ดแวร์ของเครื่องควบคุม บางโปรแกรมจำเป็นต้องใช้ฮาร์ด
แวร์ เช่น โปรแกรมสแกนอนาลอดอินพุท เป็นต้น การทดสอบทำโดยใช้โปรแกรม DLFAST ซึ่ง
เชียนชิ้นเอง โหลด file.hex จากไมโครคอมพิวเตอร์ผ่าน Serial Comm. ลงใน RAM
ของเครื่องควบคุม และทำการทดสอบโปรแกรม

6.3 การทดสอบเครื่องควบคุม

เครื่องควบคุมเชิ้งเลขชนิดโปรแกรมได้ ที่ใช้ทดสอบแสดงดังรูปที่ 6.7

รูปที่ 6.7 เครื่องควบคุมเชิงเลขชนิดโปรแกรมได้ใช้ในการทดสอบ

6.3.1 การทดสอบฟังก์ชันการทำงาน

ทดสอบโดยโหลดแต่ละโมดูกของฟังก์ชันลงในหน่วยความจำของเครื่องควบ คุม โดยใช้โปรแกรม DLFAST และสั่งให้โปรแกรมฝังก์ชันนั้นทำงานและตรวจสอบผลการทด สอบจากหน่วยความจำ

ผลการทดลอง ฟังก์ชันที่เ ชียนชิ้นสามารถทำงานได้ถูกต้องตามต้องการ

6.3.2 การทดสอบกับโปรเชส

แบ่งการทดสอบออกเป็น 2 ส่วน คือ

(1) ทดสอบกับไปรเชสจำลองที่ถูกสร้างโดยโปรแกรม (Process

Simulation Program)

ไดอะแกรมที่ใช้ในการทดสอบแสดงดังรูปที่ 6.8

รูปที่ 6.8 ไดอะแกรมของโปรเชสจำลองที่สร้างจากโปรแกรมเนื้อใช้ทดสอบ

การทดสอบทำได้โดยใช้ฝังก์ชันภายในเครื่องควบคุมเขียนโปรแกรม

สร้างโปรเชสจำลองที่มี dead time = 5 sec., lag time = 10 sec. โปรแกรมกำ หนดรูปแบบการควบคุมและโปรแกรมสร้างโปรเชสจำลองเชียนได้ ดังรูปที่ 6.9 และเชียนเป็น ภาษา Assembly ได้ดังรูปที่ 6.10 นำมาแปลงเป็น file.hex เชียนลง ROM โดยใช้ EPROM Programmer CLK3000 เนื้อควบคุมการทำงาน

Control Configurat	ion		
	LD	X1	; read PV1
	BPID		; PID Control
	ST	Y1	; out control signal
Process Simulation	Progr	am	
	LD	X2	; read PV2
	LD	P3	; read disturbance
	ADD		; add disturbance
	LD	P1	; read dead time
	DED1		; dead time function
	LD	P2	; read lag time
	LAG1		; 1st order lag function
	ST	Y2	; output channel 2

	HAME G Aborne	ser ro	1 19 53-117	t.		
	DATA	SEDKE!	NT WORD	a 9596150	'DATA'	
	DATA	ENDS				
	CODE	SEGNE	NT WORD	PUBLIC	'CODE"	
	aserp	proc	far			
		push	bp			
		push	ах			
		basp	bx			
		DOV.	al,0ħ			
		pusn	-3X 			
		.107 0911	-2711204m			
		107 1071	by Strat	,	** **	
		.a. 1	bx,oucun	:	boid	
		JOV	al.05		ofis	
		bush	23			
		mov.	bx.73f0h			
		call	: X		st 71	
		E O V	al, lh		•	
		push	22			
		n or	bx,785ah			
		call	D X.	;	l: x2	
		ПCV	ax,21h			
		push	Σ£			
		nev.	ox.7934h			
		call	bх	;	11 23	
		117	bx.711sh			
		call	ΟX	;	aid	
		107	ax, loh			
		push	3.7			
		MOV	bx, 834h			
		call	53	,	14 pi	
		a d V	ax,158h			
		24SU	32			
		107	ax, loah			
		5027	21			
		107	- CX . : C 5 1 %		41	
		2311	II.	1	7417	
		LUN . numk	34 j 1 0 1. A V			
		-1685 	- 44 - Fy - 79815			
		.10V call	hy hy		14	
		0011	ax.13ch			
		push	31			
		107	tx,7a eh			
		call	bx		1341	
		BOV	ai,1h			
		push	3.X			
		NOE	5x,78f0h	1 :	st 72	
		call	bx			
		pop	bx			
		рор	31			
		pop	σp			
		750 2960				
	cone	5452 2452				
	UDE	cyr.				
c						ນສ
1-1						w 1.

รูปที่ 6.10 โปรแกรม assembly กำเหเดรูปแบบการควบคุมและสร้างโปรเซสาำลอง

ขึ้นตอนการทดลองมีดังนี้

- Power On เครื่องควบคุมจะอยู่ในโหมด Manual โปรแกรม ควบคุมระบบและโปรแกรมโปรเชสจำลองยังไม่ทำงาน

- ตั้งค่า PB1 = 41.7 %, Ti1 = 10 s., Td1 = 3 s.

- เปลี่ยนโหมดเป็น Auto โดยกดแป้นพิมพ์ A ด้านหน้าเครื่อง โปรแกรมควบคุมและโปรเซสจำลองเริ่มทำงาน

- เปลี่ยนค่า Set point โดยกดแป้นนิมพ์ SV เพื่อเปลี่ยนค่า Set point ได้กราฟผลการทดสอบดังรูปที่ 6.11

 เพิ่มค่า Disturbance โดยเปลี่ยนค่าพารามิเตอร์ P3 จาก แป้นพิมพ์ด้านข้าง ผลการทดสอบดังรูปที่ 6.12

รูปที่ 6.11 กรานผลตอบสนองของโปรเชสเมื่อมีการเปลี่ยนแปลงค่าเป้าหมาย

รูปที่ 6.12 กรานผลตอบสนองของโปรเชสเมื่อมีสิ่งรบกวนระบบ

ผลกา**รทด**สอบ

การทดสอบกับโปรเซสจำลองที่สร้างจากโปรแกรม เครื่องควบคุมสา มารถควบคุมการทำงานได้ เมื่อมีการเปลี่ยนแปลงค่าเป้าหมาย หรือมีสิ่งรบกวนระบบ

(2) การทดสอบกับระบบจำลองทางอุตสาหกรรม

ทดสอบกับระบบจำลองของการไหล ระดับ และอุณหภูมิ (ดูรูปที่

6.13) ซึ่งส่วนประกอบสำคัญที่ใช้ในการทดสอบคือ

- Ultrasonic Level Sensor
- Level Transmitter
- Control Valve
- Differential Pressure Transmitter
- Orifice
- Pump
- Tank

รูปที่ 6.13 ระบบจำลองการไหล ระดับ และอุณหภูมิ

การทดสอบจะใช้เครื่องควบคุมเชิงเลข ควบคุมระดับน้ำในถังของ ระบบจำลองทางอุตสาหกรรม โดยใช้รูปแบบวิธีการควบคุม 2 แบบ ดังนี้

(ก) การควบคุมแบบป้อนกลับแบบง่ายๆ

มีไดอะแกรมที่ใช้ในการทดลองดังรูปที่ 6.14

รูปที่ 6.14 ไดอะแกรมที่ใช้ในการทดสอบการควบคุมแบบง่ายๆ

ใช้นังก์ชันภายในเครื่องควบคุมเชียนโปรแกรมบนไมโครคอม

พิวเตอร์ เพื่อกำหนดรูปแบบการควบคุมได้ดังรูปที่ 6.15 และเขียนเป็นภาษา Assembly ได้ ดังรูปที่ 6.16 นำมาแปลงเป็น file.hex เขียนลง ROM

STY2; out to recorderLDX1; read process variableBPID; PID controlSTY1; out control signal	LD	SV1	; read set point
LD X1 ; read process variable BPID ; PID control ST Y1 ; out control signal	ST	Y2	; out to recorder
BPID; PID controlSTY1; out control signal	LD	X1	; read process variable
ST Y1 ; out control signal	BPID		; PID control
	ST	Y1	; out control signal

÷

รูปที่ 6.15 โปรแกรม mnemonic กำหนดรูปแบบการควบคุม

NAME user rom ASSUNE CS:CODE, DS: DATA DATA SEGNERT WORD PUBLIC 'DATA' DATA BODS CODE SEGNENT WORD PUBLIC 'CODE' userp proc far pash bp push ax push br nov ax,7eh push ax mov bx,7884h call br ; ld svl nov al,1h push ar mov bx,78f0h ; st y2 call br mov al,Oh push ax nov br,785ah ; ld x1 call br nov bx,82cah call br ; tpid nov al,Oh push ar nov bx,78f0h call br ; st yl pop bx pop ax pop bp ret userp ENDP CODE ENDS END

ชั้นตอนการทดลอง

– P – ព័ – ៤	ower On เครื่องควบคุมจะอยู่ในโหมด Manual ังค่า PB1 = 60 %, Ti1 = 42 sec. ปลี่ยนโหมดเป็น Auto โดยกดแป้นพิมพ์ A ด้านหน้า
เครื่อง	
– ļ	ปลี่ยนค่า Set point โดยกดแป้นนิมพ์ SV เนื้อตรวจ
สอบผลการตอบสนองของเครื่องควบคุมเ	มื่อมีการเปลี่ยนแปลงค่า Set point

ผลการทดลอง

เครื่องควบคุมเชิงเลขสามารถควบคุมระดับน้ำให้เท่ากับค่า เป้าหมายของระดับน้ำที่ต้องการได้ถูกต้อง ดังรูปที่ 6.17

(บ) การควบคุมแบบ Cascade

มีไดอะแกรมที่ใช้ในการทดลองดังรูปที่ 6.18

รูปที่ 6.18 ไดอะแกรมที่ใช้ในการทดสอบการควบคุมแบบ Cascade

ใช้นังก์ชันภายในเครื่องควบคุมเชียนโปรแกรมบนไมโครคอม

นิวเตอร์ เนื้อกำหนดรูปแบบการควบคุมได้ดังรูปที่ 6.19 และเขียนเป็นภาษา Assembly ได้ ดังรูปที่ 6.20 นำมาแปลงเป็น file.hex เขียนลง ROM

LD	SV1	; read set point
ST	Y2	; out to recorder
LD	X2	; read flow PV2
SQR		; square root function
LD	X1	; read level PV1
CPID		; Cascade control
ST	Y1	; out control signal

1.1

รูปที่ 6.19 โปรแกรม mnemonic กำหนดรูปแบบการควบคุม

NAME user_rom ASSUME CS:CODE, DS: DATA DATA SEGNENT WORD PUBLIC 'DATA' DATA ENDS CODE SEGNENT WORD PUBLIC 'CODE' userp proc far push bp push ar push br nov ax,7eh push ar 200 bz,7884h ; LD SV1 call br nov al, lh push ax nov br,78f0h call br ; ST Y2 nov al, lh push ar nov bx,785Ah call br ; LD 12 nov br.80A6h call br ; SQR nov al,0h push ax nov bx,785ah call br ; LD X1 nov bx,8550h call br ; CPID nov al,0h push ar nov bx,78f0h ; ST Y1 call br pop bx pop ar pop bp ret userp ENDP CODE ENDS END

รูปที่ 6.20 โปรแกรม assembly กำหนดรูปแบบการควบคุม

<u>ชั้นตอนการท</u>ดสอบ

Power On เครื่องควบคุมจะอยู่ในโหมด Manual
ตั้งค่า PB2 = 20 %, Ti2 = 35 sec. ใช้แป้นพิมพ์
ต้านอ้างเครื่อง
เปลี่ยนโหมดเป็น Auto โดยกดแป้นพิมพ์ A ด้านเห้า
เครื่อง เครื่องควบคุมจะตัดลูปที่ 1 (ลูปใน) ออกจากระบบ เพื่อทำการปรับ (Tuning)ค่า
PB,Ti และ Td ที่เหมาะสมของลูปที่ 2 (ลูปนอก)
ดั้งค่า PB1 = 70 %, Ti1 = 40 sec.
กดแป้นพิมพ์ C เพื่อเปลี่ยนโหมดเป็น Cascade control
เปลี่ยนค่า Set point โดยกดแป้นพิมพ์ SV เพื่อตรวจ
สอบผลการตอบสนองของเครื่องควบคุมเมื่อมีการเปลี่ยนแปลงค่า Set point ดูรูปที่ 6.21
ใส่สิ่งรบกวนระบบเช้าไป โดยเติมน้ำเช้าไปในถัง โดยที่

ผลการทดสอบ

เครื่องควบคุมเชิงเลขสามารถควบคุมระดับน้ำให้เท่ากับค่า เป้าหมายของระดับน้ำที่ต้องการได้ถูกต้อง เมื่อมีการเปลี่ยน Set point หรือเมื่อมี Process Disturbance

•

•

ในการควบคุมแบบ Cascade