ELECTROACTIVE POLYTHIOPHENE/POLYISOPRENE ELASTOMER BLENDS

- 6

٠

Toemphong Puvanatvattana

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2005 ISBN 974-993-727-9

128,243082

Thesis Title:	Electroactive Polythiophene/Polyisoprene Elastomer Blends
By:	Toemphong Puvanatvattana
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Anuvat Sirivat
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantaya Janumet. College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

miniterina

(Assoc. Prof. Anuvat Sirivat)

(Prof. Alexander M. Jamieson)

kasimu

(Assoc. Prof. Sujitra Wongkasemjit)

Le.

(Asst. Prof. Pitt Supaphol)

ABSTRACT

4672032063: Polymer Science Program Toemphong Puvanatvattana: Electroactive Polythiophene/ Polyisoprene Elastomer Blends. Thesis Advisors: Assoc. Prof. Anuvat Sirivat and Prof. Alexander M. Jamieson 175 pp. ISBN 974-993-727-9
Keywords: Electrorheological properties/ Polyisoprene/ Polythiophene/ Dynamic moduli

Poly(3-thiophene acetic acid) was synthesized via an oxidative polymerization and blended with polyisoprene rubber (PI). Electrorheological properties of pure polyisoprene and polythiophene/polyisoprene blends were investigated for the effects of electric field strength, crosslinking ratio, and particle concentration. Experiments were carried under the oscillatory shear mode and applied electric filed strength varying from 0 to 2 kV/mm. The dynamic moduli, G' and G", of the pure polyisoprene depended on the crosslinking ratio and electric filed strength; the storage modulus (G') increased but the loss modulus (G'') decreased with increasing crosslinking ratio. The storage modulus (G') and the loss modulus (G") of the pure polyisoprene fluid exhibited no value change with increasing electric field strength. For PI with the crosslinking ratios of 2, 3, 5 and 7, the storage modulus sensitivity, $\frac{\Delta G'}{G_{0}}$, increased with electric field strength and attained maximum values of 10%, 60%, 25%, and 30% at the electric field strength of 2 kV/mm, respectively. For the blends of undoped polythiophene and PI (Pth U/PI 03), with the undoped particle concentrations of 5%, 10%, 20% and 30%vol., the dynamic moduli, G' and G" of each blend were generally higher than those of pure crosslinked polyisoprenes (PI_03). Their storage modulus sensitivity, $\frac{\Delta G'}{G'_{2}}$, increased with electric filed strength and attained a maximum value of 50%, 35%, 110% and 45% at the electric field strength of 2 kV/mm, respectively.

.

บทคัดย่อ

นายเติมพงศ์ ภูวนารถวัฒนา การศึกษาการเปลี่ยนแปลงสมบัติทางรีโอโลงีของ พอลิเมอร์ผสมระหว่างพอลิทิโอฟีนและพอลิไอโซพรีนในสถานะของแข็งขึ้นรูปภายใต้การให้ สนามไฟฟ้า (Electroactive Polythiophene/Polyisoprene Elastomer Blends) อ. ที่ปรึกษา รศ.ดร. อนุวัฒน์ ศิริวัฒน์ และ ศ.ดร. อเล็กเซนเดอร์ เอ็ม เจมิซัน 175 หน้า ISBN 974-993-727-9

พอลิทิโอฟีนอะชิติกแอซิดถูกสังเคราะห์ขึ้นโดยวิธีพอลิเมอร์ไรเซชันแบบออกซิเดชัน และผงพอลิเมอร์นี้ถูกมาผสมขึ้นรูปกับพอลิไอโซพรีนยางธรรมชาติ โคยทำการศึกษาผลของ ความเข้มของสนามไฟฟ้าตั้งแต่ 0 ถึง 2 กิโลโวลต์ต่อมิลลิเมตร, สัคส่วนของสารเชื่อมโยง และ ปริมาณของพอลิทิโอฟีนต่อสมบัติทางรีโอโลจีของทั้งพอลิไอโซพรีนบริลุทธิ์และพอลิเมอร์ผสม ในการทคลองนี้เป็นทคลองโคยให้แรงเฉือนแบบกลับไปกลับมาและให้สนามไฟฟ้าตั้งแต่ 0 ถึง 2 กิโลโวลต์ต่อมิลลิเมตรกับสารตัวอย่างทั้งพอลิไอโซพรีนบริสุทธิ์และพอลิเมอร์ผสม จาก การศึกษาพบว่าสมบัติทางรี โอโลจีของพอลิไอโซพรีนบริสุทธิ์ขึ้นกับสัคส่วนของสารเชื่อมโยง และความเข้มของสนามไฟฟ้า โคยค่าสตอเรจมอดูลัสเพิ่มขึ้นแต่ค่าลอสมอดูลัสลคลงเมื่อเพิ่ม สัคส่วนของสารเชื่อมโยง ค่าสตอเรงมอดลัสและค่าลอสมอดลัสของพอลิไอโซพรีนบริสทธิ์ในรป ของเหลวที่ยังไม่มีสารเชื่อมโยงไม่มีการเปลี่ยนแปลงเมื่อเพิ่มความเข้มของสนามไฟฟ้า ค่าสตอเรจ ้มอดูลัสของพอลิไอโซพรีนบริสุทธิ์เมื่อสัคส่วนของสารเชื่อมโยงเป็น 2, 3, 5, และ 7 เพิ่มขึ้นเมื่อ เพิ่มความเข้มของสนามไฟฟ้า ความว่องไวต่อการเปลี่ยนแปลงค่าสตอเรงมอดูลัสภายใต้ ้สนามไฟฟ้า 2 กิโลโวลต์ต่อมิลลิเมตรของพอลิไอโซพรีนบริสุทธิ์เมื่อมีสัคส่วนของสารเชื่อมโยง ดังกล่าว เท่ากับ 10%, 60%, 25%, และ 30% ตามลำคับ สำหรับพอลิเมอร์ผสมจะใช้สัคส่วน ของสารเชื่อมโยงพอลิโอโซพรีนเท่ากับ 3 และแปรผันค่าปริมาณของพอลิทิโอฟีนเป็น 5%, 10%, 20% และ 30% โคยปริมาตร พบว่าทั้งค่าสตอเรงมอคูลัส!เละลอสมอคูลัสสูงกว่าค่ามอคูลัสของ พอถิไอโซพรีน บริสุทธิ์ที่มีสัคส่วนของสารเชื่อมโยงเท่ากับ 3 และความว่องไวต่อการ เปลี่ยนแปลงค่าสตอเรจมอดูลัสภายใต้สนามไฟฟ้า 2 กิโลโวลต์ต่อมิลลิเมตรของพอลิเมอร์ผสม เท่ากับ 50%, 35%, 110% และ 45% ตามลำคับ

ACKNOWLEDGEMENTS

This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

The author gratefully acknowledges Assoc. Prof. Anuvat Sirivat who is his advisor, for several enlightening suggestions, discussions, and problem solving throughout the course of his work. He would like to thank Prof. Alexander M. Jamieson for being an advisor.

He would like to express his sincere appreciation to Dr. Pitt Supaphol and Dr. Sujitra Wongkasemjit for being on his thesis committee.

Special thanks are due to Ms. Datchanee Chotpattananont, Ms. Piyanoot Hiamtup, Ms. Ladawan Ruangchuay and Ms. Siriluk Suksamranchit for their various suggestions and discussion on this work and the oral presentations.

He would like to thank The Petroleum and Petrochemical College's staffs for the instrumental analysis teachings.

Finally, he would like to take this opportunity to thank all his friends for their friendly helps and suggestions. He is also greatly indebted to his parents and his family for their support, love, and understanding.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	V
Tab	le of Contents	vi
List	of Tables	ix
List	of Figures	х
СНАРТЕ	R	
l	INTRODUCTION	1
II	LITERATURE SURVEY	3
	2.1 Conductive Polymer	3
	2.2 Conduction Mechanism	5
	2.3 Concept of Doping	8
	2.4 Polythiophene	11
	2.5 Polyisoprene	14
	2.6 Polythiophene Synthesis and Derivatives	15
	2.7 Doping of Polythiophene	18
	2.8 Applications of Polythiophene	19
	2.9 Electrically Conductive Polymer Composite	• 21
	2.10 Actuators	24
III	EXPERIMENTAL	25
	3.1 Materials and Instruments	25
	3.2 Experimental Methods	26

IV	ELECTRORHEOLOGICAL PROPERTIES OF	
	POLYTHIOPHENE/POLYISOPRENE ELASTOMER	
	BLENDS	33
	4.1 Abstract	33
	4.2 Introduction	34
	4.3 Experimental	36
	4.4 Results and Discussion	41
	4.5 Conclusions	49
	4.6 Acknowledgements	50
	4.7 References	51
V	ELECTRORHEOLOGICAL PROPERTIES OF	
	POLYTHIOPHENE/POLYISOPRENE SUSPENSIONS	63
	5.1 Abstract	63
	5.2 Introduction	63
	5.3 Experimental	67
	5.4 Results and Discussion	71
	5.5 Conclusions	79
	5.6 Acknowledgements	79
	5.7 References	80
VI	CONCLUSIONS	93
	REFERENCES	95
	APPENDICES	99
	Appendix A FT-IR Spectrum of Undoped and Doped	
	Poly(3-thiophene acetic acid)	99

CHAPTER

PAGE

Appendix B	UV-Visible Spectrum of Undoped and		
	Doped Poly(3-thiophene acetic acid)	101	
Appendix C	The TGA Thermogram of Undoped and		
	Doped Polythiophene, Crosslinking		
	Polyisoprene(PI_03), and Polythiophene/		
	Polyisoprene Blends (Pth_U/PI_03)	103	
Appendix D	Determination of Particle Sizes of		
	Undoped and Doped Poly(3-thiophene		
	acetic acid)	106	
Appendix E	Calculation of Doping Level From EDX	111	
Appendix F	Determination of the Correction Factor (K)	112	
Appendix G	Conductivity Measurement	116	
Appendix H	The Differential Scanning Calorimeter		
	Thermogram of Undoped and P3TAA,		
	Crosslinked Polyisoprene (PI_03) and		
	Polythiophene/Polyisoprene Blends		
	(Pth_U/PI_03)	121	
Appendix I	Scanning Electron Micrograph of undoped		
	PTAA, Doped PTAA and Polythiophene/		
	Polyisoprene Blends (Pth_U/PI_03)	123	
Appendix J	Determination of the Crosslink Density	125	
Appendix K	Electrorheological Properties Measurement		
	of Pure Polyisoprene	129	
Appendix L	Electrorheological Properties Measurement		
	of Polythiophene/Polyisoprene Blends	145	
Appendix M	Electrorheological Properties Measurement		
	of Polythiophene/Polyisoprene Suspensions	159	

CURRICULUM VITAE

175

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	The dopant and maximum doping levels is applicable for	
	specific conductive polymers	9
2.2	Illustration of the variation of properties obtainable in	
	3-substituted polythiophene with different substituents	13

CHAPTER IV

4.1	The crosslink density of pure polyisoprene	53
4.2	Induction time and recovery time of pure polyisoprene	
	systems and polythiophene/polyisoprene blends	53

CHAPTER V

5.1	Appropriate stain (%) in the linear viscoelastic regime of	
	each system	82
5.2	Properties of P3TAA particles	82
5.3	Induction time and recovery times at 27°C of doped and	
	undoped polythiophene/polyisoprene suspensions	83

•

.

LIST OF FIGURES

FIGURE

.

PAGE

CHAPTER II

2.1	Schematic diagrams of conjugated polymers in their neutral	
	forms.	4
2.2	Schematic diagrams of p-conjugation in the poly(acetylene).	4
2.3	Schematic diagram of the band structure of metals,	
	semiconductors, and insulators.	6
2.4	Schematic diagram of soliton of polyacetylene, and polaron,	
	bipolaron of poly(thiophene).	7
2.5	Schematic structure of polythiophene.	12
2.6	Regiospecific polymerization of 3-undecylbithiophene.	13
2.7	p-Type doping of polythiophene.	14
2.8	Schematic structure of polyisoprene.	15

CHAPTER HI

3.1	Synthesis rout	e of poly(3-thiophen	e acetic acid)	27
-----	----------------	----------------------	----------------	----

CHAPTER IV

4.1	The morphology of polythiophene and polythiophene/	
	polyisoprene blends.	54
4.2	Storage and loss moduli of polyisoprene system at various	
	crosslinking ratios vs. frequency, strain 1%, 27°C, at	
	electric field strengths 0 and 2 kV/mm.	55
4.3	Storage modulus responses of the polyisoprenes at various	
	crosslinking ratios vs. electric field strength, and at	
	frequency 1.0 rad/s.	56

FIGURE

4.4	Storage modulus responses vs. crosslinking density at	
	27°C, various frequencies at electric field strength of 1	
	and 2 kV/mm.	57
4.5	Comparison of the storage and the loss moduli of	
	polyisoprene and polythiophene/polyisoprene blends	
	(Pth_U/PI_03) at various particle concentrations (5,10, 20,	
	and 30%vol.), strain 1%, 27°C, and at electric field	
	strengths of 0 and 2 kV/mm.	58
4.6	Storage modulus responses ($\Delta G'$) of the polythiophene/	
	polyisoprene blends (Pth_U/PI_03) at various particle	
	concentrations vs. electric field strength, at frequency 1.0	
	rad/s, strain 1%, and at 27°C.	59
4.7	Storage modulus responses (ΔG ') of the polythiophene/	
	polyisoprene blends as functions of particle volume	
	fraction, 27°C, and at electric field strength of 1 and 2	
	kV/mm.	60
4.8	Current (I) vs. the applied electric field strength (E) of the	
	polyisoprene system and polythiophene/polyisoprene	
	blends system at various polythiophene particle	
	concentration, and at 27°C.	61
4.9	Temporal response of storage moduli G' of PI_03 and	
	Pth_U20/PI_03 systems at various electric field strength	
	(1 and 2 kV/mm).	62

PAGE

.

PAGE

CHAPTER V

5.1	The morphology of HClO ₄ doped polythiophene at various	
	doping ratios.	84
5.2	Storage and loss moduli of 5vol.% polythiophene/	
	polyisoprene suspensions (5Pth/PI) at various doping ratios	
	vs. frequency.	85
5.3	Storage modulus ($\Delta G'$) and loss modulus responses ($\Delta G''$)	
	of 5vol.% polythiophene/polyisoprene suspension (5Pth/PI)	
	at various doping ratios vs. electric field strength.	86
5.4	Storage modulus ($\Delta G'$) and loss modulus responses ($\Delta G''$) of	
	doped polythiophene/polyisoprene suspensions as functions	
	of doping level.	87
5.5	Storage and loss modulus of HClO ₄ highly doped	
	polythiophene/polyisoprene suspensions (Pth_200:1/PI) at	
	various particle concentrations vs. frequency.	88
5.6	Storage modulus ($\Delta G'$) and loss modulus responses ($\Delta G''$)	
	of HClO ₄ highly doped polythiophene/polyisoprene	
	suspensions (Pth_200:1/PI) at various particle	
	concentrations vs. electric field strength.	89
5.7	Storage modulus ($\Delta G'$) and loss modulus responses ($\Delta G''$)	
	of HClO ₄ highly doped polythiophene/polyisoprene	
•	suspensions as functions of particle concentration.	90
5.8	The scaling exponents n' and n" vs. electric field strength of	
	HClO ₄ doped polythiophene/polyisoprene suspensions.	91
5.9	Temporal response of storage modulus polythiophene/	
	polyisoprene suspensions (20Pth_200:1/PI) at various	
	electric field strengths and at various doping ratio and	
	particle concentration.	92