REFERENCES

- American Association of Textile Chemists and Colorists. (1996) <u>AATCC Technical</u> <u>Manual</u>. NC: Research Triangle Part.
- Abdel-Bary, E.M., Sarhan, A.A., and Abdel-Razik, H.H. (1988) Effect of Graft
 Copolymerization of 2-Hydroxyethyl methacrylate on the Properties of
 Polyester Fibers and Fabric. Journal of Applied Polymer Science, 35, 439448.
- Bendak, A., and El-Marsafi, S.M. (1991) Effect of Chemical Modifications on Polyester fibers. <u>Journal of Islamic Academy Science</u>, 4, 275-284.
- Boufi, S., and Gandini, A. (2002). Formation of polymeric films on cellulosic surfaces by admicellar polymerization. <u>Cellulose</u>, 1-10.
- Chen, W., and McCarthy, T.J. (1998) Chemical surface modification of poly (ethylene terephthalate). <u>Macromolecules</u>, 31, 3648-3655.
- Choi, H.W., Woo, H.J., Hong, W., Kim, J.K., Lee, S.K., and Eum, C.H. (2001)
 Structural modification of poly(methyl methacrylate) by proton irradiation.
 <u>Applied Surface Science</u>, 169, 433-437.
- EL Naggar, A.M., Marie, M.M., El Gendy, E.H., and El Miligy, A.A. (1996)
 Dyeing, moisture regains and mechanical properties of wool fabric grafted
 with PMMA by chemical and radiation-initiated methods. <u>Radiation Physical</u> <u>Chemistry</u>, 47(4), 623-629.
- Gupta, B., Plummer, C., Bisson, J., Frey, P., and Hilborn, J. (2002) Plasma-induced graft polymerization of acrylic acid onto PET films: characterization and human smooth cell growth on grafted films. <u>Biomaterials</u>, 23, 863-871.
- He, C., and Gu, Z. (2003) Studies on the electron beam irradiated and acrylic acid Grafted PET film. <u>Radiation Physics and Chemistry</u>, 68, 873-874.
- Kaminska, A., Kaczmarek, H., and Kowalonek, J. (2002) The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action. <u>European Polymer Journal</u>, 39, 1915-1919.
- Kawase, T., Uchida, M;, Fujii, T., and Minagawa, M. (1992) Effects of grafting

with acrylic acid an removal of oily from polyester fabric. <u>Textile Research</u> Journal, 62(11), 663-668.

- Lai, C., Harwell, J.H., O'Rear, E.A., and Hwa, M.J. (1997) adsolubilization of fluorocarbon alcohols into perfluoroheptanoate admicelles formed on alumina. <u>Langmuir</u>, 13(16), 4267-4272.
- Lai, C., Harwell, J.H., O'Rear, E.A., Komatsuzuki, S., Arai, J., Nakawaji, T., and Ito, Y. (1995) Formation of poly(tetrafluoroethylene) thin films on alumina by admicellar polymerization. <u>Langmuir</u>, 11(3), 905-911.
- Matarredona, O.M., Mach, K., Rieger, M.M., and O' Rear, E.A. (2003) Alteration of wettability and inhibition of corrosion in narrow aluminium 7075 gaps by ultrathin polymer films. <u>Corrosion Science</u>, 45, 2541-2562.

Mcmurry, J. (1999). Organic Chemistry. California: Brooks/Cole.

- Methachan, B., Pongprayoon, T., Yanumet, N., and O'Rear, E.A. (2002) Formation of Hydrophobic Cotton Fabric by Admicellar Polymerization. Peerreviewed, 60-64.
- O'Haver, J.H., Harwell, J.H., O' Rear, E.A., Snodgrass, L.J., and Waddell, W.H.
 (1994) In situ formation of polystyrene in adsorbed surfactant bilayers on precipitated silica. <u>Langmuir</u>, 10(8), 2588-2593.
- Pisuntornsug, C., Yanumet, N., and O' Rear, E.A. (2002) Surface modification to improve dyeing of cotton fabric with a cationic dye. Coloration Technology, 118, 64-68.
- Pociute, M., Lehmann, B., and Vitkauskas, A. (2003) Wetting behaviour of surgical polyester woven fabrics. <u>Materials Science</u>, 9(4), 410-413.
- Pongprayoon, T., Yanumet, N., and O' Rear, E.A. (2002) Admicellar Polymerization of styrene on Cotton. Journal of Colloid and Interface Science, 249, 227-234.
- Pongprayoon, T., Yanumet, N., O' Rear, E.A., Alvarez, W.E., and Resasco, D.F. (2005) Surface characterization of cotton by a thin film of polystyrene with and without a cross-linking agent. <u>Journal of Colloid and Interface Science</u>, 249, 227-234.

Riccardi, C., Barni, R., Selli, E., Mazzone, G., massafra, M.R., Marcandalli, B., and

Poletti, G. (2003) Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. <u>Applied surface</u> <u>Science</u>, 211, 386-397.

- Sacak, M., Bastug, N., and Taku, M. (1993) Azobisisobutyronitrile-Initiated graft copolymerization of methyl methacrylate onto poly (ethylene terephthalate) fibers. Journal of Applied Polymer Science, 50, 1123-1129
- Sakhalkar, S.S., and Hirt, D.E. (1995) Admicellar polymerization of polystyrene on glass fiber. Langmuir, 11(9), 3369-3373.
- Samu, R., Moulee, A., and Kumar, V.G. (1999) Effect of Charge and Hydrophobicity and Adsorption of Modified Starches on Polyester. <u>Journal</u> of Colloid and Interface Science, 220, 260-268.
- Shenton, M.J., and Stevens, G.C. (1998) Atmospheric Pressure Non-Equilibrium Plasma Processing of Polymers. <u>ECA</u>, 22C, 2587-2590.
- Uchida, E., Twata, H., and Ikada, Y. (2000) Surface structure of PET film grafted with Poly(methacrylic acid). <u>Polymer</u>, 41, 3609-3614.
- Wu, J., Harwell, J.H. and O' Rear, E.A. (1987) Two-dimensional reaction solvents: surfactant bilayers in the formation of ultrathin films. <u>Langmuir</u>, 3(4), 531-537.
- Xu, W., and Liu, X. (2003) Surface modification of polyester fabric by corona discharge irradiation. <u>European Polymer Journal</u>, 39, 199-202.

APPENDICES

Appendix A Calibration Curve of Standard DBSA

Procedure:

The standard solution of DBSA in distilled water was prepared from stock Solution of 5 mM. in volumetric flask 50 mL. The amounts of MMA in standard Solution was measured by a UV spectrometer at 224 nm.

Calculation of a molar absorbtivity of DBSA from the calibration curve

 $A = \epsilon b c$

When, A = Absorbance

 ε = The molar absorbtivity (L mol⁻¹cm⁻¹)

c = Concentration of solution (mol/L)

From the equation of calibration curve, the molar extinction coefficient of DBSA is the slope of the calibration curve.

At 224 nm;

$$Y = 11551x + 0.128$$

Therefore, the molar absorbtivity of DBSA at 224 nm is $1.1551 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$

 Table A1
 Absorbance values of the standard DBSA

	Absorbance								
	Ι	II	III						
5	0.179	0.185	0.182						
15	0.291	0.305	0.298						
35	0.545	0.541	0.543						
55	0.760	0.770	0.765						
75	0.985	0.993	0.989						

Figure A1 Calibration curve of the standard DBSA.

.

APPENDIX B Determination of Equilibrium Adsorption Time

The Calculation of [DBSA] equi can be calculated following this equation.

The 0.2 mL supernatant was pipetted and diluted with distilled water pH = 4 in volumetric flask 25 mL so, [DBSA]_{equi} can be calculated from

$$C_1V_1 = C_2V_2$$

 $x = C_1 = [DBSA]_{flask}, V_1 = 25 mL$
 $[DBSA]_{fi} = C_2 = [DBSA]_{dyed pot}, V_2 = 0.2 mL$
 $C_2 = (x \times 25)/0.2 M$

Calculation of the amount of adsorbed DBSA on polyester fabric

6

. .

 $[DBSA]_{ads} = \{([DBSA]_{ini} - [DBSA]_{fi}) \times V\}/1000$ Adsorption µmol/g PES = $\{([DBSA]_{ads} \times 60)/1000\}/weight of fabric$

	Time		Exp.I.		Exp. II.					
	(h)	Absorbance	[DBSA]equi	[DBSA]PES	Absorbance	[DBSA]equi	[DBSA]PES			
	5	0.694	0.00609	6.03E-06	0.699	0.00614	6.08E-06			
	8	0.686	0.00601	1.04E-05	0.694	0.00608	8.89E-06			
ĺ	10	0.686	0.00601	1.04E-05	0.691	0.00605	1.05E-05			
	15	0.678	0.00592	1.47E-05	0.691	0.00605	1.04E-05			
	20	0.679	0.00593	1.42E-05	0.685	0.00598	1.35E-05			
	25	0.677	0.00591	1.55E-05	0.685	0.00598	1.38E-05			
ſ	40	0.678	0.00596	1.50E-05	0.685	0.00598	1.4E-05			

Table B1 The equilibrium DBSA concentration at various adsorption time

Table B2 The amount of adsorbed DBSA at various time

.

	I.	II.	Average	
Time (h)	[DBSA] _{PES}	[DBSA] _{PES}	[DBSA] _{PES}	SD
	(µmol/g PES)	(µmol/g PES)	(µmol/g PES)	
5	5.5	6.0	5.5	0.7
8	8.8	10.4	9.6	1.1
10	10.5	10.4	10.4	0.1
15	13.3	14.7	14.0	0.9
20	12.4	14.2	13.3	1.3
25	11.6	15.5	13.5	2.7
40	13.3	15.0	14.1	1.2

APPENDIX C Determination of the Effect of Electrolyte on the Adsorption of DBSA on Polyester Fabric

	I.		II.							
Absorbance	[DBSA]equi	[DBSA]PES	Absorbance	[DBSA]equi	[DBSA]PES					
0.701	0.00633	6.10E-06	0.689	0.00614	6.27E-06					
0.698	0.00630	7.71E-06	0.694	0.00619	7.95E-06					
0.693	0.00625	1.04E-05	0.684	0.00608	1.09E-05					
0.687	0.00618	1.43E-05	0.685	0.00609	1.38E-05					
0.683	0.00614	1.60E-05	0.683	0.00607	1.65E-05					
0.679	0.00610	1.82E-05	0.666	0.00588	1.89E-05					
	Absorbance 0.701 0.698 0.693 0.687 0.683 0.679	I.Absorbance[DBSA]equi0.7010.006330.6980.006300.6930.006250.6870.006180.6830.006140.6790.00610	I.Absorbance[DBSA]equi[DBSA]PES0.7010.006336.10E-060.6980.006307.71E-060.6930.006251.04E-050.6870.006181.43E-050.6830.006141.60E-050.6790.006101.82E-05	I.I.Absorbance[DBSA]equi[DBSA]PESAbsorbance0.7010.006336.10E-060.6890.6980.006307.71E-060.6940.6930.006251.04E-050.6840.6870.006181.43E-050.6850.6830.006141.60E-050.6830.6790.006101.82E-050.666	I.II.Absorbance[DBSA]equi[DBSA]PESAbsorbance[DBSA]equi0.7010.006336.10E-060.6890.006140.6980.006307.71E-060.6940.006190.6930.006251.04E-050.6840.006080.6870.006181.43E-050.6850.006090.6830.006141.60E-050.6830.006070.6790.006101.82E-050.6660.00588					

 Table C1
 The equilibrium DBSA concentration at various NaCl concentrations

Table C2 The amount of adsorbed DBSA at various NaCl concentrations

[NaCl] (M)	I. Adsorption (µmol/g PES)	II. Adsorption (µmol/g PES)	Average Adsorption (µmol/g PES)	SD
0	11.6	11.6	11.3	0.4
0.05	11.1	11.3	11	0.5
0.075	10.5	10.6	11.3	1.4
0.1	14.3	14.1	13.4	1.4
0.125	14.9	15.1	14.4	1
0.15	17.7	17.6	17.7	0.1

Appendix D Determination of the Adsorption Isotherm

	I.	II.	Average	
[DBSA] _{ini}	[DBSA] equi	[DBSA] _{equi}	[DBSA] _{equi}	SD
(μM)	(µM)	(µM)	(μM)	
10	9.2	9.4	9.3	0.1
50	46.2	46.6	46.3	0.3
100	89.1	87.8	88.4	0.9
500	445.0	450.5	447.7	3.8
1000	915.9	900.1	908.0	11.1
1300	1212.8	1198.3	1205.6	10.2
1500	1381.5	1356.9	1369.2	17.4
2000	1834.8	1823.0	1829.0	8.3
4000	3779.4	3785.0	3782.2	3.9
6000	5771.9	5801.2	5786.6	20.7

. .

 Table D1
 The equilibrium DBSA concentration with 0.15 M NaCl

.

[DBSA] _{ini} (µM)	I. [DBSA] _{PES}	II. [DBSA] _{PES}	Average [DBSA] _{PES}	SD
10	(μποι/ g τ ES)	(μποι/ g τ L3)	(µmong 1 LS)	0.2
10	1.0	1.2	1.7	0.2
50	1.8	1.6	1.7	0.1
100	3.0	3.4	3.2	0.3
500	6.7	6.1	6.4	0.4
1000	8.5	9.9	9.2	0.9
1300	10.9	12.4	11.2	1.1
1500	13.9	16.2	15.1	1.5
2000	15.6	16.7	16.2	0.7
4000	17.4	16.8	17.1	0.4
6000	15.2	17.3	16.3	1.4

٠

•

Table D2 The amount of adsorbed DBSA at equilibrium with 0.15 M NaCl

[DBSA] _{ini} (µM)	Ι. [DBSA] _{equi} (μΜ)	II. [DBSA] _{equi} (μM)	Average [DBSA] _{equi} (µmol/g PES)	SD
10	9.7	9.5	9.6	0.1
50	48.0	48.0	48.0	0
100	96.7	95.4	96.0	0.9
500	492.2	487.2	489.7	3.5
1000	958.1	960.9	960.0	1.9
1300	1204.2	1224.3	1214.3	14.2
1500	1393.3	1380.6	1386.9	8.9
2000	1873.3	1847.3	1860.3	18.3
4000	3841.3	3847.3	3844.3	4.2
6000	5838.7	5844.8	5841.8	4.3
1				

 Table D3
 The equilibrium DBSA concentration with no salt

 Table D4
 The amount of adsorbed DBSA at equilibrium with no salt

[DBSA] _{ini} (µM)	Ι. [DBSA] _{equi} (μM)	II. [DBSA] _{equi} (µM)	Average [DBSA] _{equi} (µmol/g PES)	SD
10	0.6	1.1	0.8	0.3
50	0.9	0.9	0.9	0
100	0.9	1.2	1.1	0.2
500	1.1	1.8	1.5	0.5
1000	5.4	5.1	5.3	0.2
1300	10.5	8.5	9.5	1.4
1500	11.1	12.5	11.8	0.9
2000	10.8	12.7	11.7	1.3
4000	11.5	11.8	11.6	0.2
6000	12.1	11.8	11.8	0.2

APPENDIX E Calculation of the Amount of DBSA Adsorption on the Polyester Fabric Surface

The surface area of polyester as determined from BET with nitrogen was found to be 2.5 m²/g. Assuming that the area occupied by a DBSA molecule is 50 A^2 so the amount of adsorbed DBSA can be calculated as followed.

The amount of adsorbed DBSA on polyester = A_{PES}/A_{DBSA}

When, A_{PES} = Surface area of polyester

 A_{DBSA} = Surface area of 1 molecule of DBSA

The amount of adsorbed DBSA on polyester = $2.5 (m^2/g)/50x10^{-20} (m^2/molecule)$

 $= 5x10^{18} \text{ (molecules/g)}$ (1 mol = 6.025x10²³ molecules/g) = 5x10¹⁸/ 6.025x10²³ (mol/g)

= 8.3×10^{-6} (mol/g) or 8.3 (µmol/g)

Assuming that DBSA formed a bilayer on polyester;

The amount of adsorbed DBSA on polyester = $2x8.3 \ (\mu mol/g)$ = $16.6 \ (\mu mol/g)$

APPENDIX F Contact Angle Measurement on the PMMA-coated Polyester Fabric

 Table F1
 Contact angle of the PMMA-coated polyester fabric at various conditions

AIBN·MMA	DBSA·MMA					Сс	ontact ar	ngle θ, d	egree	-		
		1	2	3	4	5	6	7	8	9	10	Average
		120.3	115.1	119.6	117.7	114.3	123.2	115.2	155.5	120.9	117.7	
	1:2	124.8	117.7	111.8	115.5	117.2	118.0	113.9	114.9	117.0	116.1	113.9±3.5
1:5	1:5	125.5	120.7	118.1	115.3	109.8	110.4	114.8	109.7	110.4	112.5	
1:5		117.2	112.6	110.9	110.3	114.4	112.5	118.0	117.1	121.2	103.3	
	1:5	111.5	110.1	107.4	103.8	112.5	110.2	112.1	108.7	115.3	115.7	113.0±3.4
		125.7	110.2	108.9	110.6	114.7	118.1	124.1	124.5	111.0	112.6	
		121.2	113.0	122.9	117.6	111.8	119.4	119.9	113.9	110.9	114.9	
	1:8	114.9	123.1	112.1	112.6	122.8	115.0	121.1	119.9	115.1	117.5	114.8±2.5
		114.3	114.3	114.8	116.2	115.1	113.5	112.5	114.2	111.0	108.5	
	¢	114.0	120.5	123.1	117.9	112.3	112.9	114.5	112.2	116.8	116.7	
	1:10	123.6	118.9	109.7	109.9	110.1	118.7	115.5	110.8	112.8	108.3	114.6±1.4
		117.3	112.6	108.6	111.3	111.3	110.4	113.1	118.6	115.9	119.8	

AIBN:MMA	DBSA:MMA				Contact angle θ, degree							i
		1	2	3	4	5	6	7	8	9	10	Average
		110.0	109.8	107.2	109.8	110.4	107.6	110.9	112.2	118.9	114.4	
1:10	1:2	106.8	1102.	115.2	110.1	106.3	122.7	112.2	118.1	111.8	112.4	107.2±4.3
	•	111.9	107.4	110.5	109.8	107.4	119.5	112.9	117.3	117.6	114.4	i
		126.0	113.2	114.8	115.3	119.5	123.5	112.9	113.2	119.2	110.0	
	1:5	119.8	124.8	114.8	113.9	117.7	124.4	116.7	120.4	115.7	113.4	114.1±5.4
		115.1	119.2	118.9	119.9	117.8	115.0	117.2	120.3	116.7	114.4	
		120.9	124.6	119.0	117.0	122.7	121.7	115.9	117.1	113.5	113.9	
	1:8	106.4	121.4	113.4	117.4	119.5	115.3	120.6	118.4	118.9	117.1	117.3±1.2
		112.9	116.0	119.4	122.0	116.3	116.9	113.0	113.2	113.1	121.5	
		124.4	126.7	131.8	116.6	118.4	119.2	116.4	119.4	120.4	116.8	
	1:10	124.1	118.9	128.1	117.3	121.7	121.9	122.7	116.7	122.6	117.8	119.5±2.3
		118.6	119.5	119.8	117.4	113.2	116.7	113.6	118.2	112.2	117.1	

 Table F2
 Contact angle of the PMMA-coated polyester fabric at various conditions

AIBN:MMA	DBSA:MMA		Contact angle θ , degree									
		1	2	3	4	5	6	7	8	9	10	Average
	1:2	*	*	*	*	*	*	*	*	*	*	*
1.20	1:5	*	*	*	*	*	*	*	*	*	*	*
		117.3	117.8	119.6	114.4	116.3	118.6	115.2	111.3	120.3	115.9	
1.20	1:8	113.8	115.8	122.6	115.3	114.4	119.7	116.0	120.3	113.6	114.2	116.7±0.1
		122.4	121.3	119.1	117.2	112.8	116.4	114.3	115.4	117.9	111.0	
		124.7	120.3	111.7	107.5	114.2	122.5	110.8	119.8	107.8	113.4	
	1:10	114.3	113.7	118.3	114.9	109.8	113.4	114.1	115.9	110.6	114.6	116.4±0.8
		114.9	124.4	110.0	115.3	109.1	116.3	121.2	117.1	114.0	112.7	
Untreated poly	vester fabric	109.4	117.8	108.9	113.1	101.1	100.1	110.9	116.2	117.7	108.9	110.1±5.3
		106.3	107.5	114.8	113.0	113.2	111.1	103.8	106.4	117.3	105.1	

 Table F3
 Contact angle of the PMMA-coated polyester fabric at various conditions

٠

*The contact angle cannot be measured because the water droplet disappeared immediately.

APPENDIX G Contact Angle Measurement of the hydrolyzed PMMA-coated Polymer Fabric

 Table G1
 Contact angle of the hydrolyzed PMMA-coated polyester fabric at various conditions

.

Conditi	Contact angle θ , degree											
Reagent	Time (h)	1	2	3	4	5	6	7	8	9	10	Average
	1	116.1	121.6	120.2	117.4	113.5	112.9	118.7	113.5	114.9	113.2	117 3+3 9
	-	112.9	125.5	115.3	114.5	115.9	113.5	120.3	116.4	112.9	113.4	
10 M HCl (30°C)	2	114.1	115.1	115.8	114.4	111.7	123.6	114.1	119.0	118.6	116.5	116 3+3 4
	-	115.7	113.5	111.9	115.8	119.7	120.8	113.2	118.4	114.6	116.2	110.515.1
	5	114.4	112.6	111.9	114.6	111.3	111.0	112.6	114.1	113.5	116.6	113.3±1.7
		111.1	111.2	112.8	113.4	119.4	115.2	112.6	114.1	113.5	116.9	
	1	112.4	110.7	116.1	115.7	113.1	116.5	111.1	113.2	112.0	114.9	113 6+2 1
	1	111.8	110.6	116.9	113.4	115.2	112.7	113.6	114.8	111.0	115.6	115.012.1
10 M HCl (80°C)	2 *	112.0	113.5	113.9	113.2	111.4	111.8	114.0	116.4	116.6	108.8	1132+23
	_	109.8	110.0	112.0	113.2	114.3	115.7	114.2	111.6	110.9	110.0	113.222.5
	5	109.5	116.1	111.6	109.3	116.6	114.0	113.0	112.6	112.7	112.0	112 7+2 4
		112.5	115.6	112.3	111.0	109.6	114.3	113.2	112.6	113.5	115.2	

Conditio	on				Contact angle θ , degree								
Reagent	Time (h)	1	2	3	4	5	6	7	8	9	10	Average	
$10 \text{ M H}_2\text{SO}_4(30^\circ\text{C})$	1	109.9	110.9	116.0	110.7	106.5	107.1	117.7	119.4	113.9	112.6	112.5±4.3	
		108.2	119.9	110.1	112.6	113.5	118.4	108.6	110.5	111.0	114.2	112.0 2 113	
	2	115.0	112.0	118.1	114.6	111.7	107.7	106.2	111.8	108.4	110.9	111 6+3 6	
		116.2	113.0	110.0	116.7	113.5	112.4	106.2	106.5	107.9	109.8		
	5	110.8	115.7	113.8	112.9	107.9	112.4	110.8	113.2	111.4	104.4	111.3±3.2	
		112.3	116.4	111.6	115.2	114.3	112.5	111.3	110.3	110.3	112.4		
$10 \text{ M} \text{H}_2\text{SO}_4(80^\circ\text{C})$	1	*	*	*	*	*	*	*	*	*	*	*	
		*	*	*	*	*	*	*	*	*	*		
	2	*	*	*	*	*	*	*	*	*	*	*	
		*	*	\$e	*	*	*	*	*	*	*		
	5	*	*	*	*	*	*	*	*	*	*	*	
		*	*	*	*	*	*	*	*	*	*		

 Table G2
 Contact angle of the hydrolyzed PMMA-coated polyester fabric at various conditions

* The contact angle cannot be measured because the water droplet disappeared immediately.

Conditior	1	Contact angle θ , degree											
Reagent	Time(h	1	2	3	4	5	6	7	8	9	10	Average	
	1	121,6	116.4	115.5	113.5	111.2	111.9	109.8	118.7	116.8	111.9	114 7+ 3 7	
		113.7	113.2	110.8	114.7	112.0	112.2	109.6	115.1	117.5	117.2	117.74 5.7	
0.1 M p-TSA	2	119.6	115.0	117.2	113.5	112.9	20.3	115.2	117.7	106.9	106.6	1145 ± 4.7	
(30°C)		114.1	120.2	115.1	114.5	115.7	112.3	110.8	112.9	115.3	113.2	111.5 ± 1.7	
	5	112.7	118.5	112.4	114.6	111.4	112.9	109.5	120.4	111.2	112.0	1136+34	
		116.4	113.1	114.2	111.3	109.8	111.8	112.6	113.7	110.0	110.0	115.0 ± 5.4	
	1	111.6	117.5	118.1	114.5	106.0	120.6	113.6	107.9	105.6	107.5	1123+54	
		109.9	110.9	113.9	112.6	106.5	107.1	117.7	119.4	116.0	110.7	112.5 ± 5.4	
0.5 M p-TSA	2	109.1	111.6	113.9	116.5	110.8	111.7	111.7	113.4	109.0	113.3	1121 + 25	
(30°C)		115.0	112.0	118.1	108.4	110.9	111.8	110.7	106.5	112.3	113.5	112.1 ± 3.3	
	5	112.8	106.4	111.3	108.1	111.5	118.0	111.5	112.9	109.3	101.6	1102 + 4.4	
		110.2	107.3	111.0	112.0	113.2	112.4	108.3	109.8	103.2	106.4	110.3 - 4.4	

 Table G3
 Contact angle of the hydrolyzed PMMA-coated polyester fabric at various conditions

.

APPENDIX H Moisture Absorption Measurement

٠.

Table H1 Moisture absorption of the hydrolyzed PMMA-coated polyester fabric at various conditions

	Hydrolysis	No	We	ight of Fa	bric(g)	Moisture	Average		
Fabric	time		Before After Drying			Regain	Moisture	SD	
			Drying	Ι	II	III	(%)	Regain (%)	
Cotton		1	0.8098	0.7517	0.7516	0.7515	7.64	7 72	0.10
		2	0.8014	0.7435	0.7440	0.7440	7.79	1.12	0.10
Polyester	_	1	0.7830	0.7792	0.7788	0.7788	0.54	0.55	0.00
	_	2	0.7861	0.7814	0.7815	0.7814	0.55	0.55	0.00
PMMA-		1	0.8098	0.8083	0.8049	0.8052	0.61	0.60	0.02
coated fabric		2	0.8012	0.7971	0.7966	0.7974	0.58		0.02
	1 h	1	0.8163	0.8119	0.8113	0.8112	0.63	0.63	0.01
PMMA-coated fabric		2	0.8258	0.8215	0.8208	0.8207	0.62	0.05	0.01
hydrolyzed	2 h	1	0.8145	0.8105	0.8094	0.8092	0.65	0.34	0.02
by 10 M HCl at 30°C		2	0.8080	0.8039	0.8034	0.8030	0.62	0.54	0.02
	5 h	1	0.8185	0.8143	0.8138	0.8137	0.59	0.60	0.01
	5 m.	2	0.8077	0.8036	0.8030	0.8029	0.60	0.00	

 Table H2
 Moisture absorption of the hydrolyzed PMMA-coated polyester fabric at various conditions

	Hydrolysis		Wei	ght of Fat	oric(g)	Moisture	Average Moisture								
Fabric	time	No.	Before Drying	A	fter Dryir	ng	Regain (%)	Regain (%)	SD						
				Ι	II	III									
	1 h.	1	0.8225	0.8175	0.8173	0.8172	0.65	0.63	0.05						
PMMA-coated fabric		2	0.8174	0.8128	0.8127	0.8127	0.58								
hydrolyzed	2 h.	1	0.8182	0.8133	0.8133	0.8127	0.68	0.66	0.03						
by 10 M HCl at 30°C		2	0.8204	0.8160	0.8153	0.8152	0.64								
	5 h.	1	0.8199	0.8152	0.8145	0.8144	0.68	0.70	0.03						
		2	0.8022	0.7974	0.7970	0.7965	0.72								
	1 h	1	0.7915	0.7874	0.7868	0.7867	0.61	0.62	0.01						
PMMA-coated fabric		2	0.8047	0.7999	0.7998	0.7997	0.62	0.02	0.01						
hydrolyzed	2 h •	1	0.7763	0.7710	0.7707	0.7707	0.72	0.72	0.01						
		2	0.7820	0.7774	0.7765	0.7765	0.71	0.72							
	5 h.	1	*	*	*	*	*	*	*						
		2	2	2	2	2	2	2	2	*	*	*	*	*	1

* The fabric was destroyed in these conditions.

 Table H3
 Moisture absorption of the hydrolyzed PMMA-coated polyester fabric at various conditions

	Hydrolysis		Wei	ght of Fab	oric(g)		Moisture	Average Moisture	
Fabric	Time	No.	Before	A	fter Dryir	ng	Peggin (%)	Regain (%)	SD
	TIME		Drying	I	II	III	(70)	Regain (70)	
	1 h	1	0.7882	0.7833	0.7836	0.7834	0.63	0.63	0.00
PMMA-coated fabric		2	0.8030	0.7980	0.7980	0.7984	0.63	0.05	0.00
hydrolyzed	2 h	1	0.8115	0.8072	0.8069	0.8070	0.57	0.59	0.02
by 10 M H ₂ SO ₄		2	0.7994	0.7947	0.7946	0.7946	0.060	0.39	0.02
at 30°C	5 h	1	0.8088	0.8050	0.8051	0.8052	0.60	0.62	0.01
	511	2	0.8062	0.8015	0.8012	0.8015	0.62	0.02	0.01
	1 b	1	0.7768	0.7730	0.7715	0.7716	0.69	0.70	0.01
PMMA-coated fabric		2	0.8056	0.8005	0.8003	0.8000	0.70	0.70	0.01
hydrolyzed	2 h	1	0.7989	0.7935	0.7936	0.7931	0.73	0.72	0.02
by 10 M H ₂ SO ₄	2 11	2	0.8040	0.7987	0.7985	0.7984	0.70	0.72	0.02
at 80°C	5 h	1	0.7998	0.7942	0.7932	0.7932	0.83	0.87	0.05
) on	2	0.7852	0.7786	0.7781	0.7781	0.91	0.87	0.05

 Table H4
 Moisture absorption of the hydrolyzed PMMA-coated polyester fabric at various conditions

.

			Weig	ght of Fal	oric(g)		Moisture	Average Moisture	
Fabric	Hydrolysis Time	No.	Before Drying	After Drying			Regain (%)	Regain (%)	SD
	•			Ι	II	III		(, v)	
	1 h	1	0.7889	0.7850	0.7843	0.7846	0.59	0.57	0.03
PMMA-coated fabric		2	0.8093	0.8054	0.8049	0.8050	0.55	0.57	0.05
hydrolyzed	2 h	1	0.7948	0.7903	0.7903	0.7901	0.59	0.58	0.02
by 0.1 M p-TSA		2	0.8019	0.7977	0.7975	0.7974	0.56	0.56	0.02
at 80°C	5 h	1	0.7988	0.7957	0.7957	0.7951	0.48	0.48	0.00
		2	0.8038	0.8001	0.8000	0.8000	0.48	0.10	0.00
	1 h	1	0.8143	0.8093	0.8089	0.8097	0.66	0.58	0.10
PMMA-coated fabric		2	0.8175	0.8029	0.8024	0.8025	0.51	0.56	
hydrolyzed	2 h	1	0.7895	0.7851	0.7848	0.7846	0.62	0.60	0.03
by 0.5 M p-TSA	2 11	2	0.8000	0.7954	0.7954	0.7956	0.58	0.00	0.05
at 80°C	5 h	1	0.8044	0.7997	0.7997	0.7994	0.63	0.61	0.03
		2	0.7850	0.7804	0.7805	0.7804	0.59	0.01	0.03

CURRICULUM VITAE

Name: Ms. Ampornphan Siriviriyanun

Date of Birth:May 30, 1981

Nationality: Thai

University Education:

1999-2003 Bachelor Degree in Chemistry (2nd class honours), Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Proceedings:

 Siriviriyanun, A. and Yanumet, N. (2004, December 1-3) Adsorption of an Anionic Surfactant on Polyester Fabric and the Effect of Salt. <u>Proceedings of</u> <u>the Smart Materials International Conference 2004</u>, Department of Chemistry, Faculty of Science, Chiang Mai University, Thailand.

.