PREPARATION AND CHARACTERIZATION OF COCONUT OIL-INCORPORATED SILK FIBROIN WOUND DRESSING

Jenjira Klinkajorn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University 2010

I28375348

Thesis Title:	Preparation and Characterization of Coconut oil-incorporated
	Silk Fibroin Wound Dressing
By:	Jenjira Klinkajorn
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Ratana Rujiravanit
	Prof. Hiroshi Tamura

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

... Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Ratane Rujiravanit.

(Assoc. Prof. Ratana Rujiravanit)

a adan

(Prof. Hiroshi Tamura)

(Asst. Prof. Manut Nithitanakul)

(Dr. Jantip Suesat)

ABSTRACT

5172005063: Polymer Science Program

Jenjira Klinkajorn: Preparation and Characterization of Coconut oil-incorporated Silk Fibroin Wound Dressing Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and Prof. Hiroshi Tamura

Keywords: Silk fibroin/ Coconut oil/ Pluronic f68/Wound dressing

Silk fibroin (SF) is an interesting biopolymer for wound care application because of its properties that can provide a moist environment for a wound, resulting in a better wound healing. However, silk fibroin itself has no antimicrobial activity to prevent the wound from infection. Accordingly, in this study, coconut oil (CCO) was incorporated into the silk fibroin sheet in order to attain a silk fibroin-based wound dressing possessing antimicrobial activity. Due to the immiscibility between a silk fibroin aqueous solution and coconut oil, a Pluronic F68 surfactant was mixed with the two components so that an oil-in-water emulsion was obtained. After drying in air, followed by drying under vacuum, a fibroin sheet was obtained. The optimum concentration of a surfactant, Pluronic F68 was determined. It was found that homogeneous sheets were formed when the surfactant content was 18 % (w/v). The sheets were further coated with silk fibroin by dipping them in the aqueous fibroin solution. Silk coating was important to sustain the oil release from the coated sheet for controlling the release rate. The coated oil-incorporated fibroin sheet was found to have the ability to control wound exudates. Incorporation of the coconut oil within the silk fibroin sheets imparted antimicrobial activity against Escherichia coli and Staphylococcus aureus which rendered the sheets an effective wound dressing material.

บทคัดย่อ

เจนจิรา กลิ่นขจร : การเตรียมและการวิเคราะห์คุณสมบัติของวัสคุปัคแผลจากไหมไฟ-โบรอินโดยมีน้ำมันมะพร้าวเป็นส่วนผสม(Preparation and Characterization of Coconut oilincorporated Silk Fibroin Wound Dressing) อ. ที่ปรึกษา : รศ. คร. รัตนา รุจิรวานิช และ ศ. คร. ฮิโรชิ ทามูระ

ไหมไฟโบรอินเป็นวัสคุพอลิเมอร์ชีวภาพที่น่าสนใจชิคหนึ่ง สำหรับการนำมาใช้เพื่อการ รักษาแผล เนื่องจากไหมไฟโบรอิสามารถควบคุมความชุ่มชิ้นของแผลได้ ซึ่งเป็นสมบัติที่ส่งผลดี ต่อรักษาแผล แต่อย่างไรก็ตามไหมไฟโบรอินไม่มีคุณสมบัติในการด้านเชื้อแบคทีเรียเพื่อป้องกัน การอักเสบของแผล ดังนั้นในงานวิจัยนี้จึงได้ผสมน้ำมันมะพร้าวลงไปในไหมไฟโบรอิน เพื่อเพิ่ม คุณสมบัติในการด้านเชื้อแบคทีเรีย แต่เนื่องจากความไม่เข้ากันระหว่างน้ำมันมะพร้าวและไหมไฟ โบรอิน ดังนั้นจึงต้องเติม Pluronic f68 ซึ่งเป็นสารถดแรงดึงผิวเพื่อช่วยในผสมน้ำมันมะพร้าวลง ในไหมไฟโบรอินในรูปอิมัลชัน และนำไปขึ้นรูปเป็นแผ่นโดยการทำให้แห้งภายใต้สภาวสุญญา กาศ ซึ่งพบว่าสารลดแรงตึงผิว Pluronic f68 18% โดยน้ำหนักต่อปริมาตรขอสารละลายอิมัลชัน ทั้งหมดเป็นปริมาณที่เหมาะสมในการเตรียมแผ่นอิมัลชันของไหมไฟโบรอินและน้ำมันมะพร้าว ที่ มีกวามสามารถในการดูดซับน้ำได้ถึงประมาณ 40% ซึ่งแสดงให้เห็นถึงประสิทธิภาพในการดูด ซับเลือดและน้ำหนองจากแผล นอกจากนี้ยังพบอีกว่าการเกลือบแผ่นอิมัลชันของไหมไฟโบรอิน และน้ำมันมะพร้าวด้วยไหมไฟโบรอิน โดยการจุ่มในสารละลายของไหมไฟโบรอินจะช่วยเพิ่ม ความสามารถในการควบคุมการปล่อยของน้ำมันมะพร้าวที่มีความสามารถในการยับยั้งเชื้อ แบกทีเรียทั้งชนิด Escherichia coli และ Staphylococcus aureus ซึ่งแสดงให้เห็นถึง ประสิทธิภาพที่ตีในการใช้วัสดูชนิดนี้เป็นวัสดุปิดแผล

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

This work would not have been possible without the assistance of the following individuals.

First of all, the author would like to give her thankfulness to Assoc. Prof. Ratana Rujiravanit, her thesis advisor, for providing useful recommendations, creative comment, and great encouragement thoughout this thesis.

The author would like to thank Dr.Panya wongpanit for providing useful advices, creative comment and encouragement thoughout this thesis work.

The author would like to thank the Thai Sanetsu Co., Ltd. (Thailand) for supplying silk fiber, essential raw materials.

The author would like to thank the PPC where the author have gained the precious knowledge in the Polymer Science program and the author would like to thank PPC Ph.D. students and all her PPC friends for their friendly assistance, cheerfulness, creative suggestions, and encouragement.

Last and most of all, the author would like to express her thank to her family for love, understanding and great encouragement.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table	of Contents	vi
	List of	Tables	х
	List of	Figures	xi
CHA	APTER		
	Ι	INTRODUCTION	1
	II	LITERATURE REVIEW	3
		2.1 Wound dressing	3
		2.2 Silk fibróin	4
		2.2.1 Structure of silk	5
		2.2.2 Silk protein solubility	9
		2.2.3 Silk protein processing	10
		2.2.4 Mechanical properties of silk fibroin	11
		2.2.5 Biocompatibility of silk fibroin	12
	111	EXPERIMENTAL	23
		3.1 Materials	23
		3.1.1 Silk and Coconut oil	23
		3.1.2 Other Chemical	23
		3.2 Equipment	23
		3.2.1 UV-Vible Spectrophotometer	23
		3.2.2 Scanning electron microscopy (SEM)	23

IV

3.2.3	Fourier transform infrared spectroscopy (FTIR)	24
3.2.4	Thermogravimetric Analysis (TGA)	24
3.2.5	Optical microscopy (OPM)	24
3.3 Meth	odology	24
3.3.1	Preparation of aqueous silk fibroin solution	24
3.3.2	Preparation coconut oil-incorporated silk fibroin sheets	25
3.3.3	Characterization of the oil-incorporated	
	silk fibroin sheet	26
3.3.4	Antimicrobial Activity Testing	27
RESULT	'S AND DISCUSSION	29
4,1 Emul	sion stability	29
4.1.1	Influence concentration of Pluronic f68	
÷.,	on the emulsion stability	29
4.1.2	The influence of concentration of coconut	
	oil on the emulsion stability	30
4.1.3	The influence of concentration of silk	
	fibroin on the emulsion stability	31
	4.2 Processing emulsion sheets	32
4.2.1	Freeze drying method	32
4.2.2	Vacuum drying method	33
4.3 Morp	hology of oil-incorporated silk fibroin sheet	34
4.3.1	Cross-sectional and Surface Morphology of	
	uncoated oil-incorporated silk fibroin sheet	34
4.3.2	Morphology of oil-incorporated silk fibroin sheet	
	coated with methanol-treated silk fibroin	40
4.4 Chara	acterization of oil-incorporated silk fibroin sheets	40
4.4.1	Chemical structure of oil-incorporated	
	silk fibroin sheet	40

v

4.5 Releasing Behavior		4
4.6 Degree of swelling and Equilibrium fluid content		4
4.7 Evaporative water loss		
4.8 Antimicrobial Activity		
CONCLUSIONS		
REFERENCES		
APPENDICES		
APPENDIX A Effect of coating methanol-treated		
silk fibroin film on the oil-incorporated		
silk fibroin sheet on the degree of swelli	ng	
and Equilibrium fluid content		
APPENDIX B Effect of coating methanol-treated silk		
fibroin film on the oil-incorporated silk	1	
fibroin sheet on the evaporative water lo	DSS	
APPENDIX C Effect of coating methanol-treated silk		
fibroin film on the oil-incorporated silk		
fibroin sheet on the Releasing Behavior		

CURRICULUM VITAE

75

LIST OF TABLES

TABLE

PAGE

2.1	Mechanical properties of silk	12
2.2	The composition of the coconut oil	17
4.1	Antimicrobial activity of of 15.33%w/v	
	(in total emulsion solution)of coconut oil -incorporated	
	silk fibroin sheets against Staphylococcus aureus	50
4.2	Antimicrobial activity of of 15.33%w/v	- 0
	(in total emulsion solution)of coconut oil -incorporated	
	silk fibroin sheets against Escherichia coli.	51

ix

FIGURE

· · · ·

2.1	cross-section of silk fiber	5
2.2	De-gumming process	5
2.3	Structure of primary amino acid in silk protein	6
2.4	β -sheet secondary structure	7
2.5	Changes in the area ratios of silk II and silk	
	I structures (AII /AI) of the amide I region of SF	
	nanofibers, as determined from IR spectra during	
	solvent vapor treatments at 35 °C((\blacktriangle) water; (\blacklozenge)	
	methanol; (▼) ethanol; (●) propanol	8
2.6	FT-IR spectra of SF films on Si (CCSi) and	
	PE (CCPE) prepared via CC before (a) and after	
	(b) the post treatment. The peak positions of random	
	coil and β -sheet are marked by solid and broken lines	9
2.7	Processing of silk morphologies from aqueous	
	silk fibroin solution into non-woven silk fibers (Li C. et al., 2006);	
	aqueous- and solvent-based porous sponges (Nazarov et al., 2004;	
	; Kim et al., 2005); hydrogels (Rammensee et al., 2006) and films	11
2.8	Examples of cell adhesion and spreading	
	on polystyrene (PS) and silk fibroin (SF) with type	
	I collagen, fibronectin, or laminin in NHOK, NHEK, and NHGF	13
2.9	SEM micrographs of the interaction between NHOK	
	cells and a methanol-treated SF nanofibrous structure after	
	0 (control), 1, 3, or 7 days of culture. Bar, 1 mm	13

FIGURE		
2.10	Cell attachment and spreading of normal human	
	keratinocytes plated onto the SF nanofibers. SEM images	
	showing the interaction between NHEK and SF nanofibers.	
	Bar, 50 μm	16
2.11	Cell attachment and spreading of normal human	
	fibroblasts plated onto SF nanofibers. SEM images of	
	the interaction between the NHEF and SF nanofibers	16
2.12	The structure of tocopherol and tocotrienol	18
2.13	Distributions of the first division time (FDTs)	
	of single cells of S. aureus in the presence of α -linolenic	
	(C18:3), lauric (C12:0) and capric (C10:0) acids at pH 5 and	
	7. Equal letters in the same row (FFAs) and equal numbers	
	in the same column (pH) indicate that the variances 1 or the	
	mean 2 values of the logarithm of the first division times are	
	not significantly different (p valueN0.05).	19
2.14	Distributions of the second generation time (SGTs)	
	of single cells of S. aureus in the presence of α -linolenic	
	(C18:3), lauric (C12:0) and capric (C10:0) acids at pH 5 and	
	7. Equal letters in the same row (FFAs) and equal numbers	
	in the same column (pH) indicate that the variances 1 or the	
	mean2 values of the logarithm of the second generation	
	times are not significantly different(p valueN0.05).	19

FIGU	FIGURE		
2.15	Nitrofurazone creams or gels significantly		
	reduced the bacterial concentration of contaminated		
	experimental wounds to a greater degree than did silver		
	sulfadiazine.	22	
4.1	Photograph of the emulsion stability after 24 hrs		
	of 15.33 % w/v coconut oil and 4 % w/v silk at different		
	concentration of Pluronic f68 that use as surfactant in total		
	volume of the emulsion solution at solution volume ratio of		
	Pluronic f68, silk fibroin and Coconut oil is 3:2:1		
	respectively	29	
4.2	Photograph of the emulsion stability after 24 hrs		
	of 18.6% w/v Pluronic f68 that use as surfactant and		
	4 % w/v silk at different concentration of coconut oil		
	in total volume of the emulsion solution at solution volume		
	ratio of Pluronic f68, silk fibroin and Coconut oil is 3:2:1		
	respectively.	30	
4.3	Optical micrographs of the emulsions at different		
	concentrations of oil in water (A) The emulsions are stained		
	with oil soluble dye (Sudan III) (B) The emulsion that are		
	stained with water soluble dye	31	

FIGU	FIGURE		
4.4	Photograph of the emulsion stability after 24 hrs of 18.6%		
	w/v Pluronic f68 that use as surfactant and 15.33%		
	w/vcoconut at different concentration of silk fibroin oil in		
	total volume of the emulsion solution at solution volume		
	ratio of Pluronic f68, silk fibroin and Coconut oil is		
	3:2:1respectively.	32	
4.5	Optical micrographs of the emulsions at different		
	concentrations of silk (A) The emulsions are stained with oil		
	soluble dye(SudanIII), (B) The emulsion that are stained with		
	water soluble dye	32	
4.6	Photographs of the sponges from freeze drying		
	method (A) the oil incorporated silk fibroin sponge (B)		
	the silk fibroin sponge	33	
4.7	Photographs of the oil incorporated silk fibroin		
	sheets from vacuum drying method.	33	
4.8	Formation of micellar structure of silk		
	fibroin via self assembly	35	
4.9	SEM images of surface of (A) 0% w/v Coconut		
	oil, (B) 1.53% w/v Coconut oil, (C) 4.60% w/v Coconut oil,		
	(D) 7.67% w/v Coconut oil, (E) 10.73% w/v Coconut oil,		
	(F) 15.33% w/v Coconut oil, incorporated silk fibroin sheet		
	of 18.6% w/v Pluronic f68 and 4 % w/v Silk fibroin at		
	different concentration of coconut oil in total volume of		
	emulsion solution after remove oil by using chloroform and		
	dehydration with ethanol at a magnification of 150	36	

FIGURE

PAGE

4.10	SEM images of Cross section (A) 0% w/v	
	Coconut oil, (B) 1.53% w/v Coconut oil, (C) 4.60% w/v	
	Coconut oil, (D) 7.67% w/v Coconut oil, (E) 10.73% w/v	
	Coconut oil, (F) 15.33% w/v Coconut oil, incorporated	
	silk fibroin sheet of 18.6% w/v Pluronic f68 and 4 % w/v	
	Silk fibroin at different concentration of coconut oil in	
	total volume of emulsion solution after remove oil	
	by using chloroform and dehydration with ethanol	
	at a magnification of 150.	37
4.11	SEM images of surface (A) 0% w/v Coconut oil,	
	(B) 1.53% w/v Coconut oil, (C) 4.60% w/v Coconut oil,	
	(D) 7.67% w/v Coconut oil, (E) 10.73% w/v Coconut oil,	
	(F) 15.33% w/v Coconut oil, incorporated silk fibroin sheet	
	of 18.6% w/v Pluronic f68 and 4 % w/v Silk fibroin at	
	different concentration of coconut oil in total volume of	
	emulsion solution after remove oil by using chloroform and	
	dehydration with ethanol at a magnification of 3500.	38
4.12	SEM images of Cross section of (A) 0% w/v Coconut oil,	
	(B) 1.53% w/v Coconut oil, (C) 4.60% w/v Coconut oil, (D)	
	7.67% w/v Coconut oil, (E) 10.73% w/v Coconut oil, (F)	
	15.33% w/v Coconut oil, incorporated silk fibroin sheet of	
	18.6% w/v Pluronic f68 and 4 % w/v Silk fibroin at different	
	concentration of coconut oil in total volume of emulsion	
	solution after remove oil by using chloroform and	
	dehydration with ethanol at a magnification of 3500.	39

xiv

FIGURE		
4.13	SEM images of the oil-incorporated silk fibroin	
	sheet coated with methanol-treated silk fibroin film (a)	
	the surface morphology (b) the cross-section morphology	
	at a magnification of 150	40
4.14	FT-IR spectra of the silk fibroin (a), Coconut oil (b),	
	Pluronic f68 (c), the oil-incorporated silk fibroin before	ах I
	vapor methanol treatment (d) and the oil-incorporated silk	
	fibroin after vapor methanol treatment (e). Arrows indicate	
	the absorption shoulder.	42
4.15	Thermogravimetric analysis of silk fibroin, Pluronic	
	f68, coconut oil, sample of the oil-incorporated silk fibroin	
	sheet after methanol treatment and silk fibroin/Pluronic f68.	44
4.16	TGA and DTG curves of the oil-incorporated silk	
	fibroin sheet under nitrogen environments.	45
4.17	Influence of coating thickness on the release	
	profile of the oil-incorporated silk fibroin sheet coated	
	with methanol-treated silk fibroin film.	
	f68.	46
4.18	Percent degree of swelling of the oil-incorporated	
	silk fibroin sheet coated with methanol-treated silk fibroin	
	film under skin condition (37°C, pH 5.5).	48

FIGURE		PAGE
4.19	Percent equilibrium fluid content (%) of the	
	oil-incorporated silk fibroin sheet coated with methanol-	
	treated silk fibroin film under skin condition (37°C, pH 5.5).	48
4.20	Evaporative water loss from the oil-incorporated silk fibroin	
	sheets coated with methanol-treated silk fibroin film under	
	skin condition (37°C).	49
4.21	Photographs of the colony forming unit of 15.33%w/v	
	of coconut oil -incorporated silk fibroin sheets against	
	Escherichia coli and Staphylococcus aureus.	51