SELECTIVE NO_X REDUCTION OVER METAL SUPPORTED ON ALUMINA CATALYSTS DERIVED FROM SOL-GEL METHOD

Ms. Jiraporn Leerat

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2010

I 28376 468

Thesis Title: Selective NOx Reduction over Metal Supported on	
	Catalysts Derived from Sol-Gel Method
By:	Ms. Jiraporn Leerat
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Somchai Osuwan
	Prof. Erdogan Gulari

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... Dean (Asst. Prof/Pomthong Malakul)

Thesis Committee:

Pramach /

(Assoc. Prof. Pramoch Rangsunvigit)

(Prof. Erdogan Gulari)

anay

(Asst. Prof. Boonyarach Kitiyanan)

.....

(Prof. Somchai Osuwan)

MUL

(Assoc. Prof. Thirasak Rirksomboon)

(Assoc. Prof. Vissanu Meeyoo)

(Dr. Suchada Butrnark)

ABSTRACT

4291001063: Petrochemical Technology Program
Jiraporn Leerat: Selective NO_x Reduction over Metal Supported on
Alumina Catalysts Derived from Sol-gel Method
Thesis Advisors: Prof. Somchai Osuwan and Prof. Erdogan Gulari
113 pp.

Keywords: Sol-gel/ Au/ Pt/ Alumina/ SCR/ Propene/ Urea

The selective catalytic reduction of NO_x by propene and urea were studied over gold and platinum on alumina supported catalysts. These catalysts were prepared from sol-gel technique together with other conventional methods. They were tested over the temperature range of 150-500 °C under various conditions. The presence of water and SO₂ coupled with different oxygen concentrations in reactant gas streams were employed in order to investigate the catalytic activities. It was found that the preparation method had strong influence on the catalytic performance. Among different gold catalysts, the one that prepared from single step sol-gel exhibited the highest activity. However, the impregnated sol-gel alumina was the best catalyst in terms of overall performance that the formation of N₂ was also concerned. In selective reduction of NO_x by propene, almost 100% NO_x conversion was found. In addition, its activity window was enlarged in higher oxygen concentrations. Water was considered to enhance NO_x conversion. Conversely, it suppressed the selectivity towards N₂. Furthermore, the catalysts exhibited good stability under prolonged time on stream in both dry and humid conditions. In contrast, both gold and platinum catalysts showed the average activity in selective NO_x reduction with urea. Increasing in the activity with the temperature was observed on gold catalysts while platinum catalyst reached the maximum NO_x conversion around 250-300 °C. The study of catalytic performance with urea was extended over platinum catalyst. It gave negative NO_x conversion at high temperature region for urea delivery from aqueous solution system. This resulted from the oxidation of derivative nitrogen-containing compounds from urea.

บทคัดย่อ

จิราพร ลีรัตน์ : ปฏิกิริยาการเลือกเกิดรีดักชันของก๊าซไนโตรเจนออกไซด์ โดยตัวเร่ง ปฏิกิริยาโลหะบนตัวรองรับอลูมินาที่สังเคราะห์โดยวิธีโซลเจล (Selective NO_x Reduction over Metal Supported on Alumina Catalysts Derived from Sol-gel Method) อ. ที่ ปรึกษา : ศาสตราจารย์กิตติกุณ ดร. สมชาย โอสุวรรณ และ ศ. ดร. เออร์โดแกน กูลารี 113 หน้า

งานวิจัยนี้ ได้ศึกษาปฏิกิริยาการเลือกเกิดรีดักชั้นของก๊าซไนโตรเจนออกไซด์บนตัวเร่ง ปฏิกิริยาทองและแพลทดินัมบนตัวรองรับอลูมินาโดยใช้สารโพรพื้นและยูเรีย ซึ่งตัวเร่งปฏิกิริยา ต่างๆ นี้ ถูกเตรียมจากวิธีโซลเจลและวิธีการสังเคราะห์แบบคั้งเติมอื่นๆ ในการทคสอบตัวเร่ง ปฏิกิริยาเหล่านี้ได้ศึกษาในช่วงอุณหภูมิ 150-500 °C ภายใต้สภาวะการทำปฏิกิริยาต่างๆ กัน โดย ใช้ก๊าซตั้งค้นในการทำปฏิกิริยาที่ประกอบค้วยไอน้ำและก๊าซซัลเฟอร์ไคออกไซค์ ร่วมกับก๊าซ ้ออกซิเจนที่ความเข้มข้นต่างๆ เพื่อสำรวจความว่องไวในการทำปฏิกิริยา จากการศึกษาแสดงให้ ้เห็นว่า วิธีการเตรียมตัวเร่งปฏิกิริยามีอิทธิพลต่อประสิทธิภาพในการทำปฏิกิริยาอย่างมาก เมื่อ เปรียบเทียบกันระหว่างตัวเร่งปฏิกิริยาต่างๆ พบว่าตัวเร่งปฏิกิริยาที่เตรียมจากวิธีโซลเจล 1 ขั้นตอน แสดงความว่องไวในการทำปฏิกิริยาสูงที่สุด อย่างไรก็ตาม หากพิจารณาถึงความสามารถโดยรวม ของตัวเร่งปฏิกิริยาซึ่งเกี่ยวข้องกับการเกิดก๊าซผลิตภัณฑ์ในโตรเจน พบว่าตัวเร่งปฏิกิริยาโซล เจลอลูมินาชนิคที่ถูกทำให้ชุ่ม เป็นตัวเร่งปฏิกิริยาที่มีประสิทธิภาพสูงสุด ในปฏิกิริยาการเลือกเกิด รีดักชันด้วยสารโพรพีน พบว่าตัวเร่งปฏิกิริยาทองสามารถเปลี่ยนก๊าซไนโตรเจนออกไซด์ได้สูง ้เกือบ 100% นอกจากนี้ ก๊าซออกซิเจนที่มีความเข้มข้นสูงสามารถขยายช่วงอุณหภูมิความว่องไว ส่วนไอน้ำนั้นช่วยเสริมประสิทธิภาพในการเปลี่ยนก๊าซไนโตรเจนไค ของปฏิกิริยาให้กว้างขึ้น ้ออกไซด์ แต่ส่งผลต่อการเลือกเกิดผลิตภัณฑ์ก๊าซไนโตรเจนให้ลดลง นอกเหนือจากนี้ ตัวเร่ง . ปฏิกิริยาทองแสดงความเสถียรเมื่อขยายระยะเวลาการใช้งานทั้งในสภาวะแห้งและชื้น เมื่อ เปรียบเทียบกับปฏิกิริยาการเลือกเกิครีคักชันด้วยสารยูเรีย พบว่าตัวเร่งปฏิกิริยาทองและแพลท ้ตินัมมีความว่องไวปานกลาง โดยตัวเร่งปฏิกิริยาทองมีความว่องไวในการเกิดปฏิกิริยาสูงขึ้นเมื่อ เพิ่มอุณหภูมิ ในขณะที่ตัวเร่งปฏิกิริยาแพลทดินัมมีประสิทธิภาพในการเปลี่ยนก๊าซไนโตรเจนได ออกไซด์สูงสุดในช่วงอุณหภูมิ 250-300 °C จากการศึกษาเพิ่มเติมในการเกิดปฏิกิริยารีดักชันด้วย สารยูเรียบนตัวเร่งปฏิกิริยาแพลทตินัม โดยการใช้ยูเรียในรูปของสารละลายพบว่าตัวเร่งปฏิกิริยา แพลทตินัมให้ผลการเปลี่ยนก๊าซไนโตรเจนไดออกไซด์เป็นลบในช่วงอุณหภูมิสูง เนื่องจากการ ้เกิดปฏิกิริยาออกซิเคชั่นของสารประกอบในโตรเจนที่เกิดจากยูเรีย

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Prof. Somchai Osuwan to give me the endless opportunities throughout my study. He always provides consistent supports not only on academia but also on other issues which help me to go through the difficulties. He took attention enthusiastically from the beginning to the end of this work. His boundless generosity is overwhelmingly appreciated.

I am very grateful to Prof. Erdogan Gulari for partial financial support. He took me a very good care during the experimental work in his research group at The University of Michigan. He always gave innovative guidance and valuable advices on the research.

The Thailand Research Fund (TRF) is gratefully acknowledged for providing financial support through two programs of the Royal Golden Jubilee Ph.D. and the Basic Research Grant. This thesis work was also funded by the Petroleum and Petrochemical College, and by the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

The graduated work could not be successful without the assistance of my bosses, in particular Khun Thanyathorn Torai. She put very much effort throughout the final part of this work. Her truly goodwill is highly appreciated. Additionally, Bangkok Synthetics Co., Ltd. and BST Elastomers Co., Ltd. are gratefully acknowledged.

I also would like to give my appreciation to faculty and staff of the Petroleum and Petrochemical College together with friends for their supportive suggestions, kind helps, cheerfulness and sincere friendships.

This work is solely dedicated to my beloved father and mother for their wholehearted love and forever supports. I am most obliged to my husband for his understanding, constant encouragement and sharing the difficult times. I also would like to deliver special thanks to Pongsirisatorn family for their hospitalities.

TABLE OF CONTENTS

Title Page		i
Abstract (in English)		iii
Abstract (in Thai)		iv
Acknowledgements		v
Table of Contents	21	vi
List of Tables		xii
List of Figures	· ·	xiii
Abbreviations		xvii
CHADTED	12	
CHAPIER		
I INTRODUCTION		1

	1.1 Statement of Problems	1
	1.1.1 Emission Sources of Nitrogen Oxides	2
	1.1.2 Impacts of Nitrogen Oxides	3
	1.1.3 NO _x Control Technologies	3
	1.2 Objectives	5
	1.3 Outline	6
П	LITERATURE REVIEW	7
	2.1 NO _x Background	7
	2.1.1 NO _x Formation	7
	2.1.1.1 Thermal NO_x or Zeldovich NO_x	7
	2.1.1.2 Fuel NO _x	8
	2.1.1.3 Prompt NO _x or Fenimore NO _x	8
	2.1.2 NO _x Thermodynamics and Kinetics	9
	2.1.3 NO _x Surface Chemistry	12

Ш

2.2 Sol-gel	13
2.2.1 Sol-gel Chemistry	14
2.2.2 Drying Process	15
2.2.2.1 Evaporative Drying	15
2.2.2.2 Supercritical Drying	15
2.3 Catalytic NO _x Control	15
2.3.1 NO _x Decomposition	16
2.3.2 Selective Catalytic Reduction with Hydrocarbons	17
2.3.3 Selective Catalytic Reduction with Ammonia and Urea	18
2.3.4 Other Methods	21
2.3.4.1 Plasma Techniques	21
2.3.4.2 NO _x Storage and Reduction (NSR)	21
2.3.4.3 Non-selective Catalytic Reduction (NSCR)	22
2.3.4.4 Ozone Injection	23
2.4 Mechanism of Selective Catalytic Reduction of NO _x	23
2.4.1 Adsorption/Dissociation Mechanism	23
2.4.2 Oxidation-Reduction Mechanism	24
EXPERIMENTAL	27
3.1 Materials	27
3.1.1 Chemicals	27
3.1.2 Gases	27
3.2 Catalyst Preparation	28
3.2.1 Single Step Sol-gel	28
3.2.1.1 Aluminum tri-sec-Butoxide	30
3.2.1.2 Aluminum Isoproproxide	30
3.2.2 Deposition-Precipitation	30
3.2.3 Impregnation	31

PAGE

.

CH.	AP	TE	R

	3.3 Experimental Equipment	32
	3.3.1 Gas Blending System	32
	3.3.2 Reactor	33
	3.3.3 Analytical Instrumentation	33
	3.3.3.1 NO _x Chemiluminescence Analyzer	33
	3.3.3.2 Gas Chromatography (GC)	34
	3.3.3.3 Fourier-Transform Infrared Spectroscopy	
	(FTIR)	35
	3.4 Catalytic Activity Measurement	37
	3.4.1 Activation Process	37
	3.4.2 Activity Testing Procedure	37
	3.4.3 Conversion and Selectivity Calculation	38
	3.4.3.1 Hydrocarbon Conversion	38
	3.4.3.2 NO _x Conversion	38
	3.4.3.3 N ₂ Selectivity	38
	3.5 Catalyst Characterization	38
	3.5.1 BET Surface Area Measurement	38
	3.5.2 X-ray Diffraction (XRD)	39
	3.5.3 High Resolution Transmission Electron Microscopy	
	(HRTEM)	40
	3.5.4 Neutron Activation Analysis (NAA)	40
IV	NO REDUCTION BY UREA UNDER LEAN CONDITIONS	
	OVER ALUMINA SUPPORTED CATALYSTS	42
	4.1 Abstract	42
	4.2 Introduction	42
	4.3 Experimental	45
	4.3.1 Catalyst Preparations and Activation	45

V

70

70

4.3.2 Catalyst Testing	46
4.3.3 Catalyst Characterization	46
4.4 Results and Discussion	48
4.4.1 Results	48
4.4.1.1 Metal Amount in All Catalysts	48
4.4.1.2 Catalyst Characterization	48
4.4.1.3 NO _x Reduction by Urea	49
4.4.2 Discussion	57
4.4.2.1 Pt on Alumina Catalyst	57
4.4.2.2 Au on Alumina Catalysts	60
4.4.2.3 SO ₂ Effect	61
4.5 Conclusions	63
4.6 Acknowledgements	63
4.7 References	63
SELECTIVE NO _x REDUCTION OVER SOL-GEL	
PT/ALUMINA CATALYST BY AQUEOUS UREA	
SOLUTION	65
5.1 Abstract	65
5.2 Introduction	65
5.3 Experimental	68
5.3.1 Catalyst Preparations and Activation	68
5.3.2 Catalyst Testing	68
5.3.3 Catalyst Characterization	69
5.4 Results and Discussion	70
5.4.1 Results	70

5.4.1.2 Effect of Urea and Water Concentration on the

5.4.1.1 Catalyst Characterization

NO_x Reduction

ix

86

	5.4.1.3	The Characteristic of Urea Decomposition/	
		Hydrolysis and NO _x Reduction	74
	5.4.2 Discuss	ion	77
	5.4.2.1	The Activity of NO_x Reduction as a Function	
		of Water and Urea	77
	5.4.2.2	The Decomposition and Hydrolysis of Urea	
		and Side Reactions	82
5.5	Conclusions		83
5.6	Acknowledge	ments	83
5.7	References		84

VI LEAN-BURN NO_x REDUCTION BY PROPENE OVER GOLD SUPPORTED ON ALUMINA CATALYSTS DERIVED FROM THE SOL-GEL METHOD

6. I	Abstract	86
6.2	Introduction	86
6.3	Experimental	88
	6.3.1 Catalyst Preparations and Activation	88
	6.3.2 Catalyst Testing	89
	6.3.3 Catalyst Characterization	89
6.4	Results and Discussion	90
	6.4.1 Catalyst Characterization	90
	6.4.2 Preparation Effect	91
	6.4.3 Propene Effect	94
	6.4.4 Oxygen Effect	96
	6.4.5 Water Effect	96
	6.4.6 Catalyst Stability	99
6.5	Conclusions	99
6.6	Acknowledgements	99

CHAPTER		PAGE
	6.7 References	100
VII	CONCLUSIONS AND RECOMMENDATIONS	102
	7.1 Conclusions	102
	7.2 Recommendations	103
	REFERENCES	104
	CURRICULUM VITAE	112

LIST OF TABLES

TABI	LE		PAGI		
	CHA	APTER II			
2.1	Urea-SCR reactions				20
	СНА	PTER III			
3.1	The manufacturer and purity of	the chemicals			29
	СНА	PTER VI			
6.1	Chemical and physical prope	rties of gold	supported on		
	alumina catalysts		4		91

LIST OF FIGURES

FIGURE

CHAPTER I

1.1	Illustration of emission of NO_x by source category in USA	
	and European countries	2
1.2	Possibilities for NO_x reduction from a combustion chamber	4
	CHAPTER II	
2.1	The thermodynamic equilibrium fraction of NO_2/NO_x as a	
	function of temperature in different partial pressures of	
	oxygen	11
2.2	Schematic representation of the bonding in NO complexes	12
2.3	Schematic representation of NO dissociation	13
2.4	Adsorption and reduction of NO_x by NSR (NO_x storage and	
	reduction) concept. NSC: NO _x storage compound	22
2.5	Reaction scheme of the oxidation-reduction mechanism	25
2.6	NO conversion curves of selective reduction with propene	
	over supported Au and/or Rh on alumina catalysts	26

CHAPTER III

3.1	The schematic diagram	n of the experimental equipment	36

CHAPTER IV

4.1 (a) The catalytic activity of the Pt-SG catalyst as a function of NO concentration. Reaction conditions: above NO concentrations, 14% oxygen and 1.4 wt% aqueous urea solution, 0.1 g catalyst and 177 ml/min of total dry gas flow rate

FIGURE

4.1 (b) The catalytic activity of the Pt-SG catalyst. Reaction conditions: 750 ppm NO concentrations, 14% oxygen and 1.4 wt% aqueous urea solution, 0.1 g catalyst and 177 ml/min of total dry gas flow rate 52 4.2 The activity of Pt-SG catalyst as a function of oxygen concentration. Reaction condition: 750 ppm NO and above oxygen concentrations and 1.4 wt% aqueous urea solution, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate 54 4.3 Effect of SO₂ concentration on the activity of Pt-SG catalyst. Reaction conditions: 750 ppm NO, 14% oxygen and 1.4 wt% aqueous urea solution, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate 55 4.4 Effect of O₂ concentration on the activity of Au-SG catalyst. Reaction conditions: 1,000 ppm NO, above oxygen concentrations and 1.4 wt% aqueous urea solution, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate 56 4.5 Effect of SO₂ concentration on the activity of Au-SG catalyst. Reaction conditions: 750 ppm NO, 14% oxygen and 1.4 wt% aqueous urea solution and above SO₂ concentrations, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate 58 4.6 Comparison of the activity of Au on alumina catalysts as a function of preparation method and the kind of alumina. Reaction conditions: 750 ppm NO, 7% oxygen and 1.4 wt% aqueous urea solution, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate

XIV

PAGE

4.7 Comparison of the activities of sol-gel alumina and the commercial alumina. Reaction conditions: 750 ppm NO, 7% oxygen and 1.4 wt% aqueous urea solution, 0.1 g of catalyst and 177 ml/min of total dry gas flow rate

CHAPTER V

	CHATTERV	
5.1	The NO_x reduction activity of 2% Pt-SG as a function of	
	urea concentration. Reaction conditions: 650 ppm. NO,	
	6% O ₂ , ~17% H ₂ O balanced in He, SV = 105,075 cm ³ h ⁻¹ g ⁻¹	72
5.2	The NO_x reduction activity of 2% Pt-SG as a	
	function of water concentration. Reaction conditions:	
	650 ppm NO, 188-198 ppm urea, 6% O ₂ , balanced in He,	
	$SV = 105,075 \text{ cm}^3 \text{ h}^{-1} \text{ g}^{-1}$	73
5.3	The oxygen effect on the activity of urea decomposition/	
	hydrolysis over 2% Pt-SG. Reaction conditions: 450 ppm	
	urea, 15% H ₂ O balanced in He, SV = 105,075 cm ³ h ⁻¹ g ⁻¹	75
5.4	The oxidation of N-containing compounds derived from urea	
	over 2% Pt-SG. Reaction conditions: 450 ppm urea, 6% O ₂ ,	
	15% H ₂ O balanced in He, SV = 105,075 cm ³ h ⁻¹ g ⁻¹	76
5.5	The activity of NO_x reduction in gas phase and on 2% Pt-SG.	
	Reaction conditions: 650 ppm NO, 450 ppm urea, 6% O ₂ ,	
	15% H ₂ O balanced in He, SV = 105,075 cm ³ h ⁻¹ g ⁻¹	78
5.6	The formation of products in NO _x reduction over 2% Pt-SG.	
	Reaction conditions: 650 ppm NO, 450 ppm urea, 6% O ₂ ,	
	15% H ₂ O balanced in He, SV = 105,075 cm ³ h ⁻¹ g ⁻¹	79

5.7 The correlation of NO_x conversion and NO and NO_2 formation over 2% Pt-SG. Reaction conditions: 650 ppm NO, 450 ppm urea, 6% O₂, 15% H₂O balanced in He, SV = 105,075 cm³ h⁻¹ g⁻¹

CHAPTER VI

- 6.1 Catalytic activity comparison of the Au/Al₂O₃ catalysts from different preparation methods. Reaction conditions: 1,000 ppm NO_x, 1,000 ppm C₃H₆, 14 % O₂, 2% H₂O balanced in He, SV = 1×10^5 cm³ h⁺¹ g⁺¹
- 6.2 Propene concentration effect on the activity of the Au-IMP-SG catalyst as a function of temperature. Reaction conditions: 1,000 ppm NO_x, 0 to 1,000 ppm C₃H₆, 14% O₂, 2% H₂O balanced in He, SV = 1×10^5 cm³ h⁻¹ g⁻¹
- 6.3 Oxygen concentration effect on the activity of the Au-IMP-SG catalyst as a function of temperature. Reaction conditions: 700 ppm NO_x, 700 ppm C₃H₆, 5% and 14% O₂, 2% H₂O balanced in He, SV = 1×10^5 cm³ h⁻¹ g⁻¹
- 6.4 Activity of the Au-IMP-SG catalyst in dry and humid feed streams. Reaction conditions: 1,000 ppm NO_x, 1,000 ppm C₃H₆, 14% O₂, 0 and 2% H₂O balanced in He, $SV = 1 \times 10^5$ cm³ h⁻¹ g⁻¹

xvi

81

93

ABBREVIATIONS

	BET	Brunauer-Eemmett-Teller
	ВЈН	Barrett-Joyner-Halenda
	DP	Deposition-precipitation
	FWHM	Full width at half maximum
	FTIR	Fourier-transform infrared spectroscopy
	GC	Gas chromatography
	НС	Hydrocarbon
	HID	Helium ionization detector
	HPGe	High purity germanium
-	HRTEM	High resolution transmission electron microscopy
	ICP	Inductively coupled plasma
	ID	Inside diameter
	IMP	Impregnation
	LDD	Light duty diesel
	NAA	Neutron activation analysis
7	NO _x	Nitric oxide and nitrogen dioxide
	NSC	NO _x storage compound
	NSCR	Non-selective catalytic reduction
	NSR	NO _x storage and reduction
	NTP	Non-thermal plasma
	МСТ	Mercury cadmium telluride
	PID	Proportional integral derivative
	SNCR	Selective non-catalytic reduction
	PGM	Platinum group metal
	PMT	Photomultiplier tube
	SCR	Selective catalytic reduction
	SG	Sol-gel
	SV	Space velocity

xviii	

ТСD	Thermal conductivity detector
TWC	Three-way catalyst
UAMR	Ultrasound-assisted membrane reduction
UHP	Ultra high purity
XRD	X-ray diffraction