ORGANIC POLLUTANT DEGRADATION AND HYDROGEN PRODUCTION USING SrTiO₃ PHOTOCATALYSTS

Tarawipa Puangpetch

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

.

2011

I 28375543

Thesis Title:	Organic	Pollutant	Degradation	and	Hydrogen	Production
	Using Sr	TiO ₃ Photo	ocatalysts			
By:	Tarawipa	a Puangpeto	ch			
Program:	Petroche	mical Tech	nology			
Thesis Advisors:	Prof. Sur	naeth Chav	vadej			
	Prof. Sus	umu Yosh	ikawa			
	Asst. Pro	f. Thamma	noon Sreethav	vong		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

...... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Sumaeth Chrunder Wayhany yiha

(Assoc. Prof. Sujitra Wongkasemjit)

autor

(Prof. Susumu Yoshikawa)

Ramoch B.

(Assoc. Prof. Pramoch Rangsunvigit)

(Prof. Sumaeth Chavadej)

T. Sheething

(Asst. Prof. Thammanoon Sreethawong)

S Satu _____

(Dr. Singto Sakulkhaemaruethai)

ABSTRACT

4791004063: Petrochemical Technology Program

Tarawipa Puangpetch: Organic Pollutant Degradation and Hydrogen Production Using SrTiO₃ Photocatalysts

Thesis Advisors: Prof. Sumaeth Chavadej, Prof. Susumu Yoshikawa, and Asst. Prof. Thammanoon Sreethawong, 160 pp.

Keywords:

SrTiO₃/ Mesoporous Assembly/ Metal Loading/ Photocatalyst/
Pollutant Degradation/ Water Splitting/ Hydrogen Production

Pristine and metal-loaded mesoporous-assembled SrTiO₃ nanocrystal photocatalysts were successfully synthesized via the single-step sol-gel method with the aid of a structure-directing surfactant. The synthesis method provided the mesoporous-assembled SrTiO₃ nanocrystal photocatalysts with high purity, crystallinity, and homogeneity, as well as showed high reliability in photocatalyst reproduction. The synthesized photocatalysts were investigated their photocatalytic activity in both degradation of model organic pollutants and water splitting for hydrogen production with various hole scavengers. The results pointed out that the photocatalyst structure, in the form of a mesoporous assembly of SrTiO₃ nanocrystals, was found to be responsible for the enhancement of the photocatalytic activity of the SrTiO₃ photocatalysts. Some metals co-catalyst loading was found to enhance the photocatalytic hydrogen production activity of the mesoporousassembled SrTiO₃-based photocatalyst. The enhancement in the photocatalytic hydrogen production activity depended on the electrochemical properties of the loaded metal type and the loading value. The 1 wt.% Au-loaded mesoporousassembled SrTiO₃ photocatalyst was found to be the most effective photocatalyst for the hydrogen production from the photocatalytic water splitting.

บทคัดย่อ

٨

ธรวิภา พวงเพ็ชร : การสลาขสารมลพิษอินทรีย์และการผลิตก๊าซไฮโครเจนด้วยตัวเร่ง ปฏิกิริยาแบบใช้แสงร่วมสตรอนเทียมไททาเนียมไตรออกไซค์ (Organic Pollutant Degradation and Hydrogen Production Using SrTiO₃ Photocatalysts) อ. ที่ปรึกษา: ศ. คร. สุเมธ ชวเคช ศ. คร. ซุซุมุ โยชิกาวา และ ผศ. คร. ธรรมนูญ ศรีทะวงศ์ 160 หน้า

ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมสตรอมเทียมไททาเนียมไตรออกไซด์ที่มีโครงสร้างรู พรุนในระดับเมโซพอร์จากการเกาะตัวกันของผลึกระดับนาโน (mesoporous-assembled SrTiO₃ nanocrystal photocatalysts) ทั้งที่ใส่และไม่ใส่โลหะตัวเร่งปฏิกิริยาร่วม สามารถ สังเคราะห์ด้วยวิธีโซล-เจล แบบใช้สารลดแรงดึงผิวช่วยในการกำหนดโครงสร้างรูพรุน โลหะ ตัวเร่งปฏิกิริยาร่วมจะถูกใส่ในขั้นตอนเดียวกับการสังเคราะห์ตัวเร่งปฏิกิริยาสตรอมเทียมไททา เนียมไตรออกไซด์ (single-step sol-gel method with the aid of a structure-directing surfactant) การสังเคราะห์ด้วยวิธีการนี้จะได้ตัวเร่งปฏิกิริยาที่มีค่าความบริสุทธิ์ ความเป็นผลึก และความสม่ำเสมอของเนื้อสาร อยู่ในระดับสูง รวมทั้งให้ความแน่นอนในการสังเคราะห์ซ้ำ ความสามารถในการช่วยเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาที่สังเคราะห์ขึ้นถูกทดสอบด้วยปฏิกิริยา การสลายสารมลพิษอินทรีย์ตัวอย่าง และปฏิกิริยากรแตกตัวของน้ำเพื่อการผลิตก๊าซไฮโครเจน โดยใช้ตัวเก็บโฮล (hole scavenger) หลายชนิค ผลการทดสอบบ่งชี้ว่า โครงสร้างแบบรูพรุนใน ระดับเมโซพอจากการเกาะตัวกันของผลึกระดับนาโน สามารถช่วยเพิ่มความสามารถในการช่วย เร่งปฏิกิริยาของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมสตรอมเทียมไททาเนียมไตรออกไซด์สำหรับทั้ง

สองปฏิกิริยาที่ทดสอบ โลหะตัวเร่งปฏิกิริยาร่วมบางชนิดสามารถช่วยเพิ่มความสามารถในการ ช่วยเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมสตรอมเทียมไททาเนียมไตรออกไซด์สำหรับ ปฏิกิริยาการแตกตัวของน้ำเพื่อการผลิตก๊าซไฮโดรเจน ความสามารถในการช่วยเพิ่มความสามารถ ในการช่วยเร่งปฏิกิริยาขึ้นกับคุณสมบัติทางไฟฟ้าเคมีของโลหะตัวเร่งปฏิกิริยาร่วม และปริมาณ การใส่โลหะตัวเร่งปฏิกิริยาขึ้นกับคุณสมบัติทางไฟฟ้าเคมีของโลหะตัวเร่งปฏิกิริยาร่วม และปริมาณ การใส่โลหะตัวเร่งปฏิกิริยาเบบใช้แสงร่วมสตรอมเทียมไททาเนียมไตร ออกไซด์ ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมสตรอมเทียมไททาเนียมไตร และปริมาณ ในระดับเมโซพอจากการเกาะตัวกันของผลึกระดับนาโนที่ใส่โลหะทอง 1 เปอร์เซ็นต์โดยน้ำหนัก เป็นโลหะตัวเร่งปฏิกิริยาร่วม เป็นตัวเร่งปฏิกิริยาที่มีประสิทธิภาพสูงสุดในการเร่งปฏิกิริยาการ แตกตัวของน้ำเพื่อการผลิตก๊าซไฮโครเจน

ACKNOWLEDGEMENTS

This thesis work is supported by a Project on Faculty Development in Shortage Area Scholarship (Thailand); Thailand Research Fund (TRF) and the Commission on Higher Education (Thailand); the Research Unit of Petrochemical and Environmental Catalysis, Chulalongkorn University (Thailand); the Sustainable Petroleum and Petrochemicals Research Unit, Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University (Thailand); and Institute of Advanced Energy, Kyoto University (Japan). This thesis work is partially funded by Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium).

The author would like to express her sincere gratitude to Prof. Sumaeth Chavadej, Asst. Prof. Thammanoon Sreethawong, and Prof. Susumu Yoshikawa, her advisors, for their invaluable support, encouragement, supervision and useful suggestions throughout this research work. Their support and continuous guidance enabled the author to complete her work successfully.

She would like to express special thanks to Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Pramoch Rangsunvigit, and Dr. Singto Sakulkhaemaruethai for kindly serving on her thesis committee and their valuable suggestions throughout this study.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation and to her friends for their unforgettable friendship and support.

Furthermore, her sincere thanks go to her husband and sons, who shared their love and experiences with her.

Finally, she really would like to express her sincere gratitude to her parents for their love, understanding, and support throughout her life.

TABLE OF CONTENTS

			PAGE
	Title P	age	i
	Abstra	ct (in English)	iii
	Abstra	ct (in Thai)	iv
	Ackno	wledgements	v
	Table of	of Contents	vi
	List of	Tables	xi
	List of	Figures	xii
			4
CHA	APTER		PAGE
	Ι	INTRODUCTION	1
		1.1 Rationale and Problems	1 *
		1.2 Objectives	3
		1.3 Scope of Research Work	3
		1.4 References	5
	II	THEORETICAL BACKGROUND	9
		AND LITERATURE REVIEWS	
		2.1 Elementary Processes in Photocatalysis	9
		Using Semiconductors	
		2.2 Photocatalytic Decomposition of Water for	12
		Hydrogen Production	
		2.2.1 Thermochemical Water Splitting With	12
		the Sulfur-Iodine Cycle (S-I Cycle)	
		2.2.2 Direct Water Splitting at High Temperatures Using	12
		a Mixed Conducting Membrane	
		2.2.3 Water Electrolysis	13
		2.2.4 High Temperature Electrolysis or Steam Electrolysis	14
		2.2.5 Steam Reforming	15
		2.2.6 Photocatalytic Decomposition of Water	15

CHAPTER		PAGE
	2.3 Chemical Addition for H ₂ Production Enhancement	19
	2.3.1 Hole Scavenger Reagent to Suppress	19
	Electron-Hole Recombination	
	2.3.2 Chemical Additives to Suppress the Backward	20
	Reaction of H ₂ and O ₂	
	2.4 Photocatalyst Modification for H ₂ Production Enhancement	21
	2.4.1 Ion Doping	21
	2.4.1.1 Metal Ion Doping	21
	2.4.1.2 Anion Doping	22
	2.4.2 Metal or Co-Catalyst Loading	23
	2.4.3 Dye Sensitization	25
	2.4.4 Composite Semiconductor Photocatalysts	27
	2.4.5 Structure and Morphology Control of Photocatalysts	29
	2.5 Photocatalytic Degradation of Organic Pollutants	31
	2.6 References	36
III	EXPERIMENTAL	44
	3.1 Chemicals	44
	3.2 Photocatalyst Synthesis Methods	45
	3.3 Characterization Techniques	46
	3.4. Photocatalytic Activity Testing	49
	3.4.1 The Photodegradation of Methyl Orange	49
	3.4.2 The Photocatalytic Hydrogen Production	49
	3.5 References	52
IV	SYNTHESIS AND PHOTOCATALYTIC ACTIVITY	53
	IN METHYL ORANGE DEGADRATION OF	
	MESOPOROUS-ASSEMBLED SrTiO ₃ NANOCRYSTALS	
	PREPARED BY SOL-GEL METHOD WITH THE AID OF	
	STRUCTURE-DIRECTING SURFACTANT	
	Abstract	53

CHAPTER		PAGE
	4.1 Introduction	53
	4.2 Experimental	55
	4.2.1 Materials	55
	4.2.2 Synthesis Procedure	56
	4.2.3 Characterization Techniques	56
	4.2.4 Photocatalytic Activity Testing	58
	4.3 Results and Discussion	59
	4.3.1 Effects of Synthesis Conditions	59
	4.3.2 Characterization Results	60
	4.3.3 Photocatalytic Activity Results	74
	4.4 Conclusions	79
	4.5 Acknowledgments	79
	4.6 References	80
V	HYDROGEN PRODUCTION FROM	82
	PHOTOCATALYTIC WATER SPLITTING OVER	
	MESOPOROUS-ASSEMBLED SrTiO ₃	
	NANOCRYSTAL-BASED PHOTOCATALYSTS	
	Abstract	82
	5.1 Introduction	83
	5.2 Experimental	84
	5.2.1 Materials	84
	5.2.2 Synthesis Procedure of Mesoporous-Assembled	85
	SrTiO ₃ Photocatalysts	
	5.2.3 Photocatalyst Characterization Techniques	86
	5.2.4 Photocatalytic Water Splitting Experiments	87
	5.3 Results and Discussion	89
	5.3.1 Photocatalyst Characterization Results	89
	5.3.2 Effects of Type and Concentration of Hole Scavenger	95
	5.3.3 Effect of Pt Loading	98

viii

CHAPTER		PAGE
	5.3.4 Effect of MeOH Volume Fraction and	100
	Reaction Temperature	
	5.3.5 Photocatalyst Durability and Reuse	104
	5.4 Conclusions	107
	5.5 Acknowledgments	108
	5.6 References	109
VI	HYDROGEN PRODUCTION OVER	112
	METAL-LOADED MESOPOROUS-ASSEMBLED	
	SrTiO ₃ NANOCRYSTAL PHOTOCATALYSTS:	
	EFFECTS OF METAL TYPE AND LOADING	
	Abstract	112
	6.1 Introduction	112
	6.2 Experimental	114
	6.2.1 Materials	114
	6.2.2 Synthesis procedure of mesoporous-assembled	115
	SrTiO ₃ photocatalysts	
	6.2.3 Photocatalyst characterization techniques	115
	6.2.4 Photocatalytic hydrogen production system	116
	6.3 Results and discussion	117
	6.3.1 Characterization results	117
	6.3.2 Effect of metal loading on hydrogen production	123
	activity of the SrTiO ₃ -based photocatalysts	
	6.3.3 Effect of photocatalyst dosage	126
	6.3.4 Effect of gas phase-to-liquid phase volumetric ratio	129
	6.4 Conclusions	129
	6.5 Acknowledgments	130
	6.6 References	131

CHAPTER	R	PAGE
VII	HYDROGEN PRODUCTION OVER Au-LOADED	136
	MESOPOROUS-ASSEMBLED SrTiO3 NANOCRYSTAL	
	PHOTOCATALYST: EFFECTS OF MOLECCULAR	
	STRUCTOR AND CHEMICAL PROPERTIES	
	OF HOLE SCAVENGERS	
	Abstract	136
	7.1 Introduction	136
	7.2 Experimental	138
	7.2.1 Materials	133
	7.2.2 Synthesis procedure of photocatalysts	139
	7.2.3 Photocatalyst characterization techniques	139
	7.2.4 Photocatalytic hydrogen production system	140
	7.3 Results and discussion	141
	7.3.1 Photocatalyst characterization results	141
	7.3.2 Photocatalytic hydrogen production results	144
	7.4 Conclusions	150
	7.5 Acknowledgments	151
	7.6 References	152
VIII	CONCLUSIONS AND RECOMMENDATIONS	156
	8.1 Conclusions	156
	8.2 Recommendations	157
	CURRICULUM VITAF	158

and the second sec

х

LIST OF TABLES

TABI	LE CONTRACTOR	PAGE
2.1	Results of the SrTiO ₃ -based photocatalysts for	
	photocatalytic decomposition of water for hydrogen	
	production	33
2.2	Results of the SrTiO ₃ -based photocatalysts for	
	photocatalytic decomposition of various pollutants	34
4.1	Thermal decomposition behaviors obtained from the TG-	
	DTA analysis of photocatalysts prepared by using different	
	solvents	62
4.2	Band gap wavelength (λ_g) , the band gap energy (E_g) ,	
	and crystallite size of SrTiO ₃ synthesized by using different	
	surfactants: LAHC, CTAB, and CTAC,	
	commercial SrTiO ₃ (Wako)	69
4.3	Band gap wavelength (λ_g) , the band gap energy (E_g) ,	
	and crystallite size of SrTiO ₃ synthesized by using different	
	LAHC-to-TIPT molar ratios: 0.25:1, 0.5:1, 0.75:1, and 1:1,	
	as compared to commercial SrTiO ₃ (Wako)	72
5.1	Physical and textural properties of all investigated	
	photocatalysts	90
6.1	Textural properties of all studied photocatalysts from XRF,	
	XRD, UV-visible spectroscopy, and N ₂ adsorption-	
	desorption analyses	120
7.1	Comparative results of specific H ₂ production rate from the	
	photocatalytic water splitting over various SrTiO ₃ -based	
	photocatalysts	149

LIST OF FIGURES

FIGU	RE	PAGE
2.1	Electron-hole pair generation in a photo-irradiated	9
	n-type photocatalyst	
2.2	The plot between the Kabelka-Munk function $(F(R))$	
	as a function of wavelength (λ , nm) and the band gap	
	wavelength (λ_g) estimation	10
2.3	The concept of hydrogen production from direct water	
	splitting at high temperatures using a mixed conducting	
	membrane	13
2.4	The Hoffman electrolysis apparatus used in electrolysis of	
	water	14
2.5	Schematic of high temperature electrolysis	15
2.6	Band gap energy of the photocatalyst	17
2.7	Band edge positions of semiconductors as determined in	
	photoelectrochemical experiments with respect to a normal	
	hydrogen electrode (NHE) as reference points, and the	
	standard redox potentials of water in acidic	17
2.8	Mechanism of dye-sensitized photocatalysis under light	
	irradiation	26
2.9	Electron injection in composite semiconductors	27
2.10	Cubic perovskite SrTiO ₃	30
3.1	Schematic of the synthesis procedure	46
3.2	The plot between the Kabelka-Munk function $(F(R))$	
	as a function of wavelength (λ, nm) and the band gap	
	wavelength (λ_g) estimation	48
3.3	The photocatalytic hydrogen production system used in this	
	study	50

FIGUI	RE	PAGE
4.1	TG-DTA curves of the synthesized SrTiO ₃ samples	
	(zero gels) (LAHC as a structure-directing surfactant and	
	a LAHC-to-TIPT molar ratio of 0.25:1) prepared by using	
	different solvents: (a) EG, (b) EtOH, and (c) an EtOH/EG	
	mixture (EtOH-to-EG volumetric ratio of 0.1:1)	61
4.2	XRD patterns of the synthesized SrTiO ₃ (a calcination	
	temperature of 700°C, a heating rate of 1°C min ⁻¹ , and	
	a TIPT-to-LAHC molar ratio of 1:0.25) prepared with	
	different solvents: EtOH, EG, and an EtOH/EG mixture	
	(EtOH-to-EG volumetric ratio of 0.1:1), as compared to	
	the commercial SrTiO ₃ (Wako)	63
4.3	XRD patterns of the synthesized SrTiO ₃ (EtOH as a solvent,	
	a calcination temperature of 700°C, a heating rate of	
	1°C min ⁻¹ , and a surfactant-to-TIPT molar ratio of 0.25:1)	
	using different surfactants: LAHC, CTAB, and CTAC,	
	as compared to the commercial SrTiO ₃ (Wako)	64
4.4	XRD patterns of the synthesized SrTiO ₃ (EtOH as a solvent,	
	a heating rate of 1°C min ⁻¹ , and a LAHC-to-TIPT	
	of 0.25:1) calcined at different calcination temperatures	65
4.5	N ₂ adsorption-desorption isotherms, specific surface area,	
	and pore size distributions of (a) the commercial $SrTiO_3$	
	(Wako), and the synthesized SrTiO ₃ (a calcination	
	temperature of 700°C, a heating rate of 1°C min ⁻¹ ,	
	and a LAHC-to-TIPT molar ratio of 0.25:1) using different	
	solvents: (b) EG, (c) EtOH, and (d) an EtOH/EG mixture	66

xiii

•••

÷

PAGE

FIGURE

4.6	N ₂ adsorption-desorption isotherms, specific surface area,	
	and pore size distributions of (a) the commercial $SrTiO_3$	
	(Wako), and the synthesized $SrTiO_3$ (EtOH as a solvent,	
	a calcinations temperature of 700°C, a heating rate of	
	1°C min ⁻¹ , and a surfactant-to-TIPT molar ratio of 0.25:1)	
	using different surfactants: (b) LAHC, (c) CTAB, and (d)	
	CTAC	67
4.7	The plot between $F(R)$ and λ of the SrTiO ₃ samples (EtOH	
	as a solvent, a calcination temperature of 700°C, a heating	
	rate of 1°C min ⁻¹ , and a surfactant-to-TIPT molar ratio of	
	0.25:1) synthesized with different surfactants: LAHC,	
	CTAB, and CTAC, as compared to the commercial $SrTiO_3$	
	(Wako)	69
4.8	(a) Pore size distribution and (b) specific surface area of	
	the SrTiO ₃ samples prepared with different LAHC-to-TIPT	
	molar ratios using EtOH as a solvent, 700°C calcination	
	temperature, and 1°C min ⁻¹ heating rate	71
4.9	Plot between $F(R)$ and λ of the SrTiO ₃ samples (EtOH	
	as a solvent, a calcination temperature of 700°C, and	
	a heating rate of 1°C min ⁻¹) prepared with different	
	LAHC-to-TIPT molar ratios, as compared to commercial	
	SrTiO ₃ (Wako)	72
4.10	TEM images of (a) the commercial SrTiO ₃ (Wako), and	
	the synthesized SrTiO ₃ (EtOH as a solvent, a heating rate of	
	1°C min ⁻¹ , and a LAHC-to-TIPT molar ratio of 0.25:1)	
	calcined at different calcination temperatures: (b) 600°C,	
	(c) 650°C, and (d) 700°C	74

FIGURE

4.11	(a) Time course of the percentage of methyl orange	
	degradation over the synthesized SrTiO ₃ photocatalysts	
	and (b) the specific surface area and the pseudo-first-rate	
	constant of the synthesized SrTiO ₃ photocatalysts,	
	as compared to the commercial $SrTiO_3$ (Wako).	
	The synthesized $SrTiO_3$ photocatalysts were prepared under	
	the optimum conditions (EtOH as a solvent, a heating rate	
	of 1°C min ⁻¹ , and a LAHC-to-TIPT molar ratio of 0.25:1)	
	at different calcination temperatures	76
4.12	(a) Time course of the percentage of methyl orange	
	degradation over the synthesized SrTiO ₃ photocatalysts	
	and (b) the specific surface area and the pseudo-first-rate	
	constant of the synthesized SrTiO ₃ photocatalysts,	
	as compared to the commercial SrTiO ₃ (Wako).	
	The synthesized $SrTiO_3$ photocatalysts were prepared under	
	the optimum conditions (EtOH as a solvent, a calcination	
	temperature of 700°C, and a heating rate of 1°C min ⁻¹)	
	at different LAHC-to-TIPT molar ratios	78
5.1	XRD patterns of the SrTiO ₃ photocatalysts	90
5.2	TEM images of the $SrTiO_3$ photocatalysts: (a) commercial	
	SrTiO ₃ , (b) pristine SrTiO ₃ , (c) 0.5 wt.% Pt-loaded SrTiO ₃ ,	
	and HRTEM images of the 0.5 wt.% Pt-loaded $SrTiO_3$ to	
	show (d) d spacing of $SrTiO_3$ (110) and (e) d spacing of Pt^0	
	(111)	91
5.3	N ₂ adsorption-desorption isotherm and pore size distribution	
	(inset) of (a) the pristine mesoporous-assembled $SrTiO_3$	
	photocatalyst, (b) the 0.5 wt.% Pt-loaded SrTiO ₃ , and (c) the	
	commercial SrTiO ₃	93

PAGE

FIGU	RE	PAGE
5.4	Aggregated particle size distributions of the commercial	
	$SrTiO_3$ and the mesoporous-assembled $SrTiO_3$	
	photocatalysts: pristine $SrTiO_3$ and 0.5 wt.% Pt-loaded	
	SrTiO ₃	94
5.5	Deconvoluted Pt4f XPS spectra of the 0.5 wt.% Pt-loaded	
	SrTiO ₃ photocatalyst	94
5.6	Plot of (a) reflectance and (b) F(r) as a function of	
	wavelength of the commercial $SrTiO_3$ and the mesoporous-	
	assembled $SrTiO_3$ photocatalysts: pristine $SrTiO_3$ and 0.5	
	wt.% Pt-loaded SrTiO ₃	95
5.7	Dependence of H ₂ production rate over the 0.5 wt.% Pt-	
	loaded SrTiO ₃ photocatalyst under UV irradiation on type	
	and concentration of hole scavengers (studied conditions: 5	
	h irradiation time, 500 ml of aqueous solution, 0.5 g of	
	photocatalyst, reaction temperature of 15°C)	96
5.8	Effects of the reactant system, the presence of a	
	photocatalyst, and the reaction temperature on H_2 production	
	(the overall rate of reaction at 5 h, 500 ml of solution, 0.5 g	
	of 0.5 wt. % Pt-loaded $SrTiO_3$ photocatalyst, and UV	
	irradiation). Note: the units of the H_2 production rate is μ mol	
	h^{-1} or μ mol h^{-1} g_{cat}^{-1} in the case of no photocatalyst addition	
	and in the case of photocatalyst addition, respectively	97
5.9	H_2 production rate under UV and visible light irradiation as a	
	function of Pt loading over the synthesized SrTiO ₃ (studied	
	conditions: 5 h irradiation time, 500 ml of 50 vol.% MeOH	
	aqueous solution, 0.5 g of photocatalyst, reaction	
	temperatures of 45°C for UV irradiation and 30°C for visible	
	light irradiation)	99

FIGURE		PAGE
5.10	Dependences of H_2 production rate (a), H_2 production	
	enhancement by MeOH (b), and apparent activation energy	
	(\hat{E}_a) of the photocatalytic water splitting reaction (c) on the	
	MeOH concentration and reaction temperature (studied	
	conditions: 5 h irradiation time, 500 ml of solution, 0.5 g of	
	0.5 wt.% Pt-loaded SrTiO ₃ photocatalyst, and UV	
	irradiation)	103
5.11	Time course of (a) accumulative H_2 production and (b)	
	instantaneous H_2 production rate over the 0.5 wt.% Pt-	
	loaded $SrTiO_3$ photocatalyst under UV irradiation (studied	
	conditions: 500 ml of 50 vol.% MeOH aqueous solution, 0.5	
	g of photocatalyst, and a reaction temperature of 45°C)	105
5.12	Time course of H_2 production over the fresh and spent 0.5	
	wt.% Pt-loaded $SrTiO_3$ photocatalyst under UV irradiation	
	(studied conditions: 500 ml of 50 vol.% MeOH aqueous	
	solution, 0.5 g of photocatalyst, and a reaction temperature	
	of 45°C)	106
6.1	XRD patterns of the pristine and the 0.5 wt.% metal-loaded	
	SrTiO ₃ photocatalysts	118
6.2	Plot of the Kabelka–Munk function (F(r)) as a function of	
	wavelength of the pristine and the 0.5 wt.% metal-loaded	
	SrTiO ₃ photocatalysts	121
6.3	N_2 adsorption-desorption isotherms of the pristine and the	
	0.5 wt.% metal-loaded SrTiO3 photocatalysts: (a) unloaded,	
	(b) Au, (c) Pt, (d) Ni, (e) Ag, (f) Ce, and (g) Fe	122

FIGURE		PAGE
6.4	Dependence of H_2 production efficiency under (a) UV light	
	irradiation and (b) visible light irradiation on type and	
	quantity of metal loading (system conditions: 5 h irradiation	
	time, 500 (UV) and 200 (visible) cm ³ of a 50 vol.% MeOH	
	aqueous solution, and photocatalyst weight of 0.5(UV) and	
	0.2 (visible) g)	124
6.5	Dependence of H_2 production efficiency on (a) photocatalyst	
	dosage (system conditions: 5 h irradiation time, 200 cm ³ of a	
	50 vol.% MeOH aqueous solution, photocatalyst weight of	
	0.1-1.5 g, 1 wt.% Au-loaded SrTiO ₃ photocatalyst, and	
	visible light irradiation) and (b) gas phase-to-liquid phase	
	volumetric ratio (system conditions: 5 h irradiation time, 50	
	vol.% MeOH aqueous solution, photocatalyst dosage of	
	1×10^{-3} g cm ⁻³ , photocatalyst weight of 0.05-0.6 g, 1 wt.%	
	Au-loaded $SrTiO_3$ photocatalyst, and UV light irradiation)	127
7.1	XRD pattern of the 1 wt.% Au-loaded mesoporous-	
	assembled SrTiO ₃ photocatalyst	142
7.2	TEM image of the 1 wt.% Au-loaded mesoporous-	
	assembled SrTiO ₃ photocatalyst.	142
7.3	N_2 adsorption-desorption isotherms (a) and pore size	
	distribution (b) of the 1 wt.% Au-loaded mesoporous-	
	assembled SrTiO ₃ photocatalyst.	143
7.4	Dependence of specific H_2 production rate on type and	
	concentration of the hole scavengers (system conditions: 5 h	
	irradiation time, 200 cm ³ of aqueous hole scavenger	
	solution, 0.2 g of 1 wt.% Au-loaded mesoporous-assembled	
	SrTiO ₃ photocatalyst, and 45°C reaction temperature)	145

FIGURE

.

7.5 Dependence of specific H₂ production rate on initial solution pH value of the hole scavenger aqueous solution (system conditions: 5 h irradiation time, 200 cm³ of aqueous hole scavenger solution, 2.5 vol.% of hole scavenger concentration, 0.2 g of 1 wt.% Au-loaded mesoporous-assembled SrTiO₃ photocatalyst, and 45°C reaction temperature)

147

PAGE