REFERENCES

- Bahr, M.V., Tiberg, F., and Zhmud, B.V. (1999). Spreading Dynamics of Surfactant Solutions. <u>Langmuir</u> 15(20), 7069-7075.
- Bernett, M.K., and Zisman, W.A. (1959a). Relation of Wettability by Aqueous Solutions to the Surface Constitution of Low-energy Solids. <u>The Journal of</u> Physical Chemistry 63(8), 1241-1246.
- Bernett, M.K., and Zisman, W.A. (1959b). Wetting of Low-Energy Solids by Aqueous Solutions of Highly Fluorinated Acids and Salts. <u>The Journal of</u> <u>Physical Chemistry</u> 63(11), 1911-1916.
- Cox, M. (1989). Effect of alkyl carbon chain length and ethylene oxide content on the performance of linear alcohol ethoxylates. <u>Journal of the American Oil</u> <u>Chemists' Society</u> 66(3), 367-374.
- Ellison, A.H., and Zisman, W.A. (1954). Wettability Studies on Nylon, Polyethylene Terephthalate and Polystyrene. <u>The Journal of Physical</u> <u>Chemistry 58(6), 503-506</u>.
- Erbil, H.Y. (1997). <u>Handbook of Surface and Colloid Chemistry</u> New York: CRC Press LLC.
- Fox, H.W., and Zisman, W.A. (1950). The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. <u>Journal of Colloid Science</u> 5(6), 514-531.
- Gau, C.S., and Zografi, G. (1990). Relationships between adsorption and wetting of surfactant solutions. Journal of Colloid and Interface Science 140(1), 1-9.
- Genova, C., Schoenkaes, U., Smith, D., and Stolz, M. (2003). Effect of hydrophobe structure on performance of alcohol ethoxylates. Journal of Surfactants and <u>Detergents</u> 6(4), 365-372.
- González-García, C.M., González-Martín, M.L., Gómez-Serrano, V., Bruque, J.M., and Labajos-Broncano, L. (2001). Analysis of the adsorption isotherms of a non-ionic surfactant from aqueous solution onto activated carbons. <u>Carbon</u> 39(6), 849-855.
- González-García, C.M., González-Martín, M.L., González, J.F., Sabio, E., Ramiro, A., and Gañán, J. (2004). Nonionic surfactants adsorption onto activated

carbon. Influence of the polar chain length. <u>Powder Technology</u> 148(1), 32-37.

- Grant, L.M., Ederth, T., and Tiberg, F. (2000). Influence of Surface Hydrophobicity on the Layer Properties of Adsorbed Nonionic Surfactants. <u>Langmuir</u> 16(5), 2285-2291.
- Gurses, A., Yalcin, M., Sozbilir, M., and Dogar, C. (2003). The investigation of adsorption thermodynamics and mechanism of a cationic surfactant, CTAB, onto powdered active carbon. Fuel Processing Technology 81(1), 57-66.
- Hama, I., Sakaki, M., and Sasamoto, H. (1997a). Effects of ethoxylate structure on surfactant properties of ethoxylated fatty methyl esters. <u>Journal of the</u> American Oil Chemists' Society 74(7), 823-827.
- Hama, I., Sakaki, M., and Sasamoto, H. (1997b). Nonionic surfactant properties of methoxypolyoxyethylene dodecanoate compared with polyoxyethylene dodecylether. <u>Journal of the American Oil Chemists' Society</u> 74(7), 829-835.
- Hoeft, C.E., and Zollars, R.L. (1996). Adsorption of Single Anionic Surfactants on Hydrophobic Surfaces. <u>Journal of Colloid and Interface Science</u> 177(1), 171-178.
- Jaczuk, B., Zdziennicka, A., and Wjcik, W. (1997). Relationship between wetting of teflon by cetyltrimethylammonium bromide solution and adsorption. European Polymer Journal 33(7), 1093-1098.
- Jirawatanaporn, S. (2009). Foaming Properties of Alcohol Ethoxylates Derived from Natural Products, M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Johnson, R.E., and Dettre, R.H. (1993). <u>Surfactant Science Series Volume 49:</u> <u>Wettability</u> New York: Marcel Dekker.
- Kosmulski, M. (2002). The pH-Dependent Surface Charging and the Points of Zero Charge. Journal of Colloid and Interface Science 253(1), 77-87.
- Kosmulski, M. (2004). pH-dependent surface charging and points of zero charge II. Update. Journal of Colloid and Interface Science 275(1), 214-224.
- Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge: III. Update. Journal of Colloid and Interface Science 298(2), 730-741.

- Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Colloid and Interface Science 337(2), 439-448.
- Kronberg, B., Stenius, P., and Igeborn, G. (1984a). The effect of surface polarity on the adsorption of nonionic surfactants. II. Adsorption on poly(methyl methacrylate) latex. Journal of Colloid and Interface Science 102(2), 418-423.
- Kronberg, B., Stenius, P., and Thorssell, Y. (1984b). Adsorption of nonylphenol-poly(propylene oxide)--poly(ethylene oxide) nonionic surfactants on polystyrene latex. <u>Colloids and Surfaces</u> 12(1-2), 113-123.
- Luangpirom, N., Dechabumphen, N., Saiwan, C., and Scamehorn, J. (2001). Contact angle of surfactant solutions on precipitated surfactant surfaces. Journal of Surfactants and Detergents 4(4), 367-373.
- Mecrit, N. (2005). Surfactant Adsorption on Polymer Surfaces, M.S. Thesis in Petroleum Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Norling, B.K., and Brukl, C.E. (1986). Surface wettability modification of poly(vinyl siloxanes) with nonionic surfactants. <u>Colloids and Surfaces</u> 20(4), 277-288.
- Piispanen, P., Kjellin, U., Hedman, B., and Norin, T. (2003). Synthesis and surface measurements of surfactants derived from dehydroabietic acid. <u>Journal of</u> <u>Surfactants and Detergents</u> 6(2), 125-130.
- Piispanen, P., Persson, M., Claesson, P., and Norin, T. (2004). Surface properties of surfactants derived from natural products. Part 1: Syntheses and structure/property relationships—Solubility and emulsification. <u>Journal of</u> <u>Surfactants and Detergents</u> 7(2), 147-159.
- Puttharak, A. (2006). Surfactant Adsorption on Hydrophobic Surfaces, M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Romero-Cano, M.S., Martín-Rodríguez, A., Chauveteau, G., and de las Nieves, F.J. (1998). Colloidal Stabilization of Polystyrene Particles by Adsorption of

Nonionic Surfactants: I. Adsorption Study. <u>Journal of Colloid and Interface</u> <u>Science</u> 198(2), 266-272.

- Rosen, M.J. (2004). <u>Surfactant and interfacial phenomena</u> Hoboken, New Jersey: John Wiley & Sons, Inc.
- Satkowski, W.B., Huang, S.K., and Liss, R.L. (1967). <u>Polyoxyethylene Alcohol, in</u> <u>Nonionic Surfactants; Schick M.J. (Ed)</u> New Jersey: Edward Arnold.
- Scales, P.J., Grieser, F., Furlong, D.N., and Healy, T.W. (1986). Contact angle changes for hydrophobic and hydrophilic surfaces induced by nonionic surfactants. <u>Colloids and Surfaces</u> 21, 55-68.
- Shibata, J., Matsumoto, S., Yamamoto, H., Kusaka, E., and Pradip. (1996). Flotation separation of plastics using selective depressants. <u>International</u> <u>Journal of Mineral Processing</u> 48(3-4), 127-134.
- Stoebe, T., Lin, Z., Hill, R.M., Ward, M.D., and Davis, H.T. (1996). Surfactant-Enhanced Spreading. Langmuir 12(2), 337-344.
- Supalasate, P. (2004). Surfactant Adsorption on Plastic Surfaces and its Relation to Wetting Phenomena, M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Svitova, T., Hill, R.M., and Radke, C.J. (2001). Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite. <u>Colloids</u> <u>and Surfaces A: Physicochemical and Engineering Aspects</u> 183-185, 607-620.
- Szymczyk, K., and Janczuk, B. (2006). The wettability of polytetrafluoroethylene by aqueous solution of cetyltrimethylammonium bromide and Triton X-100 mixtures. Journal of Colloid and Interface Science 303(1), 319-325.
- Szymczyk, K., and Janczuk, B. (2008). Wettability of a Glass Surface in the Presence of Two Nonionic Surfactant Mixtures. <u>Langmuir</u> 24(15), 7755-7760.
- Szymczyk, K., Zdziennicka, A., Janczuk, B., and Wójcik, W. (2005). The properties of mixtures of two cationic surfactants in water at water/air interface. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u> 264(1-3), 147-156.

- Szymczyk, K., Zdziennicka, A., Janczuk, B., and Wójcik, W. (2006). The wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solution of two cationic surfactants mixture. <u>Journal of Colloid and Interface Science</u> 293(1), 172-180.
- Thongpae, B. (2008). Correlation of Surfactant Adsorption and Wettability on Hydrophobic Surfaces: Mixed Cationic and Nonionic Surfactant Systems, M.S. Thesis in Petrochemical Technology, The Petroleum and Petrochemical College, Chulalongkorn University.
- Varadaraj, R., Bock, J., Brons, N., and Zushma, S. (1994). Influence of Surfactant Structure on Wettability Modification of Hydrophobic Granular Surfaces. <u>Journal of Colloid and Interface Science</u> 167(1), 207-210.
- Varadaraj, R., Bock, J., Zushma, S., Brons, N., and Colletti, T. (1991). Effect of hydrocarbon chain branching on interfacial properties of monodisperse ethoxylated alcohol surfactants. <u>Journal of Colloid and Interface Science</u> 147(2), 387-395.

APPENDICES

Appendix A Experimental Data of Critical Micelle Concentration (CMC)

1. Average Liquid/Vapor Surface Tension (γ_{LV}) of Single AEs, NPE-9, and MES System for CMC Calculation

Table A1 Average Liquid/Vapor surface tension (γ_{LV}) (mN/m) as a function of concentration of C₁₂₋₁₄EO₅, C₁₂₋₁₄EO₇, C₁₂₋₁₄EO₈, C₁₂₋₁₄EO₉, and NPE-9 single system at 30 °C

Conc	EC)5	EC)7	E	08	EC)9	NP	E-9
(%w/v)	μΜ	γιν	μΜ	γlv	μM	γlv	μΜ	γιν	μM	γιν
0.0002	5	59.7	4	54.6	4	58.9	3	57.1	3	52.6
0.0003	7	49.2	6	51.0	6	53.0	5	55.0	5	49.0
0.0004	10	45.0	8	50.6	7	49.6	7	53.3	6	47.2
0.0005	12	42.0	10	47.8	9	45.6	9	50.8	8	47.0
0.0006	15	37.8	12	43.8	11	45.4	10	48.2	10	44.9
0.0007	17	36.3	14	39.0	13	41.7	12	47.7	11	43.6
0.0008	20	35.4	16	37.0	15	38.7	14	46.3	13	43.0
0.0009	22	33.0	18	35.0	17	37.0	16	43.4	15	42.2
0.001	25	31.8	20	34.1	19	36.4	17	40.5	16	41.1
0.002	50	28.3	40	30.1	37	33.0	35	35.0	32	36.1
0.003	74	28.0	60	30.0	56	31.7	52	33.2	49	33.0
0.004	99	27.8	81	29.8	74	30.8	69	31.8	65	31.1
0.006	149	27.7	121	29.6	111	30.1	104	31.8	97	31.0
0.008	198	27.5	161	29.5	149	29.7	138	32.7	130	31.1
0.01	248	27.5	201	29.4	186	30.0	173	32.4	162	31.3
0.02	496	27.4	403	29.5	371	30.1	346	32.4	325	31.3
0.04	991	27.4	806	29.0	743	29.8	692	32.2	649	31.2
0.06	1487	27.2	1209	29.1	1114	29.8	1037	32.2	974	31.2
0.08	1982	27.1	1611	28.7	1486	29.7	1383	32.2	1299	31.2
0.1	2478	27.2	2014	28.8	1857	29.7	1729	32.3	1623	31.2

Conc	N	1ES
(%w/v)	μM	γιν
0.0005	13	50.9
0.001	26	46.7
0.002	52	42.3
0.004	105	39.5
0.006	- 157	38.4
0.008	209	38.8
0.01	261	38.7
0.012	314	39.3
0.014	366	39.1
0.016	418	39.1
0.018	470	39.1
0.02	523	39.2
0.04	1045	39.2
0.06	1568	39.1
0.08	2090	39.0
0.1	2613	39.0

 $\label{eq:constraint} \begin{array}{l} \textbf{Table A2} \mbox{ Average Liquid/Vapor surface tension } (\gamma_{LV}) \mbox{ as a function of concentration} \\ \mbox{ of Methyl Ester Sulfonate single system at } 30^{\circ} \mbox{C} \end{array}$

	EO5								
Initial	Conc	I	PTFE		PVC		PMMA		
C _i (%w/v)	С _і (µМ)	С _г (µМ)	Ads (μmol/m ²)	С _г (µМ)	Ads (µmol/m²)	C _f (μM)	Ads (µmol/m ²)		
0.0003	7	5	0.011	5	0.062	7	0.010		
0.0005	12	6	0.035	8	0.119	9	0.157		
0.0007	17	9	0.046	12	0.133	11	0.258		
0.0009	22	11	0.061	14	0.207	12	0.415		
0.001	25	7	0.100	17	0.205	14	0.453		
0.002	50	14	0.201	28	0.540	21	1.230		
0.003	74	26	0.252 ·	41	0.884	30	1.803		
0.004	99	27	0.377	54	1.183	37	2.568		
0.006	149	31	0.624	92	1.470	81	2.814		
0.008	198	41	0.857	144	1.424	133	2.716		
0.01	248	55	1.062	179	1.746	182	2.750		
0.04	991	762	1.248	925	1.796	922	2.839		
0.1	2478	2256	1.219	2413	1.658	2407	2.850		

Appendix B	Adsorption	Isotherm	of	Surfactant Solution

 Table B1 Adsorption Isotherm on polymer powders of C12-14EO5

	EO7								
Initial Conc		ł	PTFE	PVC		PMMA			
C _i (%w/v)	С _і (µМ)	C _f (μM)	Ads (μmol/m ²)	С _f (µМ)	Ads (μmol/m ²)	C _f (μM)	Ads $(\mu mol/m^2)$		
0.0003	6	0	0.030	3	0.089	4	0.107		
0.0005	10	2	0.045	5	0.128	5	0.226		
0.0007	14	3	0.060	7	0.188		0.304		
0.0009	18	5	0.071	9	0.254	.8	0.422		
0.001	20	5	0.080	8	0.334	9	0.475		
0.002	40	17	0.133	21	0.522	19	0.895		
0.003	60	26	0.190	30	0.804	31	1.222		
0.004	81	34	0.254	40	1.100	49	1.265		
0.006	121	47	0.397	66	1.409	· 84	1.461		
0.008	161	55	0.584	116	1.211	114	1.933		
0.01	201	89	0.602	155	1.271	164	1.509		
0.04	806	665	0.747	757	1.333	754	2.169		
0.1	2014	1862	0.856	1962	1.352	1961	2.228		

Table B2 Adsorption Isotherm on polymer powders of $\mathrm{C}_{12\text{--}14}\mathrm{EO}_7$

	EO8							
Initial	Conc	I	PTFE		PVC	РММА		
C _i (%w/v)	С _і (µМ)	C _f (µM)	Ads (μmol/m ²)	С _f (µМ)	Ads (µmol/m ²)	C _f (μM)	Ads (µmol/m ²)	
0.0002	4	1	0.014	3	0.028	0	0.135	
0.0004	7	1	0.036	3	0.132	4	0.153	
0.0006	11	2	0.049	1	0.276	6	0.207	
0.0008	15	8	0.035	1	0.363	7	0.327	
0.001	19	9	0.057	5	0.361	10	0.330	
0.002	37	19	0.096	16	0.589	18	0.791	
0.003	56	23	0.186	29	0.723	23	1.360	
0.004	74	29	0.249	44	0.775	32	1.733	
0.006	111	44	0.353	78	0.899	68	1.795	
0.008	149	61	0.476	114	0.944	103	1.902	
0.01	186	92	0.524	140	1.185	139	2.001	
0.04	743	611	0.759	695	1.262	691	2.102	
0.1	1857	1714	0.766	1811	1.271	1808	2.110	

Table B3 Adsorption Isotherm on polymer powders of $\mathrm{C}_{12\text{--}14}\mathrm{EO}_8$

	EO9							
Initial (Conc		PTFE	FE PVC		PMMA		
Ci (%w/v)	C _i (µM)	C _f (μΜ)	Ads (µmol/m ²)	C _f (µM)	Ads (µmol/m ²)	C _f (μM)	Ads (µmol/m²)	
0.0002	3	1	0.016	2	0.040	2	0.048	
0.0004	7	3	0.025	3	0.093	5	0.076	
0.0006	10	3	0.038	4	0.183	6	0.187	
0.0008	14	4	0.054	7	0.189	7	0.269	
0.001	17	5	0.065	7	0.264	10	0.303	
0.002	35	16	0.102	20	0.384	25	0.407	
0.003	52	25	0.152	29	0.585	34	0.748	
0.004	69	29	0.224	40	0.782	48	0.873	
0.006	104	45	0.319	67	0.973	76	1.152	
0.008	138	74	0.366	102	0.912	110	1.219	
0.01	173	98	0.414	134	1.016	146	1.151	
0.04	692	576	0.647	651	1.048	651	1.597	
0.1	1729	1598	0.725	1686	1.109	1688	1.621	

Table B4 Adsorption Isotherm on polymer powders of $C_{12-14}EO_9$

	NPE-9							
Initial	Conc		PTFE		PVC	PMMA		
C _i (%w/v)	C _i (µM)	C _f (µM)	Ads (µmol/m²)	С _f (µМ)	Ads (µmol/m ²)	C _f (μM)	Ads (µmol/m ²)	
0.0002	3	1	0.015	1	0.066	1	0.090	
0.0004	6	3	0.022	2	0.110	2	0.192	
0.0006	10	3	0.037	3	0.182	4	0.214	
0.0008	13	3	0.056	4	0.230	4	0.361	
0.001	16	4	0.066	5	0.284	7	0.367	
0.002	32	13	0.110	15	0.440	16	0.652	
0.003	49	18	0.172	32	0.430	22	1.149	
0.004	65	21	0.247	40	0.679	29	1.466	
0.006	97	29	0.374	65	0.841	44	2.260	
0.008	130	42	0.501	100	0.754	64	2.802	
0.01	162	61	0.566	131	0.815	98	2.726	
0.04	649	515	0.749	605	1.146	580	2.744	
0.1	1623	1487	0.753	1577	1.213	1553	2.795	

 Table B5 Adsorption Isotherm on polymer powders of NPE-9

	MES							
Initial	Conc		PTFE		PVC	РММА		
C _i (%w/v)	С _і (µМ)	C _f (μM)	Ads (µmol/m²)	С _f (µМ)	Ads (µmol/m²)	С _f (µМ)	Ads (µmol/m ²)	
0.0005	13	9	0.026	12	0.020	11	0.080	
0.001	26	22	0.026	24	0.048	23	0.132	
0.002	52	39	0.073	45	0.195	41	0.442	
0.004	105	73	0.170	88	0.447	81	0.993	
0.006	157	126	0.169	138	0.473	123	1.364	
0.008	209	165	0.242	181	0.762	175	1.425	
0.01	261	218	0.241	233	0.784	225	1.456	
0.012	314	269	0.252	284	0.788	283	1.249	
0.014	366	328	0.214	335	0.787	324	1.792	
0.016	418	394	0.135	392	0.700	386	1.381	
0.018	470	440	0.160	443	0.731	436	1.399	
0.02	523	484	0.214	497	0.680	493	1.207	
0.04	1045	1015	0.168	1023	0.599	1013	1.289	
0.06	1568	1540	0.156	1538	0.751	1533	1.400	
0.08	2090	2067	0.129	2063	0.725	2055	1.522	
0.1	2613	2585	0.156	2586	0.696	2582	1.312	

Table B6 Adsorption lsotherm on polymer powders of MES

EO5							
Conc		DTEE	PVC	DNANAA			
0⁄w/∨ -	μΜ		IVC	INNA			
0.0003	7	98.67	80.38	72.75			
0.0005	12	97.35	77.35	72.57			
0.0007	17	96.35	74.30	71.13			
0.0009	22	94.31	74.60	73.57			
0.001	25	92.05	75.03	72.07			
0.002	50	87.47	71.55	66.08			
0.003	74	79.50	67.90	63.05			
0.004	99	75.52	57.80	59.15			
0.006	149	57.80	49.14	59.18			
0.008	198	56.28	39.78	49.30			
0.01	248	49.14	39.96	37.80			
0.04	991	45.98	29.10	26.53			
0.1	2478	42.90	33.46	27.20			

Appendix C Contact Angle of Surfactant Solution

Table C1 Contact Angle on polymer surfaces of $C_{12-14}EO_5$

-

	EO7							
Cor	nc	PTFF	PVC	ΡΜΜΑ				
% W/V	μM	IIIL						
0.0003	6	100.79	80.14	81.85				
0.0005	10	100.12	80.15	80.70				
0.0007	14	97.98	74.33	79.92				
0.0009	18	95.70	74.75	78.13				
0.001	20	93.58	72.82	76.83				
0.002	40	87.35	69.51	73.33				
0.003	60	78.43	67.83	66.56				
0.004	81	72.38	57.86	59.10				
0.006	121	64.98	52.07	49.92				
0.008	161	60.20	51.05	41.02				
0.01	201	54.25	52.25	41.47				
0.04	806	51.73	39.15	31.05				
0.1	2014	47.17	36.28	27.65				

Table C2 Contact Angle on polymer surfaces of $C_{12-14}EO_7$

	EO8							
Cor	с	DTEE	DVC	ΔΝΛΝΛ Λ				
⁰⁄₀₩/∨	μM		IVC	FIVIIVIA				
0.0002	4	100.87	83.37	70.87				
0.0004	7	99.60	84.63	80.50				
0.0006	11	97.64	90.30	75.20				
0.0008	15	94.67	85.94	74.85				
0.001	19	93.43	83.23	73.12				
0.002	37	80.42	77.48	64.40				
0.003	56	79.53	76.44	65.45				
0.004	74	71.83	64.77	53.98				
0.006	111	63.25	65.20	51.48				
0.008	149	59.18	57.92	42.45				
0.01	186	58.03	49.55	41.83				
0.04	743	53.30	39.47	31.50				
0.1	1857	53.14	38.00	29.00				

Table C3 Contact Angle on polymer surfaces of $\mathrm{C}_{12\text{--}14}\mathrm{EO}_8$

The most as a factor

EO9				
Conc		PTEE	PVC	DNANA Δ
%w/v	μΜ			
0.0002	3	95.96	93.06	72.49
0.0004	7	101.06	77.51	73.33
0.0006	10	100.00	77.83	75.68
0.0008	14	96.84	75.85	73.76
0.001	17	95.20	75.13	73.80
0.002	35	86.60	73.70	67.84
0.003	52	80.86	70.22	66.27
0.004	69	71.43	64.08	62.97
0.006	104	60.93	56.10	55.30
0.008	138	63.18	52.23	48.53
0.01	173	57.78	45.28	48.03
0.04	692	57.80	35.75	35.77
0.1	1729	52.78	32.33	29.68

Table C4 Contact Angle on polymer surfaces of $C_{12-14}EO_9$

NPE-9				
Conc		DTEE	DVC	
%w/v	μΜ			ININA
0.0002	3	98.85	90.00	77.90
0.0004	6	100.84	78.98	75.47
0.0006	10	93.03	77.48	79.05
0.0008	13	98.10	79.98	79.78
0.001	16	94.68	83.43	79.00
0.002	32	83.30	66.65	71.03
0.003	49	72.87	63.63	71.28
0.004	65	66.55	61.53	63.76
0.006	97	60.54	58.50	53.57
0.008	130	53.42	46.06	42.00
0.01	162	53.00	46.00	38.00
0.04	649	54.10	47.00	37.00
0.1	1623	53.00	42.40	36.93

 Table C5 Contact Angle on polymer surfaces of NPE-9

MES				
Conc		DTEE	PVC	DNANAA
%w/v	μM		IVC	1 14114177
0.0005	13	98.43	84.44	78.87
0.001	26	98.40	80.90	75.56
0.002	52	98.03	81.71	73.01
0.004	105	97.60	79.72	74.27
0.006	157	94.46	80.72	72.60
0.008	209	90.10	75.88	69.53
0.01	1261	85.83	74.85	65.67
0.02	523	71.22	66.15	60.20
0.04	1045	71.10	67.20	56.25
0.06	-1568	71.50	63.72	55.83
0.08	2090	73.89	61.25	55.57
0.1	2613	73.12	60.10	55.12

 Table C6 Contact Angle on polymer surfaces of MES

Appendix D Example of Calculation for Surfactant Adsorption Isotherm

Adsorption for solution of C₁₂₋₁₄EO₅ on PMMA

$$Ads = \frac{C_i - C_f \times V_{sol}}{1000 \times W_{plastic} \times a_s}$$

where

Ads	=	Adsorption of Surfactant, (µmole/m ² plastic)
C_i	=	Initial Surfactant solution concentration, (μM)
C_f	=	Final Surfactant solution concentration, (µM)
V _{sol}	=	Volume of solution, (ml)
W _{plastic}	=	Weight of plastic, (g)
a_s	=	Specific surface area of plastic, (m ² /g)

The adsorption isotherm was a plot between adsorption of surfactant on PMMA (μ mole/m² PMMA) and concentration of surfactant solution (μ M)

Ci = 0.1 % w/v (or 2478 μ M)

Equilibrium concentration of surfactant was converted from

Total Organic Carbon analyzer (Carbon concentration) $\rightarrow \mu M$

Calibration equation for C₁₂₋₁₄EO₅ solution from Total Organic Carbon analyzer,

Y = 6361.7X

Where

 $X = C_{f} (\% w/v)$ Y = TOC (mg/l or ppm) = 579.2 mg/l

Substituting into calibration equation,

X = 579.2/6361.7 = 0.09 % w/v (or 2407 μ M)

Thus, surfactant adsorption for solution of $C_{12-14}EO_5$ on PMMA at 2478 μ M, initial concentration is

Ads =
$$\frac{(2478 - 2407) \times 20}{1000 \times 0.2575 \times 1.939}$$
 = 2.85 µmole/m² PMMA

CURRICULUM VITAE

Name:Mr. Yuttapong MahasittiwatDate of Birth:September 24, 1983Nationality:ThaiUniversity Education:2002-2006B.Sc. in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.