บทที่ 3 ผลการทดลอง

3.1 การสกัดน้ำมันเมล็ดแมงลัก

นำตัวอย่างเมล็ดแมงลักที่ทำความสะอาดแล้วทั้งหมดไปซั่งน้ำหนักได้ 2520 กรัม จากนั้น บีบอัดน้ำมันออกด้วยเครื่อง hydraulic press ใช้แรงในการบีบอัด 9 ตัน พบว่าไม่มีน้ำมันไหลลง ภาซนะที่รองรับ มีเพียงน้ำมันเยิ้มเล็กน้อยติดตามผิวเมล็ด เมื่อชั่งน้ำหนักเมล็ดหลังผ่านการบีบอัดได้ 2514.23 กรัม และมีการสูญเสียไปปริมาณ 0.23 % โดยน้ำหนัก ซึ่งส่วนที่เสียไปเป็นเมล็ดที่ตกขณะ บีบอัด เมล็ดที่ผ่านการบีบอัดน้ำมันแล้ว นำไปสกัดน้ำมันออกด้วย เฮกเซน แสดงวิธีการสกัดในวิธี การทดลองข้อ 2.4.1 ได้น้ำมัน 382.41 กรัม คิดเป็น 15.21 % โดยน้ำหนัก และเหลือเมล็ดหลัง การสกัดน้ำมันออกแล้ว 2168.92 กรัม น้ำมันที่ได้มีสีเหลืองใส ไม่มีกลิ่น มีตะกอนสีขาวเล็กน้อย แสดงลักษณะน้ำมันดังรูปที่ 3 - 1

รูปที่ 3 - 1 น้ำมันเมล็ดแมงลักสกัดด้วยเฮกเซน

3.2 สมบัติทางกายภาพและองค์ประกอบทางเคมีของเมล็ดแมงลักที่สกัดน้ำมันแล้ว

นำเมล็ดแมงลักที่สกัดน้ำมันออกแล้วจากการทดลองข้อ 3.1 มาศึกษาสมบัติทางกายภาพได้แก่ รูปร่าง ลักษณะ สี ขนาด น้ำหนัก ความหนาแน่น ความสามารถในการอัดตัวได้ ความ สามารถในการอุ้มน้ำและปริมาตรการพองตัวจำเพาะ ทำการทดลอง 4 ซ้ำ และวิเคราะห์องค์ ประกอบทางเคมี ได้แก่ ปริมาณโปรตีน เส้นใย เถ้า ความชื้น และคาร์โบไฮเดรต ตามวิธีข้อ 2.4.2 ทำการทดลอง 2 ซ้ำ แสดง รูปร่าง ลักษณะ สีของเมล็ด และการพองตัวของเมล็ดที่สกัดน้ำมันแล้วดัง รูปที่ 3 - 2 เทียบกับลักษณะเมล็ดและการพองตัวของเมล็ดที่ยังไม่สกัดน้ำมัน ดังรูปที่ 3 - 3 จะเห็นว่า สีของเมล็ดหลังการสกัดน้ำมัน เปลี่ยนไปเล็กน้อย คือเปลี่ยนเป็นสีน้ำตาลบางส่วน ไม่ดำสนิท เช่น เมล็ดที่ยังไม่สกัดน้ำมัน และรูปร่างของเมล็ดลีบเล็กลงเล็กน้อย แสดงสมบัติทางกายภาพและองค์ ประกอบทางเคมีของเมล็ดที่สกัดน้ำมันแล้ว ดังตารางที่ 3 - 1

รูปที่ 3 - 2 ลักษณะเมล็ดแมงลักและการพองตัวของเมล็ดแมงลักที่ยังไม่สกัดน้ำมัน

รูปที่ 3 - 3 ลักษณะเมล็ดแมงลักและการพองตัวของเมล็ดแมงลักที่สกัดน้ำมันออกแล้ว

35

สมบัติทางกายภาพและองค์ประกอบทางเคมี	X	±sd
ขนาด กว้าง (mm)	1	0
ยาว (mm)	2	0
น้ำหนัก(g/seed)	0.001	0
ความหนาแน่น bulk (g/ml)	0.74	0.012
tapped (g/ml)	0.80	0.011
true (g/ml)	0.90	0.014
ความสามารถในการถูกอัดได้ (%)	13.52	2.394
ความสามารถในการอุ้มน้ำ (g/g)	29.67	1.052
การพองตัว (ml/g)	43.75	2.5
ปริมาณโปรตีน (% d.b.)	18.79	0.781
ปริมาณเส้นใยหยาบ (% d.b.)	55.40	0.9
ปริมาณเถ้า (%d.b.)	5.72	0.091
ปริมาณความขึ้น (% d.b.)	8.15	0.218
ปริมาณคาร์โบไฮเดรต (% d.b.)	11.94	1.99

ตารางที่ 3 - 1 สมบัติทางกายภาพและองค์ประกอบทางเคมีของเมล็ดแมงลักที่สกัดน้ำมันแล้ว

3.3 สกัดสารเมือกจากเมล็ดแมงลักโดยการโม่แห้ง

3.3.1 สกัดสารเมือกจากเมล็ดแมงลักด้วยเครื่อง jet mill จำนวน 1 รอบ

ตัวอย่างเมล็ดแมงลักที่สกัดน้ำมันออกแล้ว นำมาสกัดสารเมือกออกโดย เครื่อง jet mill 1 รอบ โดยใช้ตัวอย่างเมล็ดแมงลัก 500 กรัม ป้อนเข้าเครื่องด้วยอัตราเร็วในการหมุนตัวป้อนสาร 900 รอบต่อนาที ใช้เวลาในการสกัด 10 นาที ทำการทดลอง 2 ซ้ำ จากนั้น แยกขนาดอนุภาคที่ ได้จากการสกัด ด้วย air jet sieve ขนาด 500 μ เพื่อแยกสารเมือกที่ถูกสกัดเป็นอนุภาค ละเอียด (fine particle) ออกจากส่วนของเมล็ดที่เหลือเป็นอนุภาคหยาบ (coarse particle) แสดงขั้นตอนการทดลองดังรูปที่ 2 - 7 คำนวณปริมาณอนุภาคที่ได้และสูญเสียจากการสกัด และ การแยกขนาด เป็นเปอร์เซนต์โดยน้ำหนักตั้งต้น แสดงปริมาณที่ได้และสูญเสียจากการสกัดและแยก ขนาดในตารางที่ 3 - 2

อนุภาค	ปริมาณ (x) (% d.b.)	±sd
อนุภาคที่ได้หลังสกัด	81.76	14.98
อนุภาคที่สูญเสียหลังสกัด	18.24	14.98
อนุภาคค้างตะแกรง 500 μ	71.72	12.16
อนุภาคผ่านตะแกรง 500 μ	9.88	2.94
อนุภาคที่สูญเสียหลังแยกขนาด	0.17	0.12

ตารางที่ 3 - 2 ปริมาณมวลอนุภาคต่าง ๆ ที่ได้ และสูญเสียจากการสกัดสารเมือกด้วย jet mill จำนวน 1 รอบ และแยกขนาดด้วย air jet sieve 500 µ

จากผลการทดลองจะเห็นว่า ปริมาณการสูญเสียจากการสกัดมีค่าสูงมาก คือ 18.24%d.b. และได้อนุภาคละเอียด ซึ่งคาดว่าเป็นสารเมือกปริมาณน้อย อาจเนื่องจากใช้เวลาในการสกัดน้อย เกินไปทำให้มีอนุภาคค้างอยู่ในเครื่อง เมื่อทดลองนำอนุภาคค้างตะแกรง และผ่านตะแกรง 500 µ ที่ได้จากการสกัด มาทดลองศึกษาความสามารถในการอุ้มน้ำ ตามวิธีการทดลองข้อ 2.4.2.5 พบว่า อนุภาคทั้งสองมีความสามารถในการอุ้มน้ำเป็น 36.96 และ 32.80 g/g ตามลำดับ ซึ่งเมื่อเปรียบ เทียบกับค่าความสามารถในการอุ้มน้ำของเมล็ดที่ยังไม่ผ่านการสกัด ในการทดลองข้อ 3.2 ที่มีค่า ความสามารถในการอุ้มน้ำของเมล็ดที่ยังไม่ผ่านการสกัด ในการทดลองข้อ 3.2 ที่มีค่า ความสามารถในการอุ้มน้ำเป็น 29.67 g/g จะเห็นว่า อนุภาคหยาบยังมีความสามารถในการอุ้มน้ำ สูงอยู่ และอนุภาคละเอียดมีความสามารถในการอุ้มน้ำค่อนข้างต่ำ เมื่อเทียบกับความสามารถใน การอุ้มน้ำของเมล็ดที่ยังไม่ถูกสกัดสารเมือก

3.3.2 สกัดสารเมือกจากเมล็ดแมงลักด้วยเครื่อง jet mill จำนวน 5 รอบ

เพื่อแก้ปัญหาที่พบดังผลการทดลอง ข้อ 3.3.1 การทดลองนี้จึงทำการสกัดสารเมือก ด้วย jet mill จำนวน 5 รอบ เพื่อที่จะพยายามสกัดสารเมือกออกจากส่วนของเมล็ดให้มากที่สุด และมีสารเมือกเหลือติดเมล็ดน้อยที่สุด และเพิ่มระยะเวลาในการสกัด จากเดิม 10 นาที เป็น 15 นาที เพื่อลดการสูญเสียที่เกิดขึ้นจากการสกัด แต่ใช้ความเร็วในการหมุนตัวป้อนสารเท่าเดิม คือ 900 รอบ ต่อนาที จากนั้นนำอนุภาคที่ได้จากการสกัดมาแยกขนาดด้วย air jet sieve ขนาด 500, 200 และ 100 μ แสดงขั้นตอนการทดลองดังรูปที่ 2 - 7 โดยมีจุดประสงค์เพื่อคัดแยกองค์ประกอบที่เป็น สารเมือกออกจากองค์ประกอบอื่น ๆ ของเมล็ด อนุภาคที่ได้จากการสกัดและแยกขนาด นำมาชั่ง น้ำหนักและคำนวณปริมาณที่ได้และสูญเสียเป็น เปอร์เซนต์ โดยน้ำหนักตั้งต้น แสดงปริมาณที่ได้จาก การสกัดและแยกขนาด ในตารางที่ 3 - 3 จากตาราง ที่ 3 - 3 พบว่า ปริมาณอนุภาคค้างตะแกรง 500 μ ที่เหลือหลังผ่านการสกัดครบ 5 รอบ เป็น 39.22 % d.b. และ ปริมาณอนุภาคค้างตะแกรง 500 μ ทั้งหมด ที่ได้จากการสกัดครบ 5 รอบ เป็น 39.22 % d.b. ดังนั้น ปริมาณอนุภาคผ่านตะแกรง 500 μ ทั้งหมด ที่ได้จากการสกัดครบ 5 รอบ เป็น 45.25 % d.b. ดังนั้น ปริมาณอนุภาคที่สูญเสีย จากการโม่ 5 รอบและแยกขนาดด้วยตะแกรง 500 μ คือ 15.53 % d.b. ปริมาณอนุภาคที่สูญเสีย จากการโม่ 5 รอบและแยกขนาดด้วยตะแกรง 500 μ เมื่อสกัดครบ 5 รอบ เป็น 18.23 % d.b. จากปริมาณอนุภาคผ่าน ตะแกรง 500 μ ทั้งหมดที่นำมาแยกขนาด 45.25 % d.b. ดังนั้น ปริมาณอนุภาคที่สูญเสีย จากการโม 5 รอบและแกรง 200 μ เมื่อสกัดครบ 5 รอบ เป็น 18.23 % d.b. จากปริมาณอนุภาคผ่าน ตะแกรง 500 μ ทั้งหมดที่นำมาแยกขนาด 45.25 % d.b. ดังนั้น ปริมาณอนุภาคที่สูญเสีย อนุภาคผ่านตะแกรง 200 μ เมื่อสกัดครบ 5 รอบ เป็น 18.23 % d.b. จากปริมาณอนุภาคผ่าน

ปริมาณอนุภาคผ่านตะแกรง 200 μ แต่ค้างตะแกรง 100 μ เมื่อสกัดครบ 5 รอบ เป็น8.41 % d.b. และปริมาณอนุภาคผ่านตะแกรง 100 μ เมื่อสกัดครบ 5 รอบ เป็น 8.31% d.b. จากปริมาณอนุภาคผ่านตะแกรง 200 μ ทั้งหมดที่นำมาแยกขนาด 18.23 % d.b. ดังนั้น ปริมาณอนุภาคที่สูญเสียไปจากการแยกขนาดด้วยตะแกรงขนาด 100 μ เป็น 1.52 % d.b.

เพราะฉะนั้น ปริมาณอนุภาคที่สูญเสียทั้งหมดจากกระบวนการนี้ เป็น 19.15 %d.b. และ แยกขนาดอนุภาคได้ 4 ขนาด คือ ค้างตะแกรง 500 μ (p > 500 μ), ผ่านตะแกรง 500 μ แต่ค้างตะแกรง 200 μ (p 500 - 200 μ), ผ่านตะแกรง 200 μ แต่ค้างตะแกรง 100 μ (p 200 - 100 μ) และผ่านตะแกรง 100 μ (p < 100 μ) แสดงปริมาณรวมของอนุภาคขนาด ต่าง ๆ และอนุภาคสูญเสียใน ตาราง ที่ 3 - 4 และแสดงการกระจายขนาดอนุภาค ดังรูปที่ 3 - 4

อนุภาค	รอบที่ 1		รอบที่ 2		รอบ	รอบที่ 3		รอบที่ 4		รอบที่ 5	
0	X(%d.b.)	± SD	X(%d.b.)	± SD	X(%d.b.)	±SD	x(%d.b.)	± SD	x(%d.b.)	±SD	
ปริมาณที่ได้หลังโม่	85.01	12	77.64	15.34	61.69	17	38.10	19.11	44.69	20.74	
ค้างตะแกรงขนาด 500 บ	76.16	11.53	62.60	16.47	52.27	18.13	45.32	18.47	39.22	18.75	
ผ่านตะแกรงขนาด 500 บ	8.83	2.76	15.09	1.99	9.62	1.28	6.17	0.79	5.54	2.18	
ผ่านตะแกรงขนาด 500 บ แต่	4.29	1.71	8.10	0.34	5.54	0.39	3.60	0.99	3.34	1.36	
ค้างตะแกรงขนาด 200 บ											
ผ่านตะแกรงขนาด 200 บ	4.15	1.18	6.43	0.68	3.79	0.44	2.15	0.61	1.80	0.86	
ผ่านตะแกรงขนาด 200 u แต่	1.82	0.84	2.88	0.3	1.73	0.41	1.04	0.3	0.94	0.5	
ค้างตะแกรงขนาด 100 u											
ผ่านตะแกรงขนาด 100 u	2.09	0.56	2.97	0.3	1.66	0.3	0.92	0.11	0.68	0.18	

ตารางที่ 3 - 3 ปริมาณมวลอนุภาคต่าง ๆ ที่ได้จากการสกัดสารเมือกด้วย jet mill จำนวน 5 รอบ และ แยกขนาดด้วย air jet sieve 500 , 200 และ 100 μ

ตารางที	3 - 4	ปริมาณรวมของอนุภาคขนาดต่าง ๆ	และอนุภาคสูญเสีย	จากการสกัดด้วย
		jet mill จำนวน 5 รอบ		

อนุภาค	ปริมาณ (%d.b.)
ค้างตะแกรง 500 µ	39.22
ผ่านตะแกรง 500 μ แต่ ค้างตะแกรง 200 μ	24.91
ผ่านตะแกรง 200 μ แต่ ค้างตะแกรง 100 μ	8.41
ผ่านตะแกรง 100 µ	8.31
สูญเสีย	19.15
รวม	100

รูปที่ 3 - 4 การกระจายขนาดอนุภาคที่ได้จากการสกัดด้วย jet mill จำนวน 5 รอบ

3.3.3 สกัดสารเมือกจากเมล็ดแมงลักด้วยเครื่อง attrition mill

ตัวอย่างเมล็ดแมงลักที่สกัดน้ำมันแล้ว 100 กรัม นำมาสกัดสารเมือกออกด้วย attrition mill ปรับระยะห่างระหว่าง disc เป็น 0.1 เซ็นติเมตร ทำการทดลอง 2 ซ้ำ จากนั้นแยก ขนาดอนุภาคที่ได้จากการสกัดด้วย air jet sieve ขนาด 500, 200 และ 100 μ แสดงขั้น ตอนการทดลองดังรูปที่ 2-9 ปริมาณอนุภาคต่าง ๆ ที่ได้จากกระบวนการ แสดงในตารางที่ 3-5

อนุภาค	ปริมาณ (x)	± sd
	(%d.b.)	
ค้างตะแกรงขนาด 500 μ	62.89	0.69
ผ่านตะแกรงขนาด 500 μ	36.71	0.79
ผ่านตะแกรงขนาด 500 μ แต่	26.43	0.79
ค้างตะแกรงขนาด 200 µ		
ผ่านตะแกรงขนาด 200 µ	8.26	0.74
ผ่านตะแกรงขนาด 200 µ แต่	4.02	0.06
ค้างตะแกรงขนาด 100 µ		
ผ่านตะแกรงขนาด 100 µ	3.92	0.70

ตารางที่ 3 - 5 ปริมาณมวลอนุภาคต่าง ๆ ที่ได้จากการสกัดด้วย attrition mill

จากตารางที่ 3 - 5 พบว่า ไม่มีการสูญเสียหลังสกัด และได้ปริมาณอนุภาคค้างตะแกรงขนาด 500 μ เป็น 62.89 % d.b. และปริมาณอนุภาคผ่านตะแกรง ขนาด 500 μ เป็น 36.71 % d.b. จากปริมาณอนุภาคที่นำมาแยกขนาดทั้งหมด 100.11 % d.b. ดังนั้น ปริมาณสูญเสียที่เกิดจากการ แยกขนาดด้วยตะแกรง 500 μ เป็น 0.51 % d.b. จากปริมาณอนุภาคผ่านตะแกรงขนาด 500 μ ที่ นำมาแยกขนาดด้วยตะแกรง 500 μ เป็น 0.51 % d.b. ได้ ปริมาณอนุภาคค้างตะแกรงขนาด 200 μ 8.26 % d.b. ดังนั้น ปริมาณสูญ เสียที่เกิดจากการ แยที่เกิดจากการแยกขนาดด้วยตะแกรง 200 μ เป็น 2.02 % d.b.

และจากปริมาณอนุภาคผ่านตะแกรงขนาด 200 μ ที่นำมาแยกขนาดด้วยตะแกรงขนาด 100 μ 8.26% d.b. ได้ปริมาณอนุภาคค้างตะแกรงขนาด 100 μ 4.02 % d.b. และปริมาณอนุภาค ผ่านตะแกรงขนาด 100 μ 3.92% d.b. ดังนั้น ปริมาณสูญเสียที่เกิดจากการแยกขนาดด้วยตะแกรง 100 μ เป็น 0.32 % d.b. เพราะฉะนั้น ปริมาณอนุภาคที่สูญเสียจากกระบวนการทั้งหมด เป็น 2.74 % d.b. และแยกขนาดอนุภาคได้ 4 ขนาด คือ ค้างตะแกรง 500 μ ($p > 500 \mu$), ผ่าน ตะแกรง 500 μ แต่ค้างตะแกรง 200 μ ($p 500 - 200 \mu$), ผ่านตะแกรง 200 μ แต่ค้าง ตะแกรง 100 μ ($p 200 - 100 \mu$) และผ่านตะแกรง 100 μ ($p < 100 \mu$) ตาราง ที่ 3 - 6 แสดงปริมาณรวมอนุภาคขนาดต่าง ๆ และปริมาณสูญเสียจากกระบวนการสกัดด้วย attrition mill รูปที่ 3 - 5 แสดงการกระจายขนาดอนุภาคที่ได้จากกระบวนการสกัดด้วย attrition

ตารางที่ 3 - 6 ปริมาณรวมของอนุภาคขนาดต่าง ๆ และปริมาณสูญเสียจากการสกัดด้วย attrition mill

อนุภาค	ปริมาณ (% d.b.)
ค้างตะแกรง 500 μ	62.89
ผ่านตะแกรง 500 μ แต่ ค้างตะแกรง 200 μ	26.43
ผ่านตะแกรง 200 μ แต่ ค้างตะแกรง 100 μ	4.02
ผ่านตะแกรง 100 μ	3.92
ត្ត្ញត្រើម	2.75
ราม	100

รูปที่ 3 - 5 การกระจายขนาดอนุภาคที่ได้จากการสกัดด้วย attrition mill

3.4 สมบัติทางกายภาพและองค์ประกอบทางเคมีของอนุภาคขนาดต่าง ๆ ที่ได้ จากการสกัดแยก

จากการทดลองการสกัดสารเมือกจากเมล็ดแมงลักด้วยเครื่อง jet mill จำนวน 5 รอบ และ attrition mill จากนั้นแยกขนาดอนุภาคด้วยเครื่อง air jet sieve ขนาด 500 , 200 และ 100 μ ทำให้สามารถแยกขนาดอนุภาคได้ 4 ขนาด คือ ค้างตะแกรง 500 μ (p > 500 μ), ผ่านตะแกรง 500 μ แต่ค้างตะแกรง 200 μ (p 500 - 200 μ), ผ่านตะแกรง 200 μ แต่ค้างตะแกรง 100 μ (p 200 - 100 μ) และผ่านตะแกรง 100 μ (p < 100 μ) ดังที่ได้กล่าวมาแล้ว ดังนั้น ในการ ทดลองนี้ จึงทำการศึกษาสมบัติทางกายภาพ และวิเคราะห์องค์ประกอบทางเคมีของอนุภาค ได้แก่ ความหนาแน่น (bulk, tapped และ true density), ความสามารถในการถูกอัดได้, ความ สามารถในการอุ้มน้ำ, ปริมาตรการพองตัวจำเพาะ, ปริมาณโปรตีน, ปริมาณเส้นใยหยาบ, ปริมาณ เหล่านี้จะเป็นตัวชื้ถึง เถ้า. ปริมาณความชื้น และปริมาณคาร์โบไฮเดรต ซึ่งสมบัติต่าง ๆ ประสิทธิภาพของการสกัด ดำเนินการทดลอง ดังแสดงในวิธีการทดลองศึกษาสมบัติทางกายภาพ และวิเคราะห์องค์ประกอบทางเคมีของเมล็ดแมงลักที่สกัดน้ำมันออกแล้ว ในวิธีการทดลองข้อ 2.4.2 3.4.1.1 ลักษณะอนุภาคที่สกัดได้จาก jet mill จำนวน 5 รอบ

อนุภาคที่สกัดได้จาก jet mill จำนวน 5 รอบ มีลักษณะต่าง ๆ ดังนี้ คือ อนุภาคขนาด > 500 μ เป็นอนุภาคที่ส่วนใหญ่ยังคงลักษณะเมล็ดแมงลักเดิมก่อนสกัดสาร เมือกอยู่ และบางส่วนเกิดเป็นลักษณะของเปลือกเมล็ดที่แตกหักส่วนเนื้อในเมล็ดสีขาวหายไป, ยนุภาคขนาด 500 - 200 μ เป็นอนุภาคสีน้ำตาลดำ, อนุภาคขนาด 200 - 100 μ เป็นอนุภาคสี น้ำตาล และ อนุภาคขนาด < 100 μ เป็นอนุภาคละเอียดสีขาวอมน้ำตาล แสดงลักษณะอนุภาค ขนาด > 500 μ , 500 - 200 μ , 200 - 100 μ และ < 100 μ ที่สกัดได้จาก jet mill ดัง รูป ที่ 3 - 6

รูปที่ 3 - 6 ลักษณะอนุภาคที่สกัดได้จาก jet mill (1) ขนาดมากกว่า 500 μ, (2) อนุภาค ขนาด 500 - 200 μ, (3) อนุภาคขนาด 200 - 100 μ และ(4) ขนาดน้อยกว่า100 μ

3.4.1.2 ลักษณะอนุภาคที่สกัดได้จาก attrition mill

อนุภาคที่สกัดได้จาก attrition mill มีลักษณะต่าง ๆ ดังนี้ คือ อนุภาค ขนาด > 500 μ เป็นอนุภาคที่ส่วนใหญ่เป็นสีดำปนขาว ลักษณะคล้ายเนื้อในเมล็ดที่ถูกกระเทาะ เปลือกออก อนุภาคบางส่วนยังคงลักษณะเดิมของเมล็ดอยู่ ส่วนอนุภาคขนาด 500 - 200 μ เป็น อนุภาค สีน้ำตาลดำ, อนุภาคขนาด 200 - 100 μ เป็นอนุภาคสีน้ำตาล และอนุภาคขนาด < 100 μ เป็นอนุภาคละเอียดสีน้ำตาลอมขาว คล้ายกับอนุภาคที่สกัดได้จาก jet mill จำนวน 5 รอบ

แสดงลักษณะอนุภาคขนาด > 500 μ , 500 - 200 μ , 200 - 100 μ และ < 100 μ ที่สกัดได้จาก attrition mill ดังรูปที่ 3 - 7

รูปที่ 3 - 7 ลักษณะอนุภาคที่สกัดได้จาก attrition mill . (1)ขนาดมากกว่า 500 μ, (2)อนุภาคขนาด 500 - 200 μ, (3)อนุภาคขนาด 200 - 100 μ และ (4) ขนาดน้อยกว่า 100 μ

3.4.2 ความหนาแน่น

3.4.2.1 bulk density (g/ml)

เป็นความหนาแน่นของกองผง ซึ่งมีค่าขึ้นอยู่กับการกระจายขนาดอนุภาค, รูปร่างของอนุภาค และแนวโน้มของอนุภาคที่จะเกาะติดกันเองภายในกองผง โดยเฉพาะอย่างยิ่งใน ขณะที่อนุภาคเรียงตัวกันในกระบอกตวง ซึ่งจะมีการเรียงตัวกันหลายรูปแบบ ถ้าเรียงตัวกันอย่าง หลวม ๆ ก็จะมีช่องว่างระหว่างอนุภาคมาก กองผงนั้นก็จะมีความหนาแน่นต่ำ จากผลการทดลองจะ เห็นว่า bulk density ของอนุภาคแต่ละขนาดที่ได้จาก jet mill ทั้ง 5 รอบ และ attrition mill มีค่า ใกล้เคียงกัน แต่จะมีค่าลดลงเมื่อขนาดอนุภาคเล็กลง แสดงค่า bulk density ของอนุภาคต่าง ๆ ที่สกัดได้จากเครื่องโม่ทั้งสองเครื่อง ในตารางที่ 3 - 7 และรูปที่ 3 - 8

3.4.2.2 tapped density (g/ml)

เป็นความหนาแน่นของอนุภาคที่ถูกอัด ทำให้อนุภาคมีการจัดเรียงกันแน่น ขึ้น ช่องว่างระหว่าอนุภาคลดลง ดังนั้น ความหนาแน่นที่ได้จะมีค่ามากกว่าความหนาแน่นของกอง ผงเสมอ จากผลการทดลองจะเห็นว่า tapped density ของอนุภาคแต่ละขนาดที่ได้จาก jet mill ทั้ง 5 รอบ และ attrition mill มีค่าใกล้เคียงกัน และมีค่าเพิ่มขึ้นเมื่อขนาดเล็กลง แสดงค่าความหนา แน่นของอนุภาคที่ถูกอัดของอนุภาคที่สกัดได้จากเครื่องโม่ทั้งสองเครื่อง ดังแสดงในตารางที่ 3 - 8 และรูปที่ 3 - 9

ตารางที่ 3 - 7	ค่าเฉลี่ยและค่าเ	เบี่ยงเบนเ	งาตรฐานขอ	l∮ bulk	density (g/ml) ของอนุภาคขนาดต่า	19 7
	ที่สกัดได้จาก	jet mill	จำนวน 5	รอบ แ	ເລະ attrition mi	11	

ชนิดเครื่องโม่		P >	P > 500 µ		P 500 - 200 µ		P 200 - 100 µ		Ρ<100 μ	
		X (g/ml)	±sd	X (g/ml)	±sd	X (g/ml)	±sd	X (g/ml)	±sd	
Jet	รอบที่ 1	0.58	0.004	0.55	0.002	0.49	0.009	0.30	0.009	
Jet	รอบที่ 2	0.59	0.005	0.52	0.046	0.48	0.003	0.29	0.016	
Jet	รอบที่ 3	0.57	0.003	0.58	0.014	0.46	0.009	0.27	0.006	
Jet	รอบที่ 4	0.57	0.001	0.51	0.008	0.46	0.006	0.29	0.009	
Jet	รอบที่ 5	0.58	0.000	0.56	0.002	0.50	0.006	0.30	0.007	
Δ	ttrition	0.55	0.016	0.51	0.002	0.46	0.000	0.27	0.021	

รูปที่ 3 - 8 bulk density ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

ตารางที่ 3 - 8 ค่าเฉลี่ยและค่าเบียงเบนมาตรฐานของ tapped density (g/ml) ของ อนุภาคขนาด ต่าง ๆ ที่สกัดได้จาก jet mill จำนวน 5 รอบ และ attrition mill

ชนิดเครื่องโม่		P >	500 µ	Ρ500-200 μ		Ρ200-100 μ		P<100 μ	
		₹(g/ml)	±sd	⊼ (g/mI)	±sd	ℜ (g/ml)	±sd	x (g/ml)	±sd
Jet	รอบที่ 1	0.68	0.02	0.59	0.01	0.79	0.02	1	0
Jet	รอบที่ 2	0.68	0.02	0.64	0.05	0.78	0.23	1	0
Jet	รอบที่ 3	0.68	0.02	0.61	0.12	0.75	0.07	1	0
Jet	รอบที่ 4	0.68	0.02	0.63	0.04	0.88	0.11	1	0
Jet	รอบที่ 5	0.68	0.02	0.63	0.05	0.80	0.00	1	0
At	trition	0.66	0.00	0.65	0.00	0.75	0.07	1	0

รูปที่ 3 - 9 tapped density ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

3.4.2.3 true density (g/ml)

ความหนาแน่นจริงของอนุภาค มีความเกี่ยวพัน ในการใช้อธิบาย ปรากฏการณ์ต่าง ๆ ของอนุภาค เช่น พื้นที่ผิว , ความพรุน และ อัตราเร็วในการตกตะกอนของอนุภาค การหาปริมาตรของอนุภาคเพื่อคำนวณความหนาแน่นจริง ต้องคำนึงถึงรูพรุน รอยแตก รอยร้าว ภาย ซึ่งปริมาตรก็จะเป็นปริมาตรของมวลสารเท่านั้น ไม่รวมปริมาตรของช่องว่าง ในเนื้อของอนภาค ดังนั้น ของไหลที่นำมาใช้แทนที่ปริมาตร ระหว่างอนุภาค ซึ่งต่างกับความหนาแน่นของกองผง ของอนุภาคต้องสามารถแทรกเข้าไปบรรจุในรูพรุนของอนุภาคได้อย่างสมบูรณ์ ในที่นี้ อนุภาคจากการ สกัดเมล็ดแมงลักไม่ได้มีรูพรุนมากพอที่สังเกตได้ชัด ดังนั้นของไหลที่ใช้จึงเลือกของเหลวที่จะไม่ทำให้ เกิดการเปลี่ยนแปลงกับอนุภาค คือ ไม่ทำให้อนุภาคพองตัว นั่น คือ เฮกเซน จากผลการทดลองจะ เห็นว่า true density ของอนุภาคทุกขนาด ทั้งที่ได้จาก jet mill ทั้ง 5 รอบ และ attrition mill มีค่า คืออยู่ในช่วง 1 - 1.3 g/ml ซึ่งมีค่ามากกว่า ความหนาแน่นที่ไม่อัด และที่ถูกอัด ใกล้เคียงกัน ของอนุภาค ในผลการทดลองข้อ3.4.2.1 และ 3.4.2.2 แสดงค่าความหนาแน่นจริงของอนภาคที่ได้ จากการสกัดด้วยเครื่องโม่ทั้งสองเครื่อง ในตารางที่ 3 - 9 และรูปที่ 3 - 10

ชนิดเครื่องโม่		P > 500 µ		P 500 - 200 μ		P 200 - 100 µ		P < 100 µ	
		x (g/ml)	±sp	₹ (g/ml)	±sd	X (g/ml)	±sD	X (g/ml)	±sd
Jet	รอบที่ 1	1.03 .	0.03	1.33	0.01	1.21	0.01	1.21	0.01
Jet	รอบที่ 2	1.02	0.03	1.22	0.03	1.19	0.02	1.29	0.02
Jet	รอบที่ 3	1.08	0.02	1.28	0.04	1.11	0.01	1.29	0.01
Jet	รอบที่ 4	1.01	0.02	1.27	0.04	1.20	0.00	1.12	0.03
Jet	รอบที่ 5	1.13	0.04	1.10	0.01	1.22	0.03	1.17	0.04
At	trition	1.00	0.00	1.30	0.00	1.20	0.00	1.10	0.00

ตารางที่ 3 - 9 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ true density (g/ml) ของ อนุภาคขนาด ต่าง ๆ ที่สกัดได้จาก jet millจำนวน 5 รอบ และ attrition mill

รูปที่ 3 - 10 true density ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet millจำนวน 5 รอบ

ແລະ attrition mill

3.4.3 ความสามารถในการถูกอัดได้ (compressibility) (%)
ความสามารถในการถูกอัดได้ ของอนุภาคขนาดเล็ก มีค่ามากกว่า อนุภาค
ขนาดใหญ่ นั่นคือค่าจะเพิ่มขึ้น เมื่อขนาดอนุภาคเล็กลง ดังแสดงในตารางที่ 3 - 10 และรูปที่ 3 - 11

3.4.4 ความสามารถในการขุ้มน้ำ (water holding capacity ; WHC) (g/g) เป็นสมบัติสำคัญของสารเมือก ซึ่งจะบ่งชี้ว่า อนุภาคกลุ่มนั้น ๆ มีสารเมือก ปนมามากน้อยเพียงใด จากผลการทดลองพบว่า ความสามารถในการขุ้มน้ำของอนุภาคขนาด > 500, 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก jet mill มีค่าใกล้เคียงกัน และ จะมีค่าเพิ่มขึ้นเมื่อกับ อนุภาคอื่น ๆ ข้างต้น เช่นเดียวกับอนุภาคขนาด < 100 μ ที่สกัดได้จาก attrition mill ก็มีความ สามารถในการขุ้มน้ำต่ำมากเมื่อเทียบกับอนุภาคขนาด < 100 μ ที่สกัดได้จาก attrition mill ก็มีความ สามารถในการขุ้มน้ำต่ำมากเมื่อเทียบกับอนุภาคอื่น ซึ่งจะมีความสามารถในการขุ้มน้ำต่ำใกล้เคียง กัน ยกเว้น อนุภาคขนาด > 500 μ ที่มีค่าน้อยว่า เมื่อเทียบกับอนุภาคขนาด ขนาด 500 - 200 และ 200 - 100 μ แสดงค่าความสามารถในการขุ้มน้ำของอนุภาคที่สกัดได้จากเครื่องโม่ทั้ง สองเครื่องใน ตารางที่ 3 - 11 และ รูปที่ 3 - 12 และ แสดงลักษณะอนุภาคขนาด > 500 , 500 - 200 , 200 - 100 และ < 100 μ ขณะขุ้มน้ำ ที่สกัดได้จาก jet mill และ attrition mill ดังรูปที่ 3 - 13 ถึง 3 - 14 ตามลำดับ

3.4.5 ปริมาตรการพองตัวจำเพาะ (specific swelling volume) (ml/g)

เช่นเดียวกับค่าความสามารถในการอุ้มน้ำของอนุภาค นั่นคือ ปริมาตรการ พองตัวจำเพาะ จะบ่งชี้ถึงสมบัติของสารเมือก และจากผลการทดลองก็จะเห็นว่า ปริมาตร การพอง ตัวจำเพาะของอนุภาค มีค่า แปรผันตาม ความสามารถในการอุ้มน้ำของอนุภาค ดังแสดงในตารางที่ 3 - 12 และรูปที่ 3 - 15 และ แสดงลักษณะการพองตัวของอนุภาคที่สกัดได้จาก jet mill และ attrition mill ดัง รูปที่ 3 - 16 และ 3 - 17 ตามลำดับ

ชนิดเครื่องโม่		P >	Ρ>500 μ		Ρ500-200 μ		Ρ200-100 μ		P < 100 μ	
		X(%)	±sd	X(%)	±sd	X(%)	±sd	X(%)	±sd	
Jet	รอบที่ 1	14.72	3.43	6.82	2.14	37.06	0.62	69.60	0.85	
Jet	รอบที่ 2	13.89	2.79	18.35	14.16	38.45	2.19	71.10	1.56	
Jet	รอบที่ 3	16.57	2.44	5.22	0.40	38.72	6.59	73.20	0.57	
Jet	รอบที่ 4	17.29	2.62	18.95	6.53	46.62	5.83	71.25	0.92	
Jet	รอบที่ 5	15.09	2.90	11.67	5.61	37.00	0.71	70.05	0.71	
A	ttrition	16.37	2.57	20.85	0.1	38.4	5.81	73.50	2.12	

ตารางที่ 3 - 10 ค่าเฉลี่ยและค่าเบียงเบนมาตรฐานของ ความสามารถในการถูกอัดได้ (%) ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet millจำนวน 5 รอบ และ attrition mill

รูปที่ 3 - 11 ความสามารถในการถูกอัดได้ ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จ้ำนวน5 รอบ และ attrition mill

ชนิด	แครื่องโม่	P > 500 μ		Ρ 500 - 200 μ		P 200 - 1	Ρ200-100 μ		P<100 μ	
		x (g / g)	±sp	⊼ (g / g)	±sp	x (g / g)	±sD	x (g / g)	±sd	
Jet	รอบที่ 1	36.96	4.02	38.05	0.82	31.43	1.8	0.30	0.14	
Jet	รอบที่ 2	30.83	2.31	41.06	2.63	31.54	0.78	2.95	0.92	
Jet	รอบที่ 3	38.17	1.79	48.15	3.32	46.34	5.75	4.00	0.14	
Jet	รอบที่ 4	40.55	0.92	43.81	4.09	42.71	1.26	5.50	0.57	
Jet รอบที่ 5		50.60	5.65	56.02	7.23	61.86	1.49	6.09	0.26	
Attrition		28.13	0.18	32.51	0.71	36.88	1.59	2.13	0.25	

ตารางที่ 3 - 11 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ความสามารถในการอุ้มน้ำ (g/g) ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

(1)

.

(4)

(3)

รูปที่ 3 - 13 ลักษณะอนุภาคที่สกัดได้จาก jet millขณะอุ้มน้ำ (1) ขนาดมากกว่า 500 μ , (2)อนุภาคขนาด 500 $\,$ - 200 μ , (3) อนุภาคขนาด 200 - 100 $\,\mu$ และ (4)ขนาดน้อยกว่า 100 **µ**

(2)

(3) (4)

รูปที่ 3 - 14 ลักษณะอนุภาคที่สกัดได้จาก attrition mill ขณะอุ้มน้ำ (1) ขนาดมากกว่า 500 μ, (2)อนุภาคขนาด 500 - 200 μ, (3) อนุภาคขนาด 200 - 100 μ และ (4)ขนาดน้อยกว่า 100 μ

ชนิด	เครื่องโม่	P > 500 μ		P 500 - 2	P 500 - 200 μ		100 µ	P<100 μ	
		X (ml / g)	±sd	X (ml / g)	±sd	x (ml / g)	±sd	X (ml / g)	±sd
Jet	รอบที่ 1	110	0	210	0	340	14.14	50	0
Jet รอบที่ 2		100	0	250	0	410	14.14	57.5	3.54
Jet	รอบที่ 3	120	0	400	0	515	21.21	70	0
Jet	รอบที่ 4	140	0	360	14.14	510	14.14	80	0
Jet รอบที่ 5		145	7.07	465	7.07	555	35.36	80	0
At	trition	87.5	3.54	130	28.28	210	14.14	35	7.07

ตารางที่ 3 - 12 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาตรการพองตัวจำเพาะ (ml/g) ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน 5 รอบ และ attrition mill

รูปที่ 3 - 15 ปริมาตรการพองตัวจำเพาะของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

รูปที่ 3 - 16 ลักษณะ การพองตัวของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จากซ้ายไปขวา คือ การพองตัวของอนุภาคขนาดมากกว่า 500μ , 500 - 200μ, 200 -100μ และ น้อย กว่า100 μตามลำดับที่ความเข้มข้นของเมือก 0.5 % w/v

รูปที่ 3 - 17 ลักษณะการพองตัวของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก attrition mill จากขวาไปซ้าย คือ การพองตัวของอนุภาคขนาดมากกว่า 500μ , 500 - 200μ , 200 - 100μ และ น้อยกว่า100 μตามลำดับ ที่ความเข้มข้น 0.5 % w/v

3.4.6 องค์ประกอบทางเคมีของอนุภาค

3.4.6.1 ปริมาณโปรตีน (% d.b.)

โปรตีนเป็นองค์ประกอบที่พบเป็นอาหารสะสม (endosperm) ของ เมล็ด นั่นคือเป็นส่วนของเนื้อเมล็ดซึ่งไม่พองตัว ดังนั้น กลุ่มของอนุภาคที่มีปริมาณโปรตีนสูง จะบ่งชี้ ว่า มีส่วนเนื้อเมล็ดปนมาสูง และ ส่งผลให้สัดส่วนของสารเมือกที่มีในกลุ่มอนุภาคนั้นต่ำลง จากผล การทดลอง พบว่าปริมาณโปรตีนของอนุภาคที่สกัดได้จาก jet mill ค่าเพิ่มขึ้นเมื่อขนาดอนุภาคเล็กลง และ แต่ละขนาดอนุภาค เมื่อเพิ่มรอบของการโม่ ปริมาณโปรตีนยิ่งลดลง สำหรับปริมาณโปรตีน ของอนุภาคที่สกัดได้จาก attrition mill พบว่า อนุภาคขนาด 500 - 200 μ มีปริมาณโปรตีนต่ำที่สุด คือ 11.38 % d.b. และ อนุภาคขนาด < 100 μ มีปริมาณโปรตีนสูงที่สุดคือ 51.5 % d.b. ส่วน อนุภาคขนาด > 500 และ 200 - 100 μ มีปริมาณโปรตีนใกล้เคียงกัน คือ 25.1 และ 21.005 % d.b. ตามลำดับ แสดงปริมาณโปรตีนของอนุภาคแต่ละขนาดที่ได้จากการสกัดด้วยเครื่องโม่ทั้ง สอง เครื่อง ในตาราง ที่ 3 - 13 และ รูปที่ 3 - 18

ตารางที่ 3 - 13 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาณโปรตีน (%d.b.) ของอนุภาคขนาด ต่าง ๆ ที่สกัดได้จาก jet millจำนวน 5 รอบ และ attrition mill

ชนิด	เครื่องโม่	P > 500 µ		Ρ500-200 μ		P 200 - 1	Ρ200-100 μ		οο μ
		X(%d.b.)	±sd	X(%d.b.)	±sd	X(%d.b.)	±sd	₹(%d.b.)	±sd
Jet	รอบที่ 1	18.22	0.09	19.25	2.05	28.85	0.26	52.69	0.22
Jet รอบที่ 2		14.47	1.05	18.10	1.16	22.23	0.14	51.76	0.01
Jet	รอบที่ 3	12.70	0.91	13.30	0.01	20.08	0.12	60.00	0.52
Jet	รอบที่ 4	11.55	0.81	13.81	0.34	19.81	1.15	49.08	1.38
Jet รอบที่ 5		9.69	1.70	13.14	0.33	17.50	0.26	48.19	0.57
Attrition		25.10	0.85	11.38	1.95	21.01	1.41	51.50	6.36

รูปที่ 3 - 18 ปริมาณโปรตีนของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mil

3.4.6.2 ปริมาณเส้นใยหยาบ (% d.b.)

โดยส่วนใหญ่ปริมาณเส้นใยหยาบ จะหมายถึง ปริมาณ เซลลูโลส และ ปริมาณ ลิกนิน ซึ่งเป็นองค์ประกอบสำคัญที่พบในส่วนเปลือกเมล็ด ขณะทำการทดลองสังเกต เห็นว่า หลังการย่อยด้วยกรดอ่อน และ ด่างอ่อน ซึ่งกากที่เหลือจากการย่อยจะเป็นปริมาณเส้นใย หยาบ สารเมือก ยังคงเหลือในส่วนของกาก ไม่ได้ถูกย่อยด้วย กรดอ่อน และ ด่างอ่อน ดังนั้น การมี ปริมาณเส้นใยหยาบสูงของอนุภาคจะบ่งซี้ถึงปริมาณสารเมือกที่สูงตามด้วย จากผลการทดลอง พบ ว่า ปริมาณเส้นใยหยาบมีค่า แปรผกผันกับปริมาณโปรตีน กล่าวคือ อนุภาคที่มีปริมาณโปรตีนสูงก็จะ มีปริมาณเส้นใยต่ำ และในทางกลับกัน อนุภาคที่มีปริมาณโปรตีนต่ำก็จะมีปริมาณเส้นใยอยู่สูง ดัง แสดงในตารางที่ 3 - 14 และ รูปที่ 3 -19

ชนิด	เครื่องโม่	P >	500 µ	P 500 - 2	200 µ	P 200 - 1	00 μ	P < 1	00 µ
		X(%d.b.)	±sp	₹(%d.b.)	±sd	X(%d.b.)	±sd	X(%d.b.)	±sd
Jet	รอบที่ 1	58.85	0.06	34.62	0.06	22.58	2.07	4.45	0.27
Jet	รอบที่ 2	58.46	0.06	32.80	0.52	30.59	0.01	6.40	0.59
Jet	รอบที่ 3	51.41	1.73	33.63	0.04	33.81	0.71	8.23	0
Jet	รอบที่ 4	42.40	1.04	30.70	0.72	33.30	0.01	9.90	0
Jet	รอบที่ 5	49.15	0.63	37.17	0	33.55	1.24	10.74	0.38
At	trition	30.05	0.01	39.48	2.16	33.13	1.24	5.63	1.87

ตารางที่ 3 - 14 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาณเส้นใยหยาบ(%d.b.) ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

รูปที่ 3 - 19 ปริมาณเส้นใยหยาบของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

3.4.6.3 ปริมาณเถ้า (% d.b.)

คือปริมาณสารอนินทรีย์ที่เหลือภายหลังจากสารอินทรีย์ถูกเผาหมด ไปด้วยอุณหภูมิสูงแล้ว ส่วนใหญ่จะหมายถึงแร่ธาตุต่าง ๆ ได้แก่ โปแตสเซียม , แคลเซียม , โซเดียม และ แมกนีเซียม ซึ่งโดยปกติ สารเมือกของเมล็ดจะพบในธรรมชาติในรูปของเกลือ โปแตสเซียม , แคลเซียม , โซเดียม และ แมกนีเซียม ดังนั้น ปริมาณเถ้าอาจสามารถใช้บ่งบอกถึงปริมาณ สารเมือก ได้อย่างคร่าวๆด้วย จากผลการทดลอง พบว่า สำหรับอนุภาคที่สกัดได้จาก jet mill ปริมาณเถ้า มีค่า ลดลง เมื่ออนุภาคมีขนาดเล็กลง แต่ สำหรับอนุภาคที่สกัดได้จาก attrition mill อนุภาคที่มีปริมาณ เถ้ามากที่สุดคืออนุภาคขนาด 500 - 200 μ รองลงมาคือ อนุภาคขนาด > 500 μ , 200 - 100 μ และ < 100 μ ตามลำดับ แสดงปริมาณเถ้าของอนุภาคแต่ละขนาดที่ได้จากการสกัดด้วยเครื่องโม่ทั้ง สอง เครื่อง ในตาราง ที่ 3 - 15 และ รูปที่ 3 - 20

ตารางที่ 3 - 15 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาณเถ้า(%d.b.) ของอนุภาคขนาด ต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

ชนิด	เครื่องโม่	P >	500 µ	P 500 - 2	200 µ	P 200 - 1	00 µ	P < 1	00 µ
		X(%d.b.)	±sD	x(%d.b.)	±sd	X(%d.b.)	±sp	X(%d.b.)	±sd
Jet	รอบที่ 1	4.99	0.01	3.96	0.07	1.62	0	0.38	0.04
Jet	รอบที่ 2	4.95	0.07	4.39	0.02	2.05	0.09	1.55	0.5
Jet	รอบที่ 3	4.30	0.22	3.93	0.24	2.51	0.28	0.21	0
Jet	รอบที่ 4	4.78	0.09	3.90	0.12	2.49	0.21	0.62	0.02
Jet	รอบที่ 5	5.06	0.08	4.29	0.01	2.81	0.13	0.65	0.01
Attrition		3.26	0.06	4.37	0.19	1.69	0.16	0.31	0.03

รูปที่ 3 - 20 ปริมาณเถ้าของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill 5 รอบ และ attrition mill

3.4.6.4 ปริมาณความชื้น (% d.b.)

พบว่าปริมาณความชื้นของอนุภาคทุกขนาดที่สกัดได้จากเครื่องโม่

ทั้งสองเครื่อง มีค่าค่อนข้างใกล้เคียงกัน คืออยู่ในช่วง 8 - 9 % d.b. ดังแสดงในตารางที่ 3 - 16 และรูปที่ 3 - 21

3.4.6.5 ปริมาณคารโบไฮเดรด (% d.b.)

โดยส่วนใหญ่หมายถึง ปริมาณแป้ง , เพคติน หรือ เฮมิเซลลูโลส ซึ่ง ถูกย่อยได้ด้วยกรดอ่อน และ ด่างอ่อน ผลการทดลองพบว่า ปริมาณคาร์โบไฮเดรตของอนุภาค ขนาด 500 - 200 , 200 - 100 และ < 100 μ ที่สกัดได้จาก jet mill อยู่ในช่วงใกล้เคียงกัน คือ ประมาณ 30 - 40 % d.b. แต่ อนุภาค ขนาด > 500 μ พบว่า อนุภาคที่ได้จากการโม่รอบแรกจะมีปริมาณต่ำ และ จะค่อย ๆ มีปริมาณเพิ่มขึ้น เมื่อรอบของการโม่เพิ่มขึ้น สำหรับ อนุภาคที่สกัดได้จาก attrition mill นั้น ปริมาณคาร์โบไฮเดรต มีค่าใกล้เคียงกันในอนุภาคทั้ง 4 ขนาด ดังแสดงในตารางที่ 3 - 17 และรูปที่ 3 - 22

ชนิด	เครื่องโม่	P > 500 μ		P 500 - 2	Ρ 500 - 200 μ		100 µ	P < 1	00 µ
		x (%d.b)	±SD	₹ (%d.b)	±sd	₹(%d.b)	±sd	x (%d.b)	±sd
Jet	รอบที่ 1	8.18	0.08	8.00	0.04	8.91	0.30	8.24	0
Jet	รอบที่ 2	8.24	0.04	7.88	0.17	8.57	0.06	8.08	0.17
Jet	รอบที่ 3	8.29	0.05	7.91	0.07	8.17	0.23	8.67	0.28
Jet	รอบที่ 4	8.21	0.01	7.85	0.04	8.14	0.20	7.89	0.31
Jet	รอบที่ 5	8.18	0.06	8.02	0.26	8.84	0.37	8.36	0.14
Attrition		8.11	0.15	8.30	0	8.60	0.14	8.82	0.12

ตารางที่ 3 - 16 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาณความซื้น(%d.b.) ของอนุภาค ขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

รูปที่ 3 - 21 ปริมาณความชื้นของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

ชนิด	แครื่องโม่	P >	500 µ	P 500 - 2	200 µ	P 200 - 1	100 µ	P < 1	00 µ
		X(%d.b.)	±sd	₹(%d.b.)	±sd	⊼ (%d.b.)	±sd	X(%d.b.)	±sd
Jet	รอบที่ 1	9.76	0.06	34.18	2.1	38.05	2.63	34.85	0.52
Jet	รอบที่ 2	13.89	0.97	37.34	1.49	36.57	0	32.22	0.08
Jet	รอบที่ 3	23.28	0.99	41.24	0.26	35.44	1.1	32.09	0.42
Jet	รอบที่ 4	33.05	0.12	43.75	0.55	36.28	0.98	32.52	1.67
Jet	รอบที่ 5	27.93	1.05	37.39	0.06	36.33	1.27	32.58	1.05
At	ttrition	33.54	0.76	36.48	0.4	35.59	3.09	33.52	4.97

ตารางที่ 3 - 17 ค่าเฉลี่ยและค่าเบี่ยงเบนมาตรฐานของ ปริมาณคาร์โบไฮเดรต(%d.b.) ของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet mill จำนวน5 รอบ และ attrition mill

รูปที่ 3 - 22 ปริมาณคาร์โบไฮเดรตของอนุภาคขนาดต่าง ๆ ที่สกัดได้จาก jet millจำนวน 5 รอบ และ attrition mil

3.5 อิทธิพลของปัจจัยต่าง ๆ ต่อความสามารถในการอุ้มน้ำของสารเมือก

จากผลการทดลองข้อที่ 3.4 พบว่า อนุภาคขนาด 500 - 200 µ และ อนุภาคขนาด 200 - 100µ มีสมบัติทางกายภาพและองค์ประกอบเคมี ที่ประเมินได้ว่า อนุภาคทั้งสองขนาด เป็นสาร เมือก ส่วนอนุภาคขนาด มากกว่า 500 μ เป็นส่วนกากเมล็ดที่ผ่านการสกัดเอาสารเมือกออกแล้ว แต่ สกัดออกได้ไม่หมด และ อนุภาคขนาด น้อยกว่า 100 µ เป็น ส่วนเนื้อเมล็ดที่ประกอบด้วยโปรตีนเป็น ส่วนใหญ่ ดังนั้นในการศึกษาอิทธิพลของปัจจัยต่าง ๆ ที่มีผลต่อความสามารถในการอุ้มน้ำของสาร เมือกนี้ จึงทำการทดลองโดยนำ อนุภาคขนาด 500 - 200 µ และ 200 - 100 µ มาศึกษาอิทธิพลของ ปัจจัยต่าง ๆ ได้แก่ อิทธิพลของอณหภมิ , พีเอช และ ความเข้มข้นของเกลือต่อความสามารถในการ อุ้มน้ำ โดยแปรผัน อุณหภูมิ เป็น 0 , 20 , 40 และ 60 องศาเซลเซียส สำหรับการศึกษาอิทธิพลของ อณหภูมิต่อความสามารถในการอ้มน้ำ และ แปรผันค่าพีเอซเป็น 3 , 6 , 9 และ 12 สำหรับการศึกษา อิทธิพลของพีเอชต่อความสามารถในการอุ้มน้ำ และ สำหรับการศึกษาอิทธิพลของความเข้มข้นของ เกลือ ต่อความสามารถในการอุ้มน้ำ ทำการศึกษา ถึงผลของความเข้มข้นของสารละลายเกลือ 2 ชนิด คือ สารละลายเกลือแคลเซียมคลอไรด์ และ สารละลายเกลือโซเดียมคลอไรด์ โดยแปรผันความเข้ม ข้นของสารละลายเกลือทั้ง 2 ซนิดเป็น 0.01 , 0.1 และ 1.0 M ตามลำดับ ผลการทดลองการศึกษา อิทธิพลของอุณหภูมิ พบว่า ความสามารถในการอุ้มน้ำของสารเมือกลดลงเมื่อ อุณหภูมิสูงขึ้น ดัง แสดงในตารางที่ 3 - 18จะเห็นว่าอุณหภูมิที่สูงขึ้นทำให้ความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 μ ที่สกัดด้วย jet mill ทุกรอบ มีค่าลดลง ดังแสดงใน รูปที่ 3 - 23 ซึ่งผลในทำนองเดียวกัน ก็พบในอนุภาคขนาด 500 - 200 และ 200 -100 μ ที่สกัดด้วย attrition mill คืออุณหภูมิที่เพิ่มขึ้นมี ผลทำให้ความสามารถในการอุ้มน้ำของอนุภาคลดลงเช่นกันดังแสดงในรูปที่ 3 - 25

ผลการศึกษาอิทธิพลของพีเอซ พบว่า สารเมือกจะมีความสามารถในการอุ้มน้ำได้สูงเมื่อค่า พีเอซค่อนข้างเป็นกลาง หรือมีความเป็นกรดและด่างเล็กน้อย แต่เมื่อค่าพีเอซสูงขึ้นหรือต่ำลง มาก ๆ ความสามารถในการอุ้มน้ำของสารเมือกจะลดลง ดังแสดงในตารางที่ 3- 9และแสดงผลของพีเอซต่อ ความสามารถในการอุ้มน้ำของอนุภาคขนาด500 - 200 μ ที่สกัดได้จาก jet mill แต่ละรอบ, ผลของพี เอซต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 200 - 100 μ ที่สกัดได้จาก jet mill แต่ละรอบ และผลของพีเอซต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 200 - 100 μ ที่สกัดได้จาก jet mill แต่ละรอบ และผลของพีเอซต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500- 200 และ 200 - 100μ ที่สกัด ได้จาก attrition mill ในรูปที่ 3 - 26 ถึง 3 - 28 และ ผลการศึกษาอิทธิพลของสารละลายเกลือ พบว่า สารละลายเกลือ มีผลต่อการลดลง ของความสามารถในการอุ้มน้ำของสารเมือก คือเกลือทำให้ความสามารถในการอุ้มน้ำของสาร เมือกลดลง โดยที่เกลือแคลเซียมคลอไรด์มีผลทำให้ความสามารถในการอุ้มน้ำของสารเมือกลดลง มากกว่าเกลือโซเดียมคลอไรด์ ดังแสดงในตารางที่ 3 - 20 และสำหรับการกระจายตัวของเมือกในสาร ละลายเกลือโซเดียมคลอไรด์ พบว่าเมื่อความเข้มข้นของสารละลายเกลือเพิ่มขึ้นความสามารถในการ อุ้มน้ำยิ่งลดลง ดังแสดงผลของเกลือโซเดียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก jet mill แต่ละรอบในรูปที่ 3 - 29 ถึง 3 - 30 และผลของ เกลือโซเดียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก attrition mill ในรูปที่ 3 - 31 แต่การกระจายตัวของเมือกในสารละลายเกลือแกลเซียม คลอไรด์ พบว่า ความสามารถในการอุ้มน้ำมีค่าต่ำที่สุดเมื่อความเข้มข้นของสารละลายเกลือเป็น 0.1 โมลาร์ และมีค่าสูงขึ้นเมื่อความเข้มข้นของสารละลายเกลือเป็น 1.0 โมลาร์ และ 0.01 โมลาร์ ตาม ลำดับ ดังแสดงผลของเกลือแคลเซียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกับ ดังแสดงผลของเกลือแคลเซียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 0.1 โมลาร์ ตาม ลำดับ ดังแสดงผลของเกลือแกลเซียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 -200 และ 200 - 100 μ ที่สกัดได้จาก jet mill แต่ละรอบในรูปที่ 3 - 32 ถึง 3 - 33 และผลของเกลือ แคลเซียมคลอไรด์ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่ สกัดได้จาก attrition mill ในรูปที่ 3 - 34

ชนิดเครื่องโม่			อุณหภูมิ	(องศาเร	ชลเซียส)			
และขนาดอนุภาค	0		20		40		60	
	x (g / g)	±sd	₹ (g / g)	±sp	x (g / g)	±sd	x (g / g)	±sd
Jet รอบที่ 1								
P 500 - 200 μ	58.45	0.67	48.34	2.51	32.8	2.73	26.41	0.07
P 200 - 100 μ	58.54	1.16	37.77	4.38	27.48	0.03	14.65	2.05
Jet รอบที่ 2								
P 500 - 200 µ	58.21	1.26	70.76	2.04	38.27	0.09	30.75	0.22
P 200 - 100 µ	60.94	2.74	58.89	2.79	27.70	0.28	15.49	0.44
Jet รอบที่ 3								
Ρ 500 - 200 μ	71.74	3.58	77.78	1.58	46.24	1.1	40.43	1.09
P 200 - 100 µ	73.25	0.07	75.53	1.32	33.73	1.09	23.72	4.22
Jet รอบที่ 4								
P 500 - 200 µ	71.81	1.15	76.35	2.16	43.32	0.45	40.17	0.23
P 200 - 100 µ	72.57	2.6	65.40	6.25	32.50	0	19.23	1.6
Jet รอบที่ 5								
Ρ 500 - 200 μ	77.00	0	88.45	2.62	48.46	2.19	47.28	1.58
P 200 - 100 µ	86.53	5.05	83.71	7.17	41.08	0.54	44.27	1.32
Attrition								
P 500 - 200 µ	34.15	1.2	32.63	0.88	31	1.41	23.4	0.57
Ρ 200 - 100 μ	41.65	0.5	36.15	0.5	30.70	0.28	16.70	0.85

ตารางที่ 3 - 18 อิทธิพลของอุณหภูมิต่อความสามารถในการอุ้มน้ำของสารเมือก

รูปที่ 3 - 23 อิทธิพลของอุณหภูมิต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 µ ที่ลู่กัดได้จาก jet mill

รูปที่ 3 - 24 อิทธิพลของอุณหภูมิต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 200 - 100 μ - ที่สกัดได้จาก jet mill

รูปที่ 3 - 25 อิทธิพลของอุณหภูมิต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก attrition mill

-

ชนิดเครื่องโม่				พีเย	21			
และขนาดอนุภาค	3		6		9		12	
	x (g / g)	±sd	X (g / g)	±sd	x (g / g)	±sd	x (g / g)	±sd
Jet รอบที่ 1								
P 500 - 200 µ	17.31	0.16	48.35	2.5	38.69	1.15	25.23	0.33
P 200 - 100 μ	20.98	0.17	52.33	0.98	38.75	1.11	26.02	0.3
Jet รอบที่ 2								
P 500 - 200 μ	19.72	0.02	60.92	0.37	60.55	0.77	22.53	2.21
P 200 - 100 µ	24.78	0.55	63.81	1.97	55.26	0.09	17.50	1.7
Jet รอบที่ 3								
P 500 - 200 µ	17.11	1	50.53	0.75	49.29	2	25.20	4.96
P 200 - 100 µ	21.36	1.08	47.75	1.82	41.11	0.92	11.17	1.63
Jet รอบที่ 4								
Ρ 500 - 200 μ	19.70	0.57	59.55	0.78	53.56	4.17	26.08	0.82
P 200 - 100 µ	20.80	0.28	60.13	1.6	60.15	0.21	20.10	0.08
Jet รอบที่ 5					c.			ĺ
P 500 - 200 µ	22.93	1.49	64.79	2.36	55.25	1.49	20.35	0.49
Ρ 200 - 100 μ	24.04	0.52	67.88	1.58	60.61	0.01	18.29	0.74
Attrition				1				
Ρ500 - 200 μ	15.30	0.28	33.19	0.18	27.5	0.71	21.5	0.71
P 200 - 100 μ	21.00	1.41	37.80	0.42	35.50	0.71	23.50	0.71

ตารางที่ 3 - 19 อิทธิพลของ พีเอช ต่อความสามารถในการอุ้มน้ำของสารเมือก

รูปที่ 3 - 26 อิทธิพลของ พีเอซ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 μ ที่สกัดได้จาก jet mill

รูปที่ 3 - 27 อิทธิพลของ พีเอช ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 200 - 100 μ ที่สกัดได้จาก jet mill

รูปที่ 3 - 28 อิทธิพลของ พีเอซ ต่อความสามารถในการอุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก attrition mill

		Y
ตารางที่ 3 - 20 คิทลิเ	พลของความเข้มข้นของเกลือต่อคว	บามสามารถในการค้มน้ำของสารเมือก
		Teder ind the point in the No ITT APP is and the

ชนิดเครื่องโม่		สารล	ะลายเกลี	อแคลเซีย	มคลอไรด์		-	สารล	ะลายเกลือ	โซเดียมคร	ลอไรด์	
และขนาดอนุภาค	0:	01 M	0	.1 M	1.	0 M	0.0	D1 M	0.	1 M	1.0	М
	₹ (g/g)	±SD	X(g/g)	±SD	X (g/g)	±SD	X (g/g/)	SD ±SD	₹ (g/g)	±SD	X (g/g)	t SD
Jet รอบที่ 1			1		1				1	1	1	
P 500 - 200 u	1.51	0.007	1	0	2.2	0	12.85	0.495	6	0	3.35	0.212
P 200 - 100 u	2.59	0.021	1.55	0.071	2.74	0.049	9.9	0.141	4.2	0	1.7	0.141
Jet รอบที่ 2												
P 500 - 200 u	3.1	0.283	2.5	0	5.06	0.078	9.69	0.156	4.4	0	1.8	0
P 200 - 100 u	5.06	0.078	3.05	0.212	5.95	0.071	12.95	0.071	4.25	0.071	2.3	0
Jet รอบที่ 3	1						1					
P 500 - 200 u	7.06	0.078	4.92	0.396	7.23	0.035	16.82	0.021	7.16	0.064	3.58	0.035
P 200 - 100 u	9.505	0.714	4.7	0	10.74	1.322	21.75	1.641	9.85	0.495	7.74	0.191
Jet รอบที่ 4												
P 500 - 200 u	5.9	0.007	3.89	0.014	6.26	0.085	26.32	1.209	6.88	1.160	4.24	0.339
P 200 - 100 u	7.7	1.273	5.21	0.941	9	1.938	15.6	7.863	7.77	0.601	5.45	0.750
Jet รอบที่ 5												
P 500 - 200 u	7.1	0.191	5.6	0	7.44	0.375	26.81	0.580	6.88	0.028	4.6	0.092
P 200 - 100 u	9.05	0.071	5.94	0.085	10.68	0.679	24.75	0.552	10.85	1.202	7.73	0.099
Attrition												
P 500 - 200 u	1.55	0.071	1.15	0.071	1.75	0.071	10.25	0.071	5.7	0.141	2.6	0.141
P 200 - 100 u	2.35	0.071	1.68	0.042	2.52	0.028	12.255	0.078	4.4	0.141	2.35	0.071

รูปที่ 3 - 29 อิทธิพลของความเข้มข้นของสารละลายเกลือแคลเซียมคลอไรด์ต่อความสามารถในการ อุ้มน้ำของอนุภาคขนาด 500 - 200 μ ที่สกัดได้จาก jet mill

รูปที่ 3 - 30 อิ[.] มนของสารละลายเกลือแคลเซียมคลอไรด์ต่อความสามารถในการ มนุภาคขนาด 200 - 100 µ ที่สกัดได้จาก jet mill

รูปที่ 3 - 31 อิทธิพลของความเข้มข้นของสารละลายเกลือแคลเซียมคลอไรด์ต่อความสามารถในการ อุ้มน้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก attrition mill

รูปที่ 3 - 32 อิทธิพลของความเข้มข้นของสารละลายเกลือโซเดียมคลอไรด์ต่อความสามารถในการอุ้ม น้ำของอนุภาคขนาด 500 - 200 μ ที่สกัดได้จาก jet mill

รูปที่ 3 - 33 อิทธิพลของความเข้มข้นของสารละลายเกลือโซเดียมคลอไรด์ต่อความสามารถในการอุ้ม น้ำของอนุภาคขนาด 200 - 100 μ ที่สกัดได้จาก jet mill

รูปที่ 3 - 34 อิทธิพลของความเข้มข้นของสารละลายเกลือโซเดียมคลอไรด์ต่อความสามารถในการอุ้ม น้ำของอนุภาคขนาด 500 - 200 และ 200 - 100 μ ที่สกัดได้จาก attrition mill