CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The ethylation of toluene with ethanol to produce *p*-ET was investigated over the commercial HZSM-5 catalysts with various SiO_2/Al_2O_3 molar ratios at different reaction conditions. At a given reaction condition, the HZSM-5 with SiO_2/Al_2O_3 molar ratio of 280 showed the highest *p*-ET selectivity of ca. 71 %. The optimal reaction conditions for such a catalyst in terms of *p*-ET selectivity were obtained at 350°C, WHSV of 20 h⁻¹, toluene-to-ethanol molar ratio of 3:1.

It is interesting to note that at high temperature (500 °C) its toluene conversion was declined due to the fact that the rates of decomposition of the reactants and/or of the products prevailed the rate of coke formation.

The suitable HZSM-5 with SiO_2/Al_2O_3 molar ratio of 280 was modified by CLD treatment to eliminate the undesired reactions taking place at the external surface. The results showed that the CLD treatment could improve the *p*-ET selectivity up to ca. 85% with the optimum amount of TEOS of 1 ml/g cat. Moreover, the multiple CLD treatment could further improve the *p*-ET selectivity to ca. 89%, and yet the loss of toluene conversion was to be compensated due to the deactivation of external acid sites as well as the narrowed and/or blocked pore opening of the catalyst.

5.2 Recommendations

To achieve a higher *p*-ET selectivity after deactivation of external acid sites by CLD treatment, an impregnation of basic metal oxide to eliminate the strong acid sites should be considered.