MODIFICATIONS OF LAYERED SILICATES AND LAYERED DOUBLE HYDROXIDES FOR PREPARATION OF POLYOLEFIN NANOCOMPOSITES

Nattaya Muksing

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2011

Thesis Title:	Modification of Layered Silicates and Layered Double
	Hydroxides for Preparation of Polyolefins Nanocomposites.
By:	Nattaya Muksing
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Ratanawan Magaraphan
	Asst. Prof. Manit Nithitanakul
	Prof. Brian P. Grady
	Dr. Elisa Passaglia
	Prof. Francesco Ciardelli

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

. Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Proff Pomthong Malakul)

(Asst. Prof. Mahit Nithithanakun)

(Dr. Elisa Passaglia)

Hathailian [Ŋ

(Asst. Prof. Hathaikhan Manuspiya)

Magaray2-

(Assoc. Prof. Rathanawan Magaraphan)

Aufridiale

(Prof. Francesco Ciardelli)

(Prof. Brian P. Grady) R. alteda

(Asst. Prof. Chonlada Ritvirulh)

นาตขา มักสิงห์ : การคัดแปรสภาพขั้วของแร่คินเหนีขว ชนิด เลเขอร์ซิลิเกต และเลเขอร์ ดับเบิล ไฮครอก ไซค์ เพื่อนำไปใช้ในการเตรีขมนาโนคอม โพสิตของพอลิโอเลฟีนส์ (Modifications of Layered Silicates and Layered Double Hydroxides for Preparation of Polyolefins Nanocomposites) อ. ที่ปรึกษา : รศ.คร. รัตนวรรณ มกรพันธุ์ ผศ. คร. มานิตย์ นิธิธนากุล ศ. คร. ฟราสเซสโก้ ชาเคลลี ศ. คร. ใบรอัน เกรดี้ และ คร. เอลิสา พาสเกลีย 206 หน้า

ในวิทยานิพนธ์เล่มนี้ แร่คินเหนียวชนิดแผ่นบาง (เลเยอร์ เกลย์) สองชนิด คือ ซิลิเกต เคลย์ และ คับเบิลไฮครอกไซค์ เคลย์ ถูกนำมาใช้เป็นสารเสริมแรงในการเตรียมนาโนคอมโพสิต ้สำหรับพอลิพรอพิลีน และพอลิเอทธิลีน ตามลำคับ นาโนคอมโพสิตทั้งสองชนิคถูกเตรียมโคยใช้ เทกนิคการผสมแบบสภาวะหลอมเหลว โคยใช้เครื่องอัครีคแบบสกรุคุ่ และมีพอลิโอเลฟินส์กราฟ ้มาเลอิกแอนไฮไครค์ ทำหน้าที่เป็นตัวเชื่อมผสานระหว่างแร่คินเหนียวและพอลิเมอร์ สำหรับ พอลิพรอพิลีน/ซิลิเกต เกลย์ นาโนกอมโพสิต แร่ดินเหนียวนั้นถูกนำมาดัดแปลงสภาพผิวโดยใช้ สารลคแรงดึงผิวแบบประจุบวกชนิดต่างๆ เพื่อทำให้ได้แร่ดินเหนียวที่เรียกว่าออร์กาโนเคลย์ จาก ้ผลการการวิจัยพบว่านาโนคอมโพสิตที่เตรียมได้จากการใช้สารสารลดแรงตึงแบบประจุบวกชนิค ้ที่มีสายโซ่ยาวนั้นให้นาโนคอมโพสิตที่มีสมบัติที่ดี โครงสร้างของนาโนคอมโพสิตที่เตรียมได้นั้น ้สามารถแบ่งเป็นสองกลุ่มที่ชัคเจน คือ แบบเอกโฟลิเอทบางส่วน และแบบอินเตอร์คาเลท และ พบว่าโครงสร้างแบบผสมของอินเตอร์คาเลทและเอกโฟลิเอทนั้นจะปรากฏให้เห็นเมื่อความ เข้มข้นของออร์กาโนเคลย์มากกว่า 3 เปอร์เซ็นโดยน้ำหนักโครงสร้างนาโนคอมโพสิตแบบ ้อินเตอร์คาเลท หรือเอกโฟลิเอทที่แตกต่างกันส่งผลให้สมบัติทางความร้อนแตกต่างกันค้วย การ เพิ่มขึ้นของอุณหภูมิการเปลี่ยนจากสถานะคล้ายแก้วนั้นเป็นผลมาจากสายโซ่พอลิเมอร์ถูกจำกัคอยู่ ระหว่างชั้นของเลเยอร์เคลย์ สำหรับกรณีพอลิเอทธิลีนชนิคความหนาแน่นต่ำ/คับเบิลไฮครอกไซค์ เคลย์ นาโนคอมโพสิตนั้น คับเบิลไฮดรอกไซด์ เคลย์ ถูกนำมาดัคแปลงสภาพผิวเช่นเดียวกันโดย ใช้สารถคแรงตึงผิวแบบประจุลบชนิคต่างๆ จากผลการวิจัยพบว่าขนาคหรือโครงสร้างของสารถค แรงดึงผิวนั้นมีความสำคัญอย่างมากต่อโครงสร้างและสมบัติทางความร้อนของนาโนคอมโพสิต นาโนคอมโพสิตที่ได้เป็นแบบผสมระหว่างอินเตอร์กาเลทและเอกโฟลิเอท และพบว่าสารลดแรง ตึงผิวชนิคสายโซ่ยาวคั้งแต่ 12 สายขึ้นไปเหมาะสมที่สุดที่จะนำมาใช้ในการเตรียมนาโนกอมโพ ้สิต นอกจากนั้นพบว่าการเติมออร์กาโนเกลย์ลงไปในพอลิเมอร์นั้นช่วยปรับปรุงทั้งสมบัติทาง ความร้อนและสมบัติสมบัติพลวัตเชิงกลอีกด้วย

ABSTRACT

4782004063: Polymer Science Program
Nattaya Muksing: Modifications of Layered Silicates and Layered
Double Hydroxides for Preparation of Polyolefins Nanocomposites.
Thesis Advisor: Assoc. Prof. Ratanawan Magaraphan, Prof.
Francesco Ciardelli and Asst. Prof. Manit Nithithanakun 206 pp.
Keywords: Layered silicate/ Layered double hydroxide/ Melt intercalation/
Organoclay/ Polypropylene/ Polyethylene/ Nanocomposite

In this desertion, two types of layered inorganic clays: layered silicate and layered double hydroxide (LDH) were chosen as nanofillers for the preparation of polyolefins nanocomposites. Both types of nanocomposites were prepared by melt intercalation technique using a twin screw extruder. The polyolefins grafted maleic anhydride (i.e. PP-g-MAH and PE-g-MAH) were used as the compatibilizer. For polypropylene/layered silicate nanocomposites, the clay was modified with various cationic surfactants to obtain the organoclay. The nanocomposites prepared from organoclay that modified by the longer alkyl chain length surfactant, showed a good property. Two distinct groups of the nanocomposites, from a quasi-exfoliated to an intercalated morphology, were identified. The intercalated/flocculated morphologies were obtained when the organoclay content beyond 3 wt%. The different degrees of exfoliation/intercalation revealed the variable increase in thermal stability of the nanocomposites. The increase in glass transition temperature was related to the confinement effect between the polymer chains and the clay layers. For low density polyethylene/layered double hydroxide (LDH) nanocomposites, the LDH-clay was modified by various anionic surfactants. The result revealed that the size of the anionic surfactants played a vital role for the difference in morphological and thermal property. The obtained nanocomposites established partially exfoliated/intercalated mixed morphology and were preferable when the number of alkyl chain length was larger $(n \ge 12)$. Incorporation of the organoclay enhanced both thermal and dynamic mechanical properties (i.e. storage modulus and glass transition temperature).

1.6

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges her advisor, Assoc. Prof. Rathanawan Magaraphan and Asst. Prof. Manit Nithitanakul for giving her invaluable knowledge, meaningful guidance and beneficial encouragement all along the way.

She also would like to express her sincere thanks to Prof. Francesco Ciardelli, Dr. Elisa Passaglia and Dr. Serena Coiai for giving her useful advises and suggestions as well as their kind taking care while she did a part of her research at Department of Chemistry and Industrial Chemistry, University of Pisa.

She would like also to express her sincere thanks to Prof. Brian P. Grady from University of Oklahoma for giving her useful comments and suggestions and helping her some SAXD and DSC analysis of her materials.

She gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover, she would like to give her special thanks to all members in her research group both from the Petroleum and Petrochemical College, Chulalongkorn University and from Department of Chemistry and Industrial Chemistry, University of Pisa, as well as all of her friends for their help and supports.

She would like also to express her sincere thanks to Asst. Prof. Pomthong Malakul, Asst. Prof. Hathaikarn Manuspiya, and Asst. Prof. Chonlada Ritvirulh for being her dissertation committees, making valuable comments and suggestions.

She wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for her Ph.D. study.

Finally, the author is deeply indebted to the Royal Golden Jubilee Ph.D Program (RGJ) for providing a full scholarship as well as encouragement for doing a part of research work in Italy, and partial fund from National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials and University of Pisa. This work would not be carried out successfully without all financial supports.

TABLE OF CONTENTS

•		PAGE
Т	itle Page	i
А	Abstract (in English)	iii
А	abstract (in Thai)	iv
А	cknowledgements	v
Т	able of Contents	vi
L	ist of Tables	ix
L	ist of Figures	xi
А	bbreviations	xviii
CHAP	TER	
I	INTRODUCTION	1
I	I LITERATURE REVIEW	5
I	II EXPERIMENTAL	53
Г	V EFFECT OF ORGANOCLAYS DISPERSION ON	
	MORPHOLOGY, THERMAL, CRYSTALLIZATION	AND
	MECHANICAL PROPERTIES OF POLYPROPYLE	NE/
	LAYERED SILICATE NANOCOMPOSITES	71
	4.1 Abstract	71
	4.2 Introduction	72
	4.3 Results and Discussion	75
	4.4 Conclusions	93

CHAPTER

V	MORPHOLOGY DEVELOPMENT AND STABILITY		
	OF POLYPROPYLENE/ORGANOCLAY		
	NANOCOMPOSITES	94	
	5.1 Abstract	94	
	5.2 Introduction	95	
	5.3 Results and Discussion	99	
	5.4 Conclusions	117	
VI	MELT RHEOLOGY AND EXTRUDATE SWELL		
	OF POLYPROPYLENE/ORGANOBENTONITE-FILLED		
	POLYPROPYLENE NANOCOMPOSITES	118	
	6.1 Abstract	118	
	6.2 Introduction	118	
	6.3 Results and Discussion	122	
	6.4 Conclusions	138	
VII	ANIONIC SURFACTANTS INTERCALATED		
	LAYERED DOUBLE HYDROXIDES BASED-		
	LOW DENSITY POLYETHLENE NANOCOMPOSITES	139	
	7.1 Abstract	139	

7.2	Introduction	140
7.3	Results and Discussion	144
~ .		

7.4 Conclusions 169

CHAPTER		PAGE
VIII	CONCLUSIONS AND RECOMMENDATIONS	171
	REFERENCES	174
	APPENDICES	196
	Appendix A Some Calculations for Layered Clays	196
	Appendix B Supplementary Results of Chapter IV	200
	Appendix C Supplementary Results of Chapter VII	201
	CURRICULUM VITAE	204

LIST OF TABLES

TABI	TABLE	
	CHAPTER II	
2.1	Chemical formula and characteristic parameter commonly	
	used 2:1 phylosilicates	8
	CHAPTER III	
3.1	Physical properties of Na-bentonite as compared to Na-	
	montmorillonite	53
3.2	Chemical structure of the cationic surfactants	54
3.3	Chemical structure of the anionic surfactants	55
3.4	Resin properties of polypropylene (PP)	56
3.5	Resin properties of low density polyethylene (LDPE)	56
3.6	Desinging formula for preparing PP/layered silicate	60
	nanocomposites	
3.7	Desinging formula for preparing LDPE/Organo-LDHs	62
	nanocomposites	
	CHAPTER IV	
4.1	Swelling power, cation exchange capacity and elemental	
	analysis of Na-Bentonite, Purified Bentonite and Na-	
	Montmorillonite	77
4.2	Chemical structure of alkyl ammonium surfactants and their	
	interlayer spacing after organic modification	81
4.3	The degradation temperature at 10 and 50% weight loss	
	$(T_{10\%} \text{ and } T_{50\%})$, melting (T_m) crystallization temperature (T_c) ,	
	melting enthalpy (ΔH_m), % crystallility (χ_c) of various	
	PP/organoclay nanocomposites	89

CHAPTER V

5.1	DSC and TGA results of PP/PPMAH and PP/organoclay		
	nanocomposites at various OBTN content	1	03
5.2	Xylene and toluene extraction results, % residue, and glass		
	transition temperature of pure PP, PP/PPMAH, and		
	nanocomposites	$z \in 1$	16
		:	
	CHAPTER VI	• •	
6.1	Activation energy (E_a) for viscous flow of organobentonite-		
	filled PP nanocomposites at various shear rates	Ĉ 1	29
6.2	Power law exponent (n) and melt viscosity coefficient (K) of		
	organobentonite-filled PP nanocomposites at various	1	
	temperatures	- 1	130
6.3	The values of α_1 and β_1 for 5 wt% organobentonite-filled PP	2	
	nanocomposites at various shear rates		137
6.4	The values of melt elasticity constants, B_0 and B_1 for unfilled		
	and organobentonite-filled PP nanocomposites	1	37

CHAPTER VII

7.1	The reflections in <00l> series and interlayer spacing for	
	LDH-NO ₃ and the organomodified LDH with different alkyl	
	sulfate surfactants	150
7.2	Designing formula for preparing LDPE/Organomodified	
	LDHs nanocomposites and their thermal properties	163
7.3	Dynamic storage moduli and peak temperature of relaxations	
	for LDPE/organomodified LDHs nanocomposites	166

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Structure of 2:1 phyllosilicates	7
2.2	X-ray diffraction pattern of Na-montmorillonite showing the	
	(001) basal reflections (in bold) and the (hk0) diffraction	
	bands. In some cases, both reflections are overlapping	9
2.3	Schematic represents the cation-exchange process between	
	alkylammonium ions and cations (i.e. Na ⁺ , Li ⁺ , Ca ²⁺)	
	situated in the intercalated between the silicate layers	10
2.4	(A) X-ray diffraction patterns of Na-MMT as the length of	
	the alkylammonium chain increases and (B) TEM images of	
	injection molded HMW nylon 6 nanocomposites as different	
	silicate clays: (a) $(HE)_2M_1R_1$ -WY (higher CEC) and (b)	
	$(HE)_2M_1R_1$ -YM (lower CEC)	11
2.5	Schematic of the orientations of alkylammonium ions in the	
	galleries of layered silicates with different layer charge	
	densities	12
2.6	Schematic of different types of composite arising from the	
	interaction of layered silicates and polymers: Conventional	
	composite, Intercalated nanocomposite and Exfoliated	
	nanocomposite	13
2.7	Schematic illustrates the intercalation of polymer or pre-	
	polymer from solution	16
2.8	Schematic illustrates the in-situ intercalative polymerization	17
2.9	Schematic illustrates the melt intercalation	18
2.10	Schematic depicting the intercalation process between a	
	polymer melt and an OMLS	20

FIGURE

2.11	Schematic depicting the dispersion process of the organized	
	clay in the PP matrix with the aid of compatibilizer (PP-MA)	21
2.12	(A) XRD patterns of a dimethyldioctadecylammonium-	
	modified montmorillonite (2C18-MMT) and all of the	
	functionalized-PP/2C18-MMT nanocomposites at different	
	functional groups: (a) methylstyrene 1 mol %, (b) maleic	
	anhydride 0.5 mol % and (c) hydroxyl-containing styrene 0.5	
	mol % and (B) TEM image of the functionalized-PP/2C18-	
	MMT nanocomposite structure (PPr-MA/6 wt % OMMT)	25
2.13	TEM micrographs (X10,000) of PP/PP-g-MA/Cloisite®20A	
	composites with different PP-g-MA content	26
2.14	TEM images of PP/clay hybrids: (a) PP/MAPP/OMT1, (b)	
	PP/MAPP/OMT2 and (c) PP/MAPP/OMT3	26
2.15	Mechanical properties of PPLSNs as a function of clay	
	content	29
2.16	(A) TGA curves of iPP/OMMT hybrids containing various	
	OMMT contents and (B) thermal degradation temperatures	
	(T _d) as a function of OMMT content	32
2.17	Linear melt-state rheological properties as a function of	
	oscillatory frequency: (a) storage modulus (G') and (b) loss	
	modulus (G")	36
2.18	Schematic Representation comparing the crystal structure of	
	(A) brucite and (B) Layered Double Hydroxide (LDH)	39
2.19	Scheme of Rehydration of calcined LDH precursor	42
2.20	Schematic illustrates the preparation method of	
	polymer/LDH nanocomposites: (A) direct intercalation; (B)	
	in-situ polymerization; (c) in-situ synthesis; (D)	
	exfoliation/restacking and (E) reconstruction	44

xiii

FIGURE

2.21	(A) XRD spectra, (B) TEM images of HDPE-g-MA/LDH	
	(PBXLDH) nanocomposites with (a) 0.5 phr, (b) 1.0 phr, (c)	
	2.0 phr and (d) 10 phr and (C) XRD spectra of PE/stearate	
	ZnAl LDH nancomposites	49
2.22	The tensile properties of polyethylene/LDH nanocomposites	
	comparison with their unfilled matrix	51

CHAPTER III

3.1	The co-rotating twin screw extruder (Collin) and the	
	operating temperatures of the extruder	59
3.2	The Brabender Plastograph (PL2100) mixer	61
3.3	The CEAST Rheologic 500 twin-bore capillary rheometer	67

CHAPTER IV

4.1	XRD patterns of Na-bentonite, Purified bentonite and	
	Na-montmorillonite	75
4.2	XRD patterns of the organoclays modified with different	
	alkyl ammonium surfactants	78
4.3	XRD patterns of PP nanocomposite based: (a) CTAB-clay,	
	(b) BTC-clay, and (c) DOEM-clay, for various organoclay	
	contents	79
4.4	Representative TEM micrographs of PP nanocomposite	
	based: (a) CTAB-clay, (b) BTC-clay, and (c) DOEM-clay,	
	for 5wt% organoclay loading	82
4.5	TGA thermograms of PP/organoclay nanocomposites for	
	different types of organoclay (a) CTAB-clay, (b) BTC-clay,	
	and (c) DOEM-clay	85
4.6	Typical peak deconvolution of amorphous and crystalline	
	components of the PP WAXD profile	87

FIGU	RE	PAG
4.7	WAXD patterns for different types of PP/orgnoclay	
	nanocomposites: (a) CTAB-clay, (b) BTC-clay, and	
	(c) DOEM-clay	88
4.8	Mechanical properties of different PP/organoclay	
	nanocomposites: (a) Tensile strength, (b) Tensile modulus,	
	and (c) %Elongation at break	91
	CHAPTER V	
5.1	XRD patterns of PP/organoclay nanocomposites at various	
	OBTN contents	100
5.2	Crystallization thermograms of PP/organoclay	
	nanocomposites at various OBTN contents	101
5.3	DSC thermograms of PP/organoclay nanocomposites at	
	various OBTN contents: determination of the glass transition	
	temperature (T_g)	102
5.4	TGA (top) and DTG (bottom) thermograms of	
	PP/organoclay nanocomposites at various OBTN contents	104
5.5	FTIR spectra of (a) 7 wt% OBTN nanocomposite xylene-	
	residue, (b) OBTN organoclay, and (c) PP/PPMAH blend	106
5.6	XRD pattern of the 7wt% OBTN nanocomposite xylene-	
	residue fraction	106
5.7	FTIR spectra of the (a) soluble fractions and (b) residues of	
	PP/organoclay nanocomposites at various OBTN contents	108
5.8	XRD patterns of PP/organoclay nanocomposite (a) residue	
	and (b) soluble fractions at various OBTN content	110
5.9	TEM micrographs of the 5 wt% PP/organoclay	
	nanocomposite (a) composite, (b) residue fraction, and (c)	
	soluble fraction	112

xiv

5.10	Schematic representation of the morphology before and after	
	solvent extraction	115

CHAPTER VI

6.1	Apparent shear stress of organobentonite-filled PP	
23	nanocomposites as function of apparent shear rate at	
1	varying OBTN concentrations	122
6.2	Apparent shear viscosity of organobentonite-filled PP	
	nanocomposites as a function of apparent shear rate at	
1	varying OBTN concentrations	123
6.3	Apparent shear viscosity as a function of organobentonite	
	concentrations at two constant shear rates (50 and 2000 s^{-1})	
5	and various temperatures	125
6.4	Apparent shear viscosity for 5 wt% of organobentonite-filled	
	PP nanocomposites as a function of shear rates at various	
	temperatures	127
6.5	Apparent shear viscosity of 5 wt% of organobentonite-filled	
	PP nanocomposites as a function of reciprocal temperatures	
	(1/T) at various shear rates	127
6.6	Extrudate swell (%) of unfilled and organobentonite-filled	
	PP nanocomposites as a function of apparent shear rates	
	(190°C)	134
6.7	SEM micrographs of the extrudates obtained at 210°C: (a)	
	effect of the apparent shear rates (at 5 wt% OBTN filled);	
	and, (b) effect of OBTN concentrations (at a fixed	
	$\gamma_{\rm app} = 400 {\rm s}^{-1})$	135
6.8	Extrudate swell for 5 wt% organobentonite-filled PP	
	nanocomposite as a function of temperature at various	
	apparent shear rates	136

PAGE

FIGURE

6.9	Extrudate swell (%) of organobentonite-filled PP	
	nanocomposites as a function of apparent shear stress (at	
	190°C)	136

CHAPTER VII

7.1	Chemical structures of anionic surfactants guest molecules	
	used for intercalation LDH-NO ₃	143
7.2	XRD patterns (a) and FTIR spectrum (b) of LDH-NO $_3$ as	
	compared with LDH-CO ₃	145
7.3	The effect of alkyl chain length (n_c) of \mathbb{I} ulphate surfactants	
	on: (a) XRD pattern of the organomodified LDHs, (b) d-	
	spacing and their arrangement between the LDH layers, and	
	(c) average crystallite size	148
7.4	SEM micrographs of (a) LDH-CO ₃ , (b) LDH-NO ₃ , (c) LDH-	
	C8, (d) LDH-C12, and (e) LDH-C20 at low and high	
	magnifications	152
7.5	The FTIR spectra of (a) LDH-NO ₃ , (b) LDH-C8, (c) LDH-	
	C12, and (d) LDH-C20	154
7.6	TGA/DTG curves of LDH-NO3 and the organomodified	
	LDHs	155
7.7	Torque vs. time plot during melt mixing (a) and XR D	
	patterns (b) of LDPE/organomodified LDHs nanocomposites	157
7.8	SEM micrographs of the nanocomposites (a) LDPE/LDH-	
	C8, (b) LDPE/LDH-C12, and (c) LDPE/LDH-C20 at the low	
	(3000X, left) and high (10000X, right) magnifications	159
7.9	TGA (a) and DTG (b) thermograms of LDPE/	
	organomodified LDHs nanocomposites	161

FIGURE

PAGE

7.10	The dynamic (a) storage modulus, (b) loss modulus, and (c)	
	loss tangent of LDPE/organomodified LDHs	
	nanocomposites	165
7.11	(a) compared XRD patterns, (b) low and high magnification	
	SEM images, and (c) $E'_{\text{composite}}/E'_{\text{pure matrix}}$ for 2.5 and 5 wt%	
	of LDH-C12 nanocomposites	168

Abbreviations

BTC	N-alkyl dimethyl ammonium chloride salt
BTN	bentonite
CEC	cation exchange capacity
CTAB	Hexadecyltrimethy ammonium bromide
DOEM	Methy di-[(partially hydrogenated) tallow carboxyethyl]-
	2-dihydroxyethyl ammonium methyl sulfate
LDH	layered double hydroxide
LDH-C8	layered double hydroxide modified with 2-ethylhexyl sulfate/C8
LDH-C12	layered double hydroxide modified with dodecyl sulphate/C12
LDH-C12	layered double hydroxide modified with eicosyl sulfate/C20
LDPE	low density polyethylene
Mg-Al-LDH	magnesium-aluminium layered double hydroxide
MMT	montmorillonite
ODTN	
OBIN	organomodified bentonite
OMLS	organomodified bentonite organo-modified layered silicate, organosilicate
OMLS PCN	organomodified bentonite organo-modified layered silicate, organosilicate polymer–clay nanocomposite
OBTN OMLS PCN PE-g-MA	organomodified bentonite organo-modified layered silicate, organosilicate polymer–clay nanocomposite polyethylene grafted maleic anhydride
OBTN OMLS PCN PE-g-MA PLSNs	organomodified bentonite organo-modified layered silicate, organosilicate polymer–clay nanocomposite polyethylene grafted maleic anhydride polymer layered silicate nanocomposites
OBTN OMLS PCN PE-g-MA PLSNs PP	organomodified bentonite organo-modified layered silicate, organosilicate polymer–clay nanocomposite polyethylene grafted maleic anhydride polymer layered silicate nanocomposites polypropylene