MORPHOLOGICAL AND ELECTROCHEMICAL STUDY OF IRON OXIDE/CARBON XEROGEL NANOCOMPOSITES FOR SUPERCAPACITOR

Pattheera Hongsumreong

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2011

Thesis Title:

Morphological and Electrochemical Study of Iron

Oxide/Carbon Xerogel Nanocomposites for Supercapacitor

By:

Pattheera Hongsumreong

Program:

Polymer Science

Thesis Advisors:

Assoc. Prof. Sujitra Wongkasemjit

Asst. Prof. Thanyalak Chaisuwan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof/Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyalek Chais ...

(Asst. Prof. Thanyalak Chaisuwan)

(Asst. Prof. Hathaikarn Manuspiya)

Hathailian M.

(Assoc. Prof. Atchana Wongchaisuwat)

บทคัดย่อ

พัทธ์ธีรา หงษ์สำเริง : การศึกษาเชิงสัณฐานวิทยาและเชิงเคมีไฟฟ้าของคอมพอสิตนาโน ระหว่างออกไซค์ของเหล็กและคาร์บอนซีโรเจลสำหรับเป็นขั้วเก็บประจุไฟฟ้าที่มีประสิทธิภาพสูง (Morphological and Electrochemical study of Iron Oxide/Carbon Xerogel Nanocomposites for Supercapasitor) อ.ที่ปรึกษา : รองศาสตราจารย์ คร.สุจิตรา วงศ์เกษมจิตต์ และ ผู้ช่วยศาสตราจารย์ คร.ธัญญลักษณ์ ฉายสุวรรณ์ 57 หน้า

ขั้วเก็บประจุไฟฟ้าซึ่งผลิตจากคอมพอสิตผสม สำหรับทำเป็นขั้วเก็บประจุไฟฟ้าประสิทธิ-ภาพสูงถูกเตรียมจากออกไซค์ของเหล็กและนาโนพอรัสคาร์บอนที่ทำมาจากพอลิเบนซอกซาซีน ง ขั้นแรกพอลิเบนซอกซาซีนที่มีรูพรุนถูกเตรียม โคยกระบวนการ โซล-เจล ก่อนนำไปเผาภายใต้ ในโครเจนที่อุณหภูมิสูง ได้เป็นนาโนพอรัสคาร์บอน เพื่อที่จะปรับปรุงประสิทธิภาพเชิงเคมีไฟฟ้า ของขั้วเก็บประจุไฟฟ้า ในเรื่องความสามารถด้านการเปี๊ยกของอิเล็กโทรไลต์บนผิวหน้าคาร์บอนที่ มีรูพรุนนั้น นาโนพอรัสคาร์บอนถูกนำไปให้ความร้อนภายใค้บรรยากาศที่อุณภูมิ 300 องศา เซลเซียส มีผลให้พื้นที่ผิวของคาร์บอนซีโรเจลหลังผ่านการให้ความร้อน มีค่าประมาณ 372 ตาราง เมตรต่อกรัม จากการศึกษาคุณสมบัติทางเคมีไฟฟ้าโดยไซคลิกโวลแทมเมททรี, ชาร์จ/ดิส ชาร์จ และอิเล็กโตรเคมิคอลอิมพีแคนซ์ ผลปรากฏว่าขั้วเก็บประจุไฟฟ้าที่เตรียมจากพอลิเบนซอกซาซีน ้มีคณสมบัติทางเคมีไฟฟ้าที่มีประสิทธิภาพที่ดี ค่าความจไฟฟ้าจำเพาะของขั้วเก็บประจไฟฟ้า คาร์บอนซีโรเจลที่ผ่านการให้ความร้อนแล้วมีค่า 108 ฟารัคต่อกรับ โคยใช้โพแทสเซียมไฮครอก ไซค์เข้มข้น 6 โมลาร์ เป็นอิเล็กโทรไลต์และใช้ความหนาแน่นของกระแสไฟฟ้าที่ 5 มิลลิแอมแปร์ ต่อตารางเซนติเมตร นอกจากการศึกษาผลกระทบของโครงสร้างในระดับไมโครเมตรของนาโน พอรัสการ์บอนแล้ว ปริมาณออกไซค์ของเหล็ก (Fe $_{i}O_{j}$) ที่ 1 3 และ 5 เปอร์เซนต์โคยน้ำหนัก ซึ่งมี ผลต่อสมบัติทางเคมี ไฟฟ้าของขั้วเก็บประจุไฟฟ้าคอมพอสิตถูกศึกษาด้วยเช่นกัน ลักษณะเฉพาะ เชิงเคมีไฟฟ้าซี้ให้เห็นว่า ปริมาณออกไซต์ของเหล็ก 3 เปอร์เซนต์โดยน้ำหนัก ที่ใช้ในการเตรียมขั้ว เก็บประจุไฟฟ้าคอมพอสิตมีค่าความจุไฟฟ้าจำเพาะสูงสุด 120 ฟารัคต่อกรัม เมื่อเปรียบเทียบกับ ตัวอย่างอื่น เนื่องมาจากสมบัติจำเพาะชนิดหนึ่งของออกไซค์ของเหล็กซึ่งเรียกว่า pseudocapacitive พฤติกรรมทางเคมีไฟฟ้านี้ถูกยืนยันด้วยไซคลิกโวลแทมเมททรีและอิมพีแคนซ์สเปก properties โตรสโกพี

ABSTRACT

5272019063: Polymer Science Program

Pattheera Hongsumreong: Morphological and Electrochemical Study of Iron Oxide/Carbon Xerogel Nanocomposites for Supercapacitor. Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, and Asst. Prof.

Thanyalak Chaisuwan 57 pp.

Keywords: Carbon Xerogel/Iron oxide/ Polybenzoxazine/Supercapacitor

A hybrid composite electrode for supercapacitor has been prepared from iron oxide and nanoporous carbon derived from polybenzoxazine. First, porous polybenzoxazine was prepared through a sol-gel process before pyrolysis under nitrogen gas at high temperature yielding nanoporous carbon. In order to improve an electrochemical performance of the electrodes, nanoporous carbon was underwent the heat treatment at 300 °C in air to improve the wettability of the electrolyte on the surface of porous carbon. The BET surface area of the heat-treated carbon xerogel was approximately 372 m²/g. The cyclic voltammeter, galvanostatic charge/discharge, and electrochemical impedance spectroscopy were used to investigate the electrode performance. The results showed that the electrodes prepared from polybenzoxazinederived-carbon xerogel exhibited good electrochemical performance. A specific capacitance of the heat-treated carbon xerogel electrodes was 108 F/g obtained in 6M KOH at current density 5 mA/cm². In addition to the effect of the nanoporous carbon microstructure, the effect of iron oxide (Fe₃O₄) content (1, 3, and 5 wt.%) on the electrochemical properties of the composite electrodes was also investigated. Electrochemical characterization indicated that 3 wt.% Fe₃O₄-impregnated carbon xerogel with heat treatment showed the highest specific capacitance (120 F/g) due to the pseudocapacitive properties of iron oxide. The electrochemical impedance spectroscopy and cyclic voltammetry were also confirmed this electrochemical behavior.

ACKNOWLEDGEMENTS

The author would like to thank Assistant Professor Thanyalak Chaisuwan and Associate Professor Sujitra Wongkasemjit, her advisors, who not only originated this work, but also gave her continuous support, good suggestion, intensive recommendation and for the help, patience, encouragement they have shown during her one year in their research group.

She also would like to express her appreciation to Associate Professor Atchana Wongchaisuwat, her committee, for the wonderful comments, worth advices, her kindness and helps.

She wishes to thank other thesis committee; Assistance Professor Hathaikarn Manuspiya for her sugguestions.

A deep appreciation is expressed to Associate Professor Suwabun Chirachanchai for the electrochemical measurement.

She appreciates Ms. Nuntiya Mahingsupan, her senior, for her useful suggestions, helps, and friendship.

This thesis work is funded by the Petroleum and Petrochemical College, and by the National of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

She would like to thanks T.F.G. Enterprise Co., Ltd. for kindly support materials used in this research.

Her thanks are also to all Sujitra's and Thanyalak's group members both her seniors and her friends for their helps, good suggestions, friendship, and all the good memories.

Last, but not least, she thanks her family for giving her life, for educating her and giving the unconditional support to pursue her interests, and also for their love and encouragement.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abstı	ract (in English)	iii
	Absti	ract (in Thai)	iv
	Ackn	owledgements	v
	Table	e of Contents	vi
	List	of Tables	viii
	List	of Figures	ix
	Abbr	eviations	xi
CH.	APTE	R	
	I	INTRODUCTION	1
	11	LITERATURE REVIEW	3
	Ш	EXPERIMENTAL	16
		3.1 Materials	16
		3.2 Measurements	16
		3.3 Methodology	
		3.3.1 Synthesis of Polybenzoxazine Xerogels	17
		3.3.2 Preparation of Iron Oxide	18
		3.3.3 Preparation of Carbon Xerogel Electrodes	18
		3.3.4 Preparation of Carbon Xerogel Composite Electrodes	19
		3.3.5 Characterization of Iron Oxide (magnetite),	
		Polybenzoxazine Precursor, and Carbon Xerogel	
		Electrodes	19
	IV	MORPHOLOGICAL AND ELECTROCHEMICAL STUDY	7
		OF IRON OXIDE/CARBON XEROGEL	
		NANOCOMPOSITES FOR SUPERCAPACITOR	20

CHAPTER		PAGE
	4.1 Abstract	20
	4.2 Introduction	21
	4.3 Experimental	22
	4.3.1 Materials	22
	4.3.2 Measurements	22
	4.3.3 Methodology	23
	4.4 Results and Discussion	26
	4.4.1 Thermal Behaviors of Polybenzoxazine Precursors	26
	4.4.2 The Chemical Structure of Polybenzoxazine Precurso	rs 27
Ś	4.4.3 Surface Characterization of Polybenzoxazine-Derived	
	Carbon Xerogel	27
	4.4.4 Morphology of Carbon Xerogels, Heat-treated	
	Carbon Xerogels, and Hybrid composites	28
	4.4.5 Morphology and Characterization of	
	Iron Oxide (Magnetite)	30
	4.4.6 Electrochemical Characterizations	32
	4.4.6.1 Cyclic Voltammetry Behaviors	32
	4.4.6.2 Charge-Discharge Behaviors	37
	4.4.6.3 Electrochemical Impedance Characteristics	39
	4.5 Conclusions	44
	4.6 Acknowledgements	44
	4.7 References	45
V	CONCLUSIONS AND RECOMMENDATIONS	48
	REFERENCES	49
	CURRICULUM VITAE	56

LIST OF TABLES

TABLE		PAGE	
	CHAPTER II		
2.1	The molar ratio of bisphenol-A (BA), aldehydes, and amines		
	in each precursor	14	
	CHAPTER IV		
4.1	Surface area, pore volume and pore diameter of carbon		
	xerogels prepared from benzoxazine precursor	28	
4.2	The specific capacitance of carbon xerogel electrodes		
	calculated from discharge curves	38	

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER II	
2.1	Scheme of the electrical double-layer capacitors (EDLCs)	4
2.2	Impregnation method for preparation procedure of the Co-	6
	doped carbon aerogel	
2.3	Schematic diagram of the reaction of resorcinol with	
	formaldehyde	7
2.4	Synthesis of 3,4-dihydro-2H-1,3-benzoxazines	11
2.5	Chemical structure of benzoxazine (B-m) monomer	12
2.6	Synthesis of polybenzoxazine precursors	12
2.7	Preparation of AB-p-aminophenol (AB-PAP) as a	
	benzoxazine prepolymer	13
2.8	Preparation of polyBA-teta precursor treated	14
2.9	The structure of poly BA-tetra in the fully cured stage	14
9		
	CHAPTER III	
3.1	Preparation of polybenzoxazine precursor	18
	CHAPTER IV	
4.1	DSC thermograms of polybenzoxazine precursor	26
4.2	TGA thermogram of polybenzoxazine precursor	26
4.3	FTIR spectra of polybenzoxazine precursors	27
4.4	SEM micrographs of synthesized carbon xerogels: (a), (b) no	
	heat treated, and (c), (d) heat treated at 300 °C in air	29
4.5	SEM micrographs of hybrid composite electrodes at	
	different magnification: (a), (b) heat treated at 300 °C in air	
	and impregnated with Fe ₃ O ₄	29

4.6	SEM micrograph of magnetite nanopaticles on the electrode		
	surface (Fe ₃ O ₄ -impregnated on heat-treated carbon		
	xerogels)		31
4.7	XRD patterns of the magnetite (Fe3O4) nanoparticles		31
4.8	Cyclic voltammograms of carbon xerogel electrodes at a		
	scan rate of 1 and 5 mV/s: (a) no heat treated and (b) heat-		
	treated at 300 °C in air		33
4.9	Cyclic voltammograms of carbon xerogel electrodes at a		
	scan rate of 1, 2, 5, 8, and 10 mV/s: (a) no heat treated and	1	
	(b) heat-treated at 300 °C in air		34
4.10	Cyclic voltammograms of 1, 3, and 5 wt.% Fe ₃ O ₄ -		
	impregnated on heat-treated carbon xerogels at different	-	
545	scan rates: (a) scan rate = 1 mV/s , (b) scan rate = 5 mV/s ,		
	and (c) scan rate = 10 mV/s		36
4.11	Charge/discharge curves of the carbon xerogel and hybrid		
-	composite electrodes measured at 5 mA/cm ²		38
4.12	Nyquist plots for carbon xerogel and hybrid composite	-01	
	electrodes		41
4.13	Nyquist plots for carbon xerogel and heat-terated carbon		
	xerogel		42
4.14	Nyquist plots of 1 wt% Fe ₃ O ₄ impregnated on heat-treated		
	carbon xerogels		42
4.15	Nyquist plots of 3 wt% Fe ₃ O ₄ impregnated on heat-treated		
	carbon xerogels		43
4.16	Nyquist plots of 5 wt% Fe ₃ O ₄ impregnated on heat-treated		
	carbon xerogels		43
4.17	The equivalent circuit of carbon aerogel electrodes		44

ABBREVIATIONS

CX Carbon xerogel

Heat-treated CX Heat-treated carbon xerogel