การตรึงอนุภาคเงินนาโนบนเส้นใยสิ่งทอโดยใช้เทคนิคพีอีเอ็ม

นางสาวผาณิตมาส กำลังดัสนะ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-14-2309-8 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IMMOBILIZATION OF SILVER NANOPARTICLES ON TEXTILE FIBERS USING PEM TECHNIQUE

Miss Panittamat Kumlangdudsana

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Applied Polymer Science and Textile Technology Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2005 ISBN 974-14-2309-8

481993

Thesis title	Immobilization of Silver Nanoparticles on Textile Fibers
	using PEM Technique
Ву	Miss Panittamat Kumlangdudsana
Field of study	Applied Polymer Science and Textile Technology
Thesis Advisor	Associate Professor Pranut Potiyaraj, Ph.D.
Thesis Co-advisor	Mr. Stephan T. Dubas

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree.

Jame Henry Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Aj Mij Chairman

(Associate Professor Saowaroj Chuayjuljit)

(Associate Professor Pranut Potiyaraj, Ph.D.)

(Mr. Stephan T. Dubas)

Payson Santuh Member

(Associate Professor Paiparn Santisuk)

Kauer Snikullut Member

(Associate Professor Kawee Srikulkit, Ph.D.)

ผาณิตมาส กำลังดัสนะ : การตรึงอนุภาคเงินนาโนบนเส้นใยสิ่งทอโดยใช้เทคนิคพีอีเอ็ม. (IMMOBILIZATION OF SILVER NANOPARTICLES ON TEXTILE FIBERS USING PEM TECHNIQUE) อ.ที่ปรึกษา : รศ.ดร.ประณัฐ โพธิยะราช และ อ.ที่ปรึกษาร่วม : Mr. Stephan T. Dubas 107 หน้า. ISBN 974-14-2309-8.

งานวิจัยนี้ได้สังเคราะห์อนุภาคเงินที่มีขนาดในระดับนาโนจากสารละลายซิลเวอร์ไนเตรตที่มีพอลิอิเล็ก โทรไลต์ คือ พอลิเมทาคริลิคแอซิด ด้วยปฏิกิริยาโฟโตรีดักซันภายใต้แสงอาทิตย์ นำสารละลายมาวิเคราะห์ด้วย กล้องจุลทรรศน์อิเล็กตรอนซนิดส่องผ่านและยูวีวิสซิเบิลสเปกโทรโฟโตมิเตอร์ เพื่อยืนยันการเกิดอนุภาคเงินใน ระดับนาโน อนุภาคเงินหุ้มด้วย PMA ถูกนำมาตรึงบนเส้นใยไหมและไนลอน ด้วยการสร้างเป็นฟิล์มบางหลายชั้น กับ พอลิไดอะลิลไดเมทิลแอมโมเนียมคลอไรดท์ ด้วยเทคนิค layer-by-layer เมื่อนำเส้นใยไปวิเคราะห์การเติบโต ของฟิล์มด้วยเทคนิคสเปกโทรโฟโตเมทรีพบว่าสามารถทำการตรึงอนุภาคเงินบนเส้นใยไหมและไนลอนได้ เส้นใย ที่ผ่านการตรึงด้วยอนุภาคเงินดังกล่าวสามารถต้านแบคทีเรียได้อย่างมีประสิทธิภาพเมื่อทดสอบกับแบคทีเรียชนิด staphylococcus aureus โดยเส้นใยที่ได้มีสีเหลืองและเปลี่ยนเป็นสีแดงในทันทีเมื่อได้รับแสง เนื่องมาจากการ เกิดผลึกของซิลเวอร์คลอไรด์ ความสามารถในการต้านแบคทีเรียนี้จึงเกิดจากทั้งอนุภาคเงินและไอออนของเงินใน รูปผลึกของซิลเวอร์คลอไรด์ ดังนั้นเพื่อยืนยันว่าอนุภาคเงินเพียงอย่างเดียวสามารถทำให้เส้นใยต้านแบคทีเรีย ได้ จึงได้ทดลองเตรียมอนุภาคเงินที่มีขนาดในระดับนาโนจากสารละลายซิลเวอร์ไนเตรตที่มี พอลิอิเล็กโทรไลด์ คือ พอลิ 4-สไตรีนซัลโฟนิกแอซิด และ อัลจินิกแอซิด ซึ่งให้ปริมาณอนุภาคเงินสูงกว่า PMA และเป็นการลดผล ของไอออนของงนิน นำอนุภาคเงินที่มุมด้วย CoPSS และ alginate มาตรึงลงบนเส้นใยไหม พบว่าเส้นใยที่ได้มีลี เหลืองและไม่เกิดการเปลี่ยนแปลงเมื่อได้รับแสง แสดงว่ามีผลึกซิลเวอร์คลอไรต์ในปริมาณน้อยมาก อีกทั้งยัง พบว่าเส้นใยที่ได้สามารถต้านทนแบคทีเรียได้อย่างมีประสิทธิภาพเช่นเดียวกัน

4772384623 : MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY KEY WORD: POLYELECTROLYTE MULTILAYER / LAYER-BY-LAYER / SILVER NANOPARTICLES / NYLON / SILK

MISS PANITTAMAT KUMLANGDUDSANA : IMMOBILIZATION OF SILVER NANOPARTICLES ON TEXTILE FIBERS USING PEM TECHNIQUE. THESIS ADVISOR : ASSOC. PROF. PRANUT POTIYARAJ, Ph.D., THESIS COADVISOR : MR. STEPHAN T. DUBAS, 107 pp. ISBN 974-14-2309-8.

In this research, silver nanoparticles capped with polyelectrolyte were prepared by photo-reduction of silver nitrate in dilute solution of poly (methacrylic acid) (PMA) under sun light. The formation of the nanoparticles was confirmed using a transmission electron microscope and UV-Vis spectrophotometer. The silver nanoparticles capped with PMA were immobilized on silk and nylon fibers by using the layer-by-layer technique, that is the sequential dipping of fibers in dilute solutions of poly(diallyldimethylammonium chloride) (PDAD) and polyelectrolyte capped silver. A reflectance spectrophotometer was used to analyze the growth of the multilayer thin films. The results indicate that the silver nanoparticles were successfully immobilized on silk and nylon fibers. It was also found that the coated fibers showed effective antimicrobial activity when tested against *staphylococcus aureus*. The deposition led to the appearance of a red color on the fiber when exposed to light due to the formation of silver chloride. The antimicrobial properties of PMA capped silver deposited on fiber were consequently due to the effects of silver nanoparticle and silver ions in the form of silver crystalline (AgCl). In order to confirm the antimicrobial activity of silver nanoparticles, silver nanoparticles capped with CoPSS and alginate were prepared as the yields of silver nanoparticles prepared from these two polyelectrolytes were found to be much higher than that of PMA. A high yield solution can be used to decrease the effect of the excess silver ion. PDAD/CoPSS capped silver and PDAD/alginate capped silver were then coated onto silk fiber. The obtained fibers showed yellow color which did not change under light. Antimicrobial capability of these fibers was also found to be effective.

Department of.....Materials Science..... Student's signature. Pamilamat Kumlangdudsana Field of study Applied Polymer Science and Textile Technology Advisor's signature. Co-advisor's signature......

ACKNOWLEDGEMENTS

The author would like to thank many people for kindly providing the knowledge of this study.

And, the most important thing for this completed thesis is advice and professional aid of my advisor and co-advisor. I wish to express gratitude to Associate Professor Dr. Pranut Potiyaraj and Mr. Stephan T. Dubas.

I gratefully acknowledge the generous access to research facilities and chemical support from Metallurgy and Materials Science Research Institute. The nylon multifilament used in this study was kindly supported by Asia Fiber Co.Ltd.

I truly thank many helping hand throughout my study including Miss Chularat Iamsamai and other student in Department of Materials Science, Chulalongkorn University and Miss Maysinee Jindatham Department of Metallurgical Engineering Faculty of Engineering Chulalongkorn University.

Finally, I would like to express my greatest appreciation to my family for their support and encouragement.

CONTENTS

ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xii

CHAPTER

I	INTRODUCTION	1

II	THE	ORY A	AND LITERATURE REVIEW	3
	2.1	Defini	tion and General Description of Polyelectrolyte	3
	2.2	The La	ayer-by-Layer Deposition	8
	2.3	Prepar	ration of Silver Colloids	12
		2.3.1	The Formation of Colloidal Systems	14
		2.3.2	Methods of Silver Particles Preparation	15
	3	2.3.3	Silver Colloids Applications	18
	2.4	Nylon	Fibers	20
		2.4.1	Fibre Production	23
		2.4.2	Types of Nylon Yarn	24
		2.4.3	Molecular Structure	26
		2.4.4	Microscopic Properties	26
		2.4.5	Physical Properties	27
		2.4.6	Thermal Properties	28
		2.4.7	Chemical Properties	28
		2.4.8	Biological Properties	29
	2.5	Silk F	ibers	29

D	
P	age

		2.5.1 Molecular Structure	31
		2.5.2 Microscopic Properties	31
		2.5.3 Physical Properties	32
		2.5.4 Thermal Properties	33
		2.5.5 Chemical Properties	33
		2.5.6 Biological Properties	34
	2.6	Optical and Electron Microscopy	35
		2.6.1 The Transmission Electron Microscope	36
		2.6.2 The Scanning Electron Microscope	37
	2.7	Spectrophotometer	38
	2.8	Kubelka - Munk Equation	39
III	EXP	ERIMENTAL	44
	3.1	Materials and Chemicals	44
		3.1.1 Materials	44
		3.1.2 Chemicals	44
	. 3.2	Equipments	46
	3.3	Procedure	47
		3.3.1 Synthesis Silver Nanoparticles Solutions	47
		3.3.2 Preparation of Polyelectrolyte Multilayer Thin Films	50
		3.3.3 Characterization	56
IV	RES	ULTS AND DISCUSSION	60
	4.1	Synthesis of Silver Nanoparticles	60
		4.1.1 Selection of Polyelectrolytes	60
		4.1.2 Effects of Polyelectrolyte Concentration	62

	4.1.3 Effect of AgNO ₃ Concentration	54
	4.1.4 Kinetic of the Formation of Ag Particles in PMA	56
	4.1.4.1 Kinetic of the Formation of Ag Particles in	
	Different Types of Polyelectrolyte	57
	4.1.4.2 Optical-absorption Properties	58
4.2	Layer-by-layer Deposition on Textile Fibers	71
4.	Effect of Primers	72
4.	Layer-by-Layer Deposition of	
	PMA capped Silver Nanoparticles on Fibers	74
4.	Layer-by-Layer Deposition of CoPSS capped Silver	
	Nanoparticle and Alginate capped Silver Nanoparticle on Fibers.	84
4.	Antimicrobial Test on Fiber	89
v co	NCLUSIONS	92
5.	Conclusion	92
5.	Suggestions	93
REFEREN	CES	95
APPENDI	ES	99
Al	PENDIX A 1	00
Al	PENDIX B 1	02
BIOGRAF	-IΥ 1	07

LIST OF TABLES

	LISI OF TABLES	
TABLE	1	Page
Table 2.1	Selected classes of polyelectrolytes	5
Table 2.2	Structures of ionic sites of PEL	6
Table 2.3	Determination of the diameter of spherical particles by optical	
	microscopy	35
Table 3.1	Experimental condition of the comparation the PEM	
	between primer and no-primer on silk and nylon fiber	52
Table 3.2	Experimental condition of constructed PEM on silk at	
	various number of layer	52
Table 3.3	Experimental condition of constructed PEM on silk at various	
	number of layer compared with dipped no PDAD solution	53
Table 3.4	Experimental condition of constructed PEM on nylon at	
	various number of layer compared with dipped no PDAD	
	Solution	53
Table 3.5	Experimental condition of constructed on silk with	
	AgNO ₃ and NaCl	54
Table 3.6	Experimental condition of constructed PEM on silk with	
	CoPSS solution at various number of layer	54
Table 3.7	Experimental condition of constructed PEM on silk with	
	alginate solution at various number of layer	55
Table 4.1	The color of mixed solution between silver nitrate and	
	polyelectrolyte	61
Table 4.2	Antimicrobial test on silk and nylon fibers coated with	
	PMAcapAg and PDAD	89
Table 4.3	Antimicrobial test on silk fibers coated with CoPSScapAg and	
	PDAD	90

TABLE

Table 4.4	Antimicrobial test on silk fibers coated with AlginatecapAg	
	and PDAD	90

LIST OF FIGURES

FIGURE

Figure 2.1	Chemical structure of (a) sodium poly(styrene sulfonate) and	
	(b) poly(diallyldimethylammonium chloride)	3
Figure 2.2	Dissociation equilibrium of the weak polyelectrolytes	
	(a) poly(acrylic acid) and (b) poly(ethylene imine)	4
Figure 2.3	Chemical structure of a maleic acid-diallylamine copolymer	5
Figure 2.4	PEL of the integral of pendant type: (a) linear	
	poly(ethylene imine) as an example of the integral type and	
	(b) poly(vinylamine) as an example of the pendant type	7
Figure 2.5	Schematic of the electrostatic self-assembly	9
Figure 2.6	Schematic of chemical multistep synthesis	
	and multilayer deposition	10
Figure 2.7	Schematic of reagents for layer-by-layer deposition	11
Figure 2.8	Schematic of summary of some of the advantages of	
	layer-bylayer deposition	12
Figure 2.9	Schematic of nylon 6 fiber production	24
Figure2.10	The synthesis of nylon 6,6	26
Figure2.11	Photomicrographs of delustered, regular nylon in	
	a cross section (right) and a longitudinal view (left)	27

	a cross section (right) and a longitudinal view (left)	27
Figure2.12	Molecular structure of silk	31
Figure2.13	Optical photographs of raw silk fiber in a cross section (right)	
	and a longitudinal view (left)	32
Figure2.14	Schematic presentation of the transmission electron microscope	36
Figure 3.1	Schematic diagram of synthesis silver nanoparticles solutions	49
Figure 3.2	Resin holder supports	50
Figure 3.3	Schematic of the layer-by-layer deposition technique	51

FIGURE

Figure 3.4	Macbeth COLOR EYE® 7000 spectrophotometer	56
Figure 3.5	UV-Vis Spectrophotometer (SPECORD S 100, Analytikjena)	57
Figure 3.6	JEOL scanning electron microscope, JSM-6400, Japan	58
Figure 3.7	JEOL transmission electron microscope, JEM 2100, Japan	58
Figure 4.1	UV-Visible absorption spectra of mixed solution between	
	silver nitrate and various PMA concentration. The inset shows	
	the absorbance at $\lambda_{max}(461 \text{ nm})$ vs PMA concentration	63
Figure 4.2	UV-Visible absorption spectra of mixed solution between PMA	
	and various silver nitrate concentration. The inset shows the	
	absorbance at $\lambda_{max}(500 \text{ nm})$ vs silver nitrate concentration	65
Figure 4.3	Time evolution of the UV-Vis spectra during the formation of	
	Ag particles in PMA. The inset shows the absorbance	
	at λmax (500nm) vs times	66
Figure 4.4	Kinetic of Ag nanoparticles absorbance at different type	
	of polyelectrolyte : Alginate (square), CoPSS (diamond)	
	and PMA (circle)	67
Figure 4.5	Schematic of surface plasmon band	68
Figure 4.6	Schematic of silver in solution	69
Figure 4.7	TEM images of silver particles at different type of polyelectrolyte.	70
Figure 4.8	K/S value as a function of the number of	
	PDAD-silver nanoparticle layer	72
Figure 4.9	K/S value of silk primer and no-primer	73
Figure4.10	K/S value of nylon primer and no-primer	73
Figure4.11	K/S value as a function of the number of PDAD-silver layer	
	(PMAcapAg) (diamond) and number of silver layers	
	without PDAD (square) on silk fiber	74

FIGURE

Figure4.12	K/S value as a function of the number of PDAD-silver layer	
	(diamond) and number of silver layers without PDAD (square) on	
	on nylon fiber	75
Figure4.13	Scanning electron microscopy of the silk uncoated	76
Figure4.14	Silk fiber after deposited silver nanoparticles at night (left) and	
	became red at next morning (right)	77
Figure4.15	K/S value as a function of the number of AgNO ₃ -NaCl layer	
	on silk fiber	78
Figure4.16	Scanning electron microscopy of the silk dipped in AgNO ₃	
	and NaCl	78
Figure4.17	Cubic structure of Silver chloride	79
Figure4.18	K/S value as a function of the number of AgNO ₃ -NaCl layer	
	on silk fiber and dipping of silk in 1% w/w ammonia solution	
	at last step	80
Figure4.19	Scanning electron microscopy of the silk dipped in AgNO3 and	
11	NaCl and dipping of silk in 1% w/w ammonia solution	
	at last step	80
Figure4.20	K/S value as a function of the number of PDAD-silver layer on	
	silk fiber and rinsed with 1% w/w ammonia solution	
	every layer	81
Figure4.21	Scanning electron microscopy of the silk coated	
	PDAD/PMAcapAg and rinsed with 1% w/w ammonia solution	
	every layer (Left) and dipping of silk in 1% w/w	
	ammonia solution at last step(Right)	82
Figure4.22	K/S value as a function of the number of PDAD-silver layer	
	on silk fiber without salt in PDAD solution	82

FIGURE

Figure4.23	K/S value as a function of the number of PDAD-silver layer on	
	silk fiber without salt in PDAD solution and dipping of silk	
	in 1% w/w ammonia solution at last step	83
Figure4.24	Picture of silk fiber dipped with :chitosan and CoPSScapAg	
	day (A) and night (B) condition, PDAD and CoPSScapAg day (C)	
	and night (D) condition	84
Figure4.26	Schematic of silk fiber dipped with : CoPSScapAg and PDAD	
	without salt : Non-dilute (10 mM) (A), dilute 2 times (B),	
	dilute (5) times (C) and dilute 10 times (D)	85
Figure4.27	K/S value as a function of concentration of CoPSScapAg on	
	silk fiber with PDAD : CoPSScapAg 10 mM (Non-dilute),	
	dilute 2 times from 10 mM, dilute 5 times from 10 mM and	
	dilute 10 times from 10 mM	86
Figure4.28	K/S value as a function of the number of PDAD-silver layer	
	(CoPSScapAg) on silk fiber	86
Figure4.29	K/S value as a function of the number of PDAD-silver layer	
	(AlginatecapAg) on silk fiber	87
Figure4.30	Scanning electron microscopy of the silk coated 10 layers	
	PDAD/CoPSScapAg (A),	
	20 layers of PDAD/CoPSScapAg (B, C),	
	10 layers of PDAD/AlginatecapAg (D, F)	
	and 20 layers of PDAD/AlginatecapAg (E)	87
Figure4.31	Schematic of layer-by-layer deposited of densed particles	88