CHAPTER III

EXPERIMENTAL DESIGN

Materials

- 18 non-carious, non-defect human premolar (extracted for orthodontics treatment)
- 2. 600 grit Silicon carbide (SiC) abrasive papers, Buehler, Lake Bluff, IL, USA
- 3. Topical anesthetic gel, Benzo-jel, Henry Schein Inc., USA (details in Table 1)
- 4. Adhesives (details in Table 1)
 - a. Two- step self-etch adhesive system, Clearfil Protect Bond, Kuraray Med.
 Inc., Japan
 - Dne-step self-etch adhesive system, Clearfil Tri-S Bond, Kuraray Med.
 Inc., Japan
 - c. Two-step total-etch adhesive system, Single Bond Plus, 3M, ESPE, USA
- 5. Resin composite, Clearfil AP-X, Kuraray Med Inc., Japan (details in Table 1)
- 6. Distilled water
- 7. Stop watch
- 8. Cyanoacrylate adhesive, Zapit, Dental Ventures of America, CA, USA

Materials/Companies	Lot. No.	Compositions	
Benzo-jel	24205	polyethelylene glycol water base, 20%	
Henry Schein Inc., USA		benzocaine, flavoring, sodium saccharin	
Clearfil Protect Bond	Primer: 000010	Primer: MDP, MDPB, HEMA, hydrophilic	
Kuraray Med. Inc.,	(pH=2)	dimethacrylate, water	
Japan	Bonding:000017	Bonding agent: MDP, HEMA, Bis-GMA,	
		hydrophobic dimethacrylate, silanated	
		colloidal silica, N,N-diethanol-P-toluidine,	
		d,I-camphorquinone, sodium fluoride	
Clearfil Tri-S Bond	040219	MDP, HEMA, Bis-GMA, silinated colloidal	
Kuraray Med. Inc.,	(pH=2)	silica, d, I-camphorquinone, ethyl alcohol,	
Japan		water	
Single Bond Plus	Etchant: 5CL	Etchant: 35% phosphoric acid gel	
3M, ESPE, USA	(pH=1)		
	Bonding: 5CJ	Bonding agent: HEMA, Bis-GMA, water,	
		copolymer of acrylic & itaconic acid, ethyl	
		alcohol, UDMA, silica nanofiller, glycerol	
		1,3-dimethacrylate	
Clearfil AP-X	00800A	Bis-GMA, TEGDMA, d,I-camphorquinone,	
Kuraray Med. Inc.,		silanated silica	
Japan			

MDP= 10-methacryloyloxydecyl dihydrogen phosphate, HEMA= 2-hydroxyethyl methacrylate, MDPB= 12-methacryloyloxydodecylpyridinium bromide, Bis-GMA= bisphenol A diglycidylmethacrylate, UDMA= urethane dimethacrylate

TEGDMA= triethyleneglycol dimethacrylate

Instruments

- 1. Ultrasonic and hand scaler
- 2. Low speed cutting machine, Isomet Buehler, Lake Bluff, IL, USA (Figure 1)

Figure 1 Isomet Cutting Machine

- 3. Light curing unit (Optilux 501, Kerr, USA)
- 4. Digital micrometer (Mitutoyo, Japan)
- Universal testing machine, EZ-Test, Shimadzu Corporation, Kyoto, Japan (Figure 2)

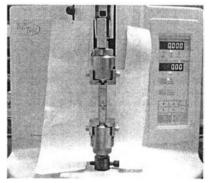


Figure 2 EZ-Test Testing Machine

- 6. Desiccator (Drykeeper, Sanplatec Corp., Japan)
- 7. Scanning electron microscope (JSM-5410LV, JEOL, Japan)

Methodology

1. Preparation for the micro-tensile testing

1.1 Eighteen non-carious extracted human premolars were collected in 0.1% thymol solution at room temperature. The teeth were cleaned by ultrasonic and hand scaler to remove soft tissue and debris, then stored in distilled water at 4 ± 1 °C until used.

1.2 The teeth were randomly assigned into three groups according to the adhesives.

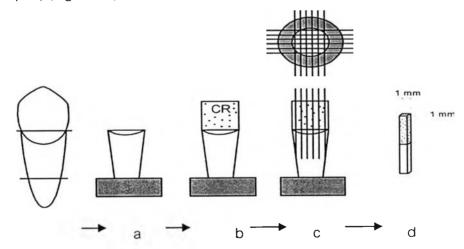
1.3 The teeth were cut perpendicular to the long axis approximately 1.0 mm above the CEJ (Tjan *et al.*, 1996) by a low speed cutting machine (Figure 1) under running water to expose the dentin surfaces (Figure 3a). Because the temperature in the refrigerator was different from the room temperature, the teeth were left for 10 minutes to equilibrate to the environment before cutting.

1.4 The superficial dentin surface was polished by silicon carbide abrasive paper (grit #600) under running water (Burrow *et al.*, 1994; Frankenberger *et al.*, 2001; Say *et al.*, 2005).

1.5 For control groups, after drying, adhesives were applied onto the dentin surfaces using an applicator following the manufacturers' instructions. The bonding procedures are shown in Table 2.

Material	Etching	Priming	Bonding
Clearfil Protect	-	Apply 20sec,	Apply with brush, air thin, light
Bond		air dry	cure 10sec
Clearfil Tri-S Bond	-	-	Apply 20sec, air with high
			pressure 5sec, light cure 10sec
Single Bond Plus	Etch15sec, rinse	-	Apply 3 coats 15sec, air 5sec,
	10sec, blot dry		light cure 10sec

Table 2 Bonding Procedures


1.6 For experimental groups, a topical anesthetic gel (Benzo-jel, Henry Schein Inc., USA) was applied using a brush on exposed dentin, left for 5 minutes then rinsed with water for 30 seconds and gently air dried before an application of the adhesives and restoration with resin composite.

1.7 The resin composite was placed on the tooth surface approximately 1.5 mm thick in 3 incremental layers to ensure adequate height of the specimens for the microtensile testing (Figure 3b). Each layer was light cured (Optilux 501, Kerr, USA) for 40 seconds at 600 mW/cm² output.

1.8 The bonded specimens were stored in distilled water at 37 \pm 1 °C for 24 hours (Frankenberger *et al.*, 2001; Say *et al.*, 2005).

1.9 The bonded specimens were sectioned by a low speed saw (Figure 1) perpendicular to the bonded surfaces to obtain stick-shape specimens with a square cross-sectional bonded surface area of 1.0 mm² (Sonoda et al., 2005) (Figure 3c). Twenty specimens were obtained for each subgroup.

1.10 The thickness and width of a stick were determined by a digital micrometer (Mitutoyo, Japan) (Figure 3d).

- a: a tooth will be cut perpendicular to the long axis at 1mm above cementoenamel junction
- b: resin composite will be built-up on dentin surface
- c: serial sectioning will be conducted on the specimen
- d: specimen with cross-sectional area of 1 mm² for the micro-tensile testing

1.11 The dentin-composite sticks were cemented to the testing device with cyanoacrylate adhesive. For each group, twenty specimens were subjected to micro-tensile bond test using a universal testing machine (Figure 2) at a testing speed of 1.0 mm/min (Say *et al.*, 2005) until fracture occurred.

1.12 The maximum loads at break (KgF) were recorded and converted to the bond strength values (MPa).

After fracture, all fractured surfaces will be observed by a scanning electron microscope to identify the mode of failure.

2. Preparation for SEM analysis

2.1 The fractured surfaces of dentin and composite were adhered to aluminum stubs with a carbon tape.

2.2 Stored in a desiccator for 24 hours.

2.3 The surfaces were sputter-coated with gold for 2 minutes.

2.4 All fractured surfaces were examined using SEM and allocated to one of five failure types;

Type 1: adhesive failure at dentin-resin interface, if the majority part of the bonded interface failed between dentin and the bonding resin

Type 2: cohesive failure in dentin, if the majority of the bonded interface failed in dentin

Type 3: cohesive failure in adhesive resin, if the majority part of the bonded interface covered with adhesive resin

Type 4: mixed, if the failures were partially adhesive and partially cohesive in resin and/or dentin

Type 5: cohesive failure in resin composite, if the majority part of the bonded interface failed in resin composite

Analyses of Data

Because data distribution is normal, it was analyzed by independent t-test and multiple comparisons Bonferroni's test. Failure modes were analyzed by Chi-Square Tests.

All data was analyzed at 95% significant levels (a p-value of 0.05) using a computer statistics package SPSS for Windows Version 11.5 (SPSS Inc., Illinois, USA).