ใมโครชิพคะพิลลารีอิเล็กโทรฟอริซิสร่วมกับการตรวจวัคแบบ แอมเพอโรเมทรีสำหรับการวิเคราะห์ไอออนโลหะ

นางสาว ศราวดี กอศรีสกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MICROCHIP CAPILLARY ELECTROPHORESIS WITH AMPEROMETRIC DETECTION FOR METAL ION ANALYSIS

Miss Sarawadee Korsrisakul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2006 Copyright of Chulalongkorn University

490627

Thesis Title	Micro	chip Capillary Electrophoresis with Amperometric		
	Detection for Metals Ion Analysis.			
By		Miss. Sarawadee Korsrisakul		
Field of Study		Chemistry		
Thesis Advisor		Associate Professor Orawon Chailapakul, Ph.D.		
Thesis Co-Adv	risor	Luxsana Dubas, Ph.D.		

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree

Term Market Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Sininat Kokpol Chairman

(Associate Professor Sirirat Kokpol, Ph.D.)

Davon Chailaphae Thesis Advisor

(Associate Professor Orawon Chailapakul, Ph.D.)

Pmx:

(Luxsana Dubas, Ph.D.)

N. Ngamrejanavanich

(Associate Professor Nattaya Ngamrojnavanich, Ph.D.)

Maring Lykanist Member

(Assistant Professor Narong Praphairaksit, Ph.D.)

ศราวดี กอศรีสกุล : ไมโครซิพคะพิลลารีอิเล็กโทรฟอริซิสร่วมกับการตรวจวัดแบบแอมเพอโร เมทรีสำหรับการวิเคราะห์ไอออนโลหะ. (MICROCHIP CAPILLARY ELECTROPHORESIS WITH AMPEROMETRIC DETECTION FOR METAL ION ANALYSIS) อ.ที่ปรึกษา : รศ.ดร.อรวรรณ ชัยลภากุล, อ.ที่ปรึกษาร่วม : คร.ลักษณา คูบาส 127หน้า.

งานวิจัยนี้เป็นการพัฒนาเพื่อการตรวจวิเคราะห์โลหะหนักหลายชนิดพร้อมกันและตรวจวิเคราะห์ แบบรวคเร็วซึ่งได้แก่โลหะตะกั่ว. แคคเมียม. และทองแคง โคยใช้เทคนิคไมโครซิพคะปีลารีอิเล็คโทรฟอริ ซิสร่วมกับตัวตรวจวัดทางเกมีไฟฟ้า ระบบการตรวจวิเกราะห์โดยตรงแบบแอมเพอโรเมทรีในไมโกรชิพ คะปีลารีอิเล็คโทรฟอริซิสถูกนำมาใช้ในการตรวจวิเคราะห์ไอออนโลหะเหล่านี้ได้เป็นอย่างคื อิทธิพลจาก ศักย์ไฟฟ้าที่ให้กับระบบ สักย์ไฟฟ้าในการตรวจวัด. ความเข้มข้นและพีเอชของบัฟเฟอร์ที่ใช้ในการ วิเคราะห์ต่อค่าการตอบสนองของตัวตรวจวัดซึ่งได้ทำการตรวจสอบและหาค่าที่ทำให้เกิดประสิทธิภาพการ จากผลการทดลองแสดงให้เห็นว่าการวิเคราะห์โดยใช้โซนอิเล็กโทรฟอริซิสในการแยกโลหะ ตรวจวัด ์ ตะกั่ว แกดเมียม และทองแดงได้ในเวลาน้อยกว่า 3 นาที ใช้บัฟเฟอร์เอ็มอีเอส (MES) (พีเอช 7.0. 25 มิลลิโม ลาร์) และแอลฮีสทีดีน (L-histidine), ให้ศักย์ไฟฟ้าในการแยก 1.2 กิโลโวลต์ และศักย์ไฟฟ้าในการตรวจวัด ที่ -0.8 โวลต์ ค่าขีดจำกัดต่ำสุดของการตรวจวัดโลหะตะกั่ว, แคดเมียม, และทองแดงเป็น 1.74, 0.73, และ 0.13 ใมโครโมลาร์ (ค่าสัญญาณกระแสต่อสัญญาณรบกวนมีค่ามากกว่า 3) ค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ ของสัญญาณกระแสไม่เกิน 6 เปอร์เซ็นต์ และของเวลาในการเคลื่อนที่ของสารในชันแนลไม่เกิน 2 ในงานวิจัยนี้ได้แสดงให้เห็นหลักการในการให้ศักย์ไฟฟ้ากับระบบไมโครชิพซีอีซึ่งสามารถ เปอร์เซ็บต์ ้นำไปใช้ได้ในอนาคต นอกจากนี้ยังแสคงให้เห็นการวิเคราะห์ไอออนโลหะในตัวอย่าง จากผลการวิเคราะห์ ทำให้ได้ความมุ่งหมายว่าไมโครชิพซีอีร่วมกับตัวตรวงวัดทางเคมีไฟฟ้านี้จะเป็นอีกวิธีที่ใช้ในระบบการ วิเคราะห์ระดับไมโครสำหรับตรวจวิเคราะห์อาหาร

ภากวิชาเกมี	ลายมือชื่อนิสิต	สราวสี	กอศรีสกล.	
สาขาวิชาเกมี	. ลายมือชื่ออาจารย์ที่	ปรึกษา	~irero	Rans
ปีการศึกษา2549	ลายมือชื่ออาจารย์	ที่ปรึกษาร่วม	Dur.	. 1

4772491023 : MAJOR CHEMISTRY

KEY WORD: MICROCHIP/ CAPILLARY ELECTROPHORESIS/ SCREEN-PRINTED CARBON ELECTRODE/ AMPEROMETRIC DETECTION

SARAWADEE KORSRISAKUL : MICROCHIP CAPILLARY ELECTROPHORESIS WITH AMPEROMETRIC DETECTION FOR METAL ION ANALYSIS. THESIS ADVISOR : ASSOC.PROF. ORAWON CHAILAPAKUL, Ph.D., THESIS COADVISOR : LUXSANA DUBAS, Ph.D., 127 pp.

This thesis demonstrates the fast and simultaneous detection of prominent heavy metals including lead, cadmium and copper using a microchip capillary electrophoresis with electrochemical detection. Direct amperometric detection mode for microchip capillary electrophoresis was successfully applied to analytes, the heavy metal ions. The influences of the separation voltage, detection potential, concentration and pH value of running buffer on the response of the detector were carefully investigated and optimized. The zone electrophoretic separation of lead, cadmium and copper is less than 3 min using a MES buffer and L-Histidine as background electrolyte (pH 7.0, 25 mM), employing 1.2 kV as the separation voltage and -0.8 V as the detection potential. The detection limits for Pb²⁺, Cd²⁺, and Cu²⁺ were 1.74, 0.73 and 0.13 μ M (S/N = 3), respectively. The %RSD of peak current was < 6 % and the %RSD of migration times <2% for prolong operation. To demonstrate the potential and future role of microchip CE, a new route in the real sample analysis was presented. The results obtained allow the proposed microchip capillary electrophoresis-Electrochemical detection as a real gateway to microanalysis in foods.

DepartmentChemist	ryStudent's	Sorawodee	Korsnisakul
Field of studyChemist	ry Advisor's	Dawn	anilythe
Academic year2006	Co-advisor'	s signature	Pur

۷

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis adviser, Associate Professor Dr. Orawon Chailapakul for her invaluable guidance, kind advices, profound assistance, encouragement and especially sincere forgiveness for my harsh mistake throughout my course of study. In addition, I would like to thank the thesis committee for their extensive and excellent comments on early works and drafts of the thesis.

Furthermore, my great thanks go to the staffs of the department of chemistry. Chulalongkorn University for their helpfulness. Moral supports and encouragement of my friends and all members of the electroanalytical chemistry research group of Chulalongkorn University are truly appreciated.

Finally, I would like to express my deepest gratitude and sincerest thank to my parents and family for their understanding and encouragement throughout the entire course of study.

CONTENTS

ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	xxi
CHAPTER I INTRODUCTION	1
1.1 Introduction	1
1.2 Research objective	3
1.3 Scopes of research	3
CHAPTER II THEORY AND LITERATURE SURVEY	5
2.1 Fundamentals of capillary electrophoresis	5
2.1.1 Migration of ions in electric fields	5
2.1.2 Electroosmotic flow	8
2.1.3 Capillary electrophoresis separation modes	11
2.2 Microchip Capillary Electrophoresis	14
2.2.1 Microchip design and separation performance	14
2.2.2 Sample loading and plug shaping	16
2.2.3 Sample injection in microsystem	16
2.2.3.1 Gated injection	17
2.2.3.2 Pinched injection	18
2.2.4 Dimension of the microfluidic channels	20
2.2.5 Electromigration dispersion	23
2.2.6 Detection methods for inorganic ions	23
2.3 Detection methods compatible with capillary electrophoresis	24
2.4 Background electrolyte	26
2.5 Electroanalytical Chemistry	27

2.5.1 Voltammetry	27
2.5.1.1 Cyclic voltammetry	28
2.5.1.2 Amperometry	30
2.6 Sample Preparation	32
2.6.1 Sample Concentration	32
2.6.2 Contaminations	32
2.6.3 In Solution	32
2.6.4 Liquid Samples	32
2.6.4.1 Dilution	33
2.6.4.2 Evaporation	33
2.6.4.3 Distillation	34
2.6.4.4 Centrifugation	35
2.7 Literature surveys	35
2.7.1 Detection technique	35
2.7.1.1 Electrochemical detection	36
2.7.1.1.1 Amperometric detection	38
2.7.2 Inorganic and small organic ions	38
2.7.3 Metal ions	39
CHAPTER III EXPERIMENTAL	41
3.1 Instruments and Equipments	41
3.2 Apparatus for Microchip Capillary Electrophoresis	42
3.3 Chemical and Reagents	44
3.4 The preparation of supporting electrolyte solution and	
standard solution	45
3.4.1 Preparation of 0.1 M Phosphate Buffer	45
3.4.2 The preparation of dopamine stock solutions	45
3.4.3 The preparation of catechol stock solutions	46
3.4.4 The preparation of 100 mM MES buffer;	46
(2-morpholinoethanesulfonic acid)	

	3.4.5	The prep	paration of 100 mM L-histidine ;[(s)-2-amiono-3-(4-	46
		imidazyl	propionic acid]	
	3.4.6	The prep	aration of MES and L-histidine buffer	46
	3.4.7	The prep	aration of 20 mM MES and L-histidine buffer	47
	3.4.8	The prep	aration of copper(II) ion solutions	47
	3.4.9	The prep	aration of cadmium(II) ion solutions	47
	3.4.10	The prep	aration of lead(II) ion solutions	48
	3.4.11	The Pre	paration mixture of Metal ions standard solutions for	48
		calibratic	on	
3.5	Real S	ample Ar	nalysis	49
3.6	Procee	lures		49
	3.6.1	Batch Ar	nalysis	49
		3.6.1.1	Cyclic Voltammetry	49
		3.6.1.2	Background current	49
		3.6.1.3	The electrochemical oxidation of dopamine	49
		3.6.1.4	The electrochemical oxidation of catechol	50
		3.6.1.5	The electrochemical oxidation of copper(II) ion	50
		3.6.1.6	The electrochemical oxidation of cadmium(II) ion	50
		3.6.1.7	The electrochemical oxidation of lead(II) ion	50
		3.6.1.8	Effect of scan rate	50
		3.6.1.9	The analytical performance	50
	3.6.2	2 Microch	nip CE with amperometric detection	51
		3.6.2.1	Microchip CE Layout	51
		3.6.2.2	End-column amperometric detection	52
		3.6.2.3	Electrophoresis procedure	52
		3.6.2.4	Safety considerations	53
		3.6.2.5	Buffer pH dependence	53
		3 .6.2.6	Buffer concentration dependence	54
		3.6.2.7	Detection Voltage dependence	54
		3.6.2.8	Separation Voltage dependence	54
		3.6.2.9	Injection time dependence	54

3.6.2.10 Calibration and linear range	55
3.6.2.11 Limit of detection (LOD)	55
3.6.2.12 Limit of quantitation (LOQ)	55
3.6.2.13 Repeatability	55
3.6.2.14 Accuracy	56
3.6.3 Appilcations	56
3.6.3.1 Real sample analysis	56
CHAPTER IV RESULTS AND DISCUSSION	57
4.1 Batch analysis : cyclic voltammetry	57
4.1.1 Background current	58
4.1.2 The electrochemical characteristics of dopamine and catechol.	58
4.1.2.1 The electrochemical signal of dopamine	59
4.1.2.2 The electrochemical signal of catechol	60
4.1.3 The electrochemical characteristics of metal ion	60
4.1.3.1 The electrochemical signal of lead	61
4.1.3.2 The electrochemical signal of cadmium	62
4.1.3.3 The electrochemical signal of copper	63
4.1.4 Effect of scan rate on analytes voltammetric response	64
4.1.4.1 Effect of scan rate to dopamine voltammetric response	65
4.1.4.2 Effect of scan rate to catechol voltammetric response	66
4.1.4.3 Effect of scan rate to lead(II) voltammetric response.	67
4.1.4.4 Effect of scan rate to cadmium(II) voltammetric	68
response	
4.1.4.5 Effect of scan rate to copper(II) voltammetric response	69
4.2 Microchip for separation and detection of metal ions	70
4.2.1 Electrochemical characteristics of metal ions: lead(II),	71
cadmium(II) and copper(II) ions	
4.2.2 Influence of pH	72
4.2.3 Influence of electrolyte concentration	73
4.2.4 Influence of detection potential	77

4.2.5	Influence of separation voltage	79
4.2.6	Linear range and detection limit	82
4.2.7	Repeatability and Accuracy	84
4.2.8	Real sample analysis	86
	4.2.8.1 Analysis of metal ions in green vegetable juice Unif's	86
	4.2.8.1.1 Analysis of lead(II) ion in green vegetable juice	86
	4.2.8.1.2 Analysis of codmium(II) ion in groon wagetable	00
	juice Unif's	00
	4.2.8.1.3 Analysis of copper(II) ion in green vegetable	89
	juice Unif's	
	4.2.8.2 Analysis of metal ions in tomato juice Malee's	90
	4.2.8.2.1 Analysis of lead(II) ion in tomato juice	90
	Malee's	
	4.2.8.2.2 Analysis of cadmium(II) ion in tomato juice	91
	Malee's	
	4.2.8.2.3 Analysis of copper(II) ion in tomato juice	92
	Malee's	
	4.2.8.3 Analysis of metal ions in pine apple juice Malee's	93
	4.2.8.3.1 Analysis of lead(II) ion in pine apple juice Malee's	93
	4.2.8.3.2 Analysis of cadmium(II) ion in pine apple juice	95
	Malee's	
	4.2.8.3.3 Analysis of copper(II) ion in pine apple juice	96
	Malee's	
CHAPTER V	V CONCLUSIONS	98
5.1 Conclu	usions and outlook	98
REFERENC	ES	100
APPENDIX.		106
VITAE		110

LIST OF TABLES

TABLE

2.1	Detection methods for inorganic cations	24
3.1	Recipes of phosphate buffer preparation	44
3.2	Recipes of MES and L-histidine buffer solution preparation	46
3.3	Recipes of MES and L-histidine buffer solution preparation	47
4.1	Detection pontetial for analysis in 25 mM MES and L-histidine buffer	
	solution with screen-printed carbon electrode	64
4.2	Current and Resolution of three metal ions standards in 20 mM MES	
	contained 20 mM L-His; 1.2 kV voltage; and -0.85 V detection voltage	
	were applied	72
4.3	The reproducibility of peak current of detection of metals. Other	
	parameters same as in figure 4.19	85
4.4	The reproducibility of half-width peak of detection of metals. Other	85
	parameters same as in figure 4.19	
4.5	The reproducibility of retention time of detection of metals. Other	
	parameters same as in figure 4.19	85
4.6	The %recovery of analysis of lead(II) ion in green vegetable juice Unif's.	87
	Other parameters same as in figure 4.27	
4.7	The %recovery of analysis of cadmium(II) ion in green vegetable juice	
	Unif's. Other parameters same as in figure 4.28	88
4.8	The %recovery of analysis of copper(II) ion in green vegetable juice	
	Unif's. Other parameters same as in figure 4.29	89
4.9	The %recovery of analysis of lead(II) ion in tomato juice Malee's. Other	
	parameters same as in figure 4.30	91
4.10	The %recovery of analysis of cadmium (II) ion in tomato juice Malee's.	
	Other parameters same as in figure 4.31	92
4.11	The %recovery of analysis of copper(II) ion in tomato juice Malee's.	
	Other parameters same as in figure 4.32	93
4.12	The %recovery of analysis of lead(II) ion in pine apple juice Malee's.	
	Other parameters same as in figure 4.33	94

xiii

4.13	The %recovery of analysis of cadmium(II) ion in pine apple juice	
	Malee's. Other parameters same as in figure 4.34	96
4.14	The %recovery of analysis of copper(II) ion in pine apple juice Malee's.	97
	Other parameters same as in figure 4.35	

LIST OF FIGURES

FIGURE

2.1	Representation of effective mobilities for (A) negatively charged species,	
	(B) neutral species, and (C) positively charged species	7
2.2	Representation of the distribution of charged (positive and negative) and	
	neutral species in an electrophoretic separation, including representation	7
	for separation by size	
2.3	Double layer potential. This scheme shows the electric double layer	10
	formed next to the negative charged solid surface	
2.4	Electroosmotic velocity profile in microchannels	10
2.5	Flow profiles and the effect on peak shapes for electroosmotic flow and	
	hydrodynamic flow	11
2.6	A) Schematic of silanol groups on the surface of fused silica; B)	12
	deprotonation of the silanol groups at $pH > 3$ in an aqueous environment	
2.7	Schematic representation of different capillary electrophoresis separation	13
	modes, A, C, E; starting situations, B, D, F; separation into zones. See	
	the text for a description	
2.8	Layout of a microchip; 1:electrolyte inlet, 2: sample inlet, 3: sample	
	outlet, 4: outlet	14
2.9	Microchip layout with a simple cross (left) and the electric circuit	15
	equivalent to the microchip (right)	
2.10	Examples of sample injector types. A) cross, B) double-T, C) double-L,	16
	D) double cross, E) triple-T, F) multi-T, G) stacking type, H) π -injector.	
	Sample inlet s, waste w and BGE inlet B are indicated	
2.11	Principles of gated injection. Red stream is the sample, and white	
	stream is the mobile phase. S: Sample, SW: Sample waste, B: Buffer,	17
	W: Waste.	
2.12	Principles of pinched injection. Red stream is the sample, and white	
	stream is the mobile phase. S: Sample, SW: Sample waste, B: Buffer,	19
	W: Waste	
2.13	Representation of the resolution in separation science	22

2.14	Concentration distribution and local electrical field strength caused by	24
	electromigration dispersion and diffusion for three analytes with different	
	mobilities	
2.15	Schematic representation of the stacking of a sample plug. A) Starting	27
	conditions, B)after stacking	
2.16	Typical excitation signals for voltammetry	29
2.17	Schematic of (a) a potential wave form used in cyclic voltammetry, and	30
	(b) a cyclic voltammogram	
2.18	A typical waveform employed in amperometry	31
2.19	Instrument of evaporator	33
2.20	Instrument of distillation	34
2.21	Instrument of centrifugation	35
3.1	Schematic diagram of the glass chip. Top view with (1) buffer and sample	43
	reservoirs, (2) waste and detection reservoir, (3) separation channel, (4) injection channel	
3.2	The microchip capillary electrophoresis with electrochemical detection	
	systems	51
4.1	Cyclic voltammogram of 25 mM MES and L-histidine (pH 7.0) buffer at screen-printed carbon electrode. The scan rate was 50 mV/s	58
4.2	Cyclic voltammogram of 1 mM dopamine in 25 mM MES and L-histidine	59
	(pH 7.0) buffer at screen-printed carbon electrode. The scan rate was	
	50 mV/s	
4.3	Cyclic voltammogram of 1 mM catechol in 25 mM MES and L-histidine	
	(pH 7.0) buffer at screen-printed carbon electrode. The scan rate was	60
	50 mV/s	
4.4	Cyclic voltammogram of 1 mM lead(II) ion in 25 mM MES and	
	L-histidine (pH 7.0) buffer at screen-printed carbon electrode. The scan	61
	rate was 50 mV/s	

4.5	Cyclic voltammogram of 1 mM cadmium(II) ion in 25 mM MES and L-	
	histidine (pH 7.0) buffer at the screen-printed carbon electrode. The scan	
	rate was 50 mV/s	62
4.6	Cyclic voltammogram of 1 mM copper(II) ion in 25 mM MES and L-	
	histidine (pH 7.0) buffer at screen-printed carbon electrode. The scan	63
	rate was 50 mV/s.	
4.7	Cyclic voltammogram of 1 mM dopamine in 25 mM MES and L-histidine	65
	(pH 7.0) buffer at the screen-printed carbon electrode. The scan rate was	
	from 10-300 mV/s. The relationship of the current signal to the square	
	root of the scan rate is shown in the Figure inset	
4.8	Cyclic voltammogram of 1 mM catechol in 25 mM MES and L-histidine	
	(pH 7.0) buffer at screen-printed carbon electrode. The scan rate was	
	between 10-300 mV/s. The relationship of current signal and square root	
	of scan rate was also shown in this Figure (inset)	66
4.9	Cyclic voltammogram of 1 mM lead in 25 mM MES and L-histidine (pH	
	7.0) buffer at screen-printed carbon electrode. The scan rate was 10-300	
	mV/s. The relationship of current signal and square root of scan rate is	
	also shown in this Figure (inset)	67
4.10	Cyclic voltammogram of 1 mM cadmium in 25 mM MES and L-histidine	
	(pH 7.0) buffer at screen-printed carbon electrode. The scan rate was 10-	
	300 mV/s. The relationship of current signal and square root of scan rate	
	is also shown in this Figure (inset)	68
4.11	Cyclic voltammogram of 1 mM copper in 25 mM MES and L-histidine	
	(pH 7.0) buffer at the screen-printed carbon electrode. The scan rate is	
	10-300 mV/s. The relationship of current signal and square root of scan	
	rate is also shown in this Figure (inset)	69
4.12	The electropherogram of metal ions: $Pb^{2+}(a)$, $Cd^{2+}(b)$, and $Cu^{2+}(c)$.	
	Experimental parameters: 1.0 mM mixed metal ions; running buffer,	
	MES and L-histidine (pH 7.0); separation voltage 1100 V; detection	
	potential -0.8 V; sampling time 3 s; working electrode: screen-printed	
	carbon electrode	71

P	Å	Ł	(ľ	E
	•	-	-	-	_

- 4.13 The effects of the buffer concentration on: (A) peak current, and (B) halfpeak widths of 1.0 mM lead(II) ion. Experimental parameters : running buffer, MES and L-His pH 7.0; separation voltage 1000 V; detection potential -0.8 V; sampling time 3 s; screen-printed carbon electrode..... 74 4.14 The effect of the buffer concentration on: (A) peak currents, and (B) halfpeak widths of 1.0 mM cadmium(II) ion. Experimental parameters : running buffer, MES and L-His pH 7.0; separation voltage 1000 V; 75 detection potential -0.8 V; sampling time 3 s; working electrode, screenprinted carbon electrode..... 4.15 The effects of the buffer concentration on: (A) peak currents, and (B) half-peak widths of 1.0 mM copper(II) ion. Experimental parameters: running buffer, MES and L-His pH 7.0; separation voltage 1000 V; detection potential -0.8 V; sampling time 3 s; working electrode: screenprinted carbon electrode..... 76 4.16 Electropherograms of 1.0 mM lead, cadmium and copper cations at different detection potentials, -0.90 V (a), -0.85 V (b), -0.80 V (c), -0.75 V (d), -0.70 V (e). Experimental parameters : 25 mM MES and L-His pH 77 7.0 used as running buffer; separation voltage 1000 V; sampling time 3 s.
- 4.17 The relationship between the peak current and the separation voltage of 1.0 mM copper(II) ion at different detection potentials when tested against: Pb(II) (a), Cd(II) (b), Cu(II) (c). Experimental parameters : 25 mM MES and L-His pH 7.0 used as running buffer; separation voltage 78 1000 V; sampling time 3 s; working electrode, screen-printed carbon electrode.
- 4.18 The relationship between the peak currents and the separation voltage.
 The amperometric response of 1.0 mM lead(II) cations at different separation voltages. Other parameters are the same as in Figure 4.17..... 79

4.19	The relationship between the peak current and the separation voltage.	
	The amperometric response of 1.0 mM cadmium(II) cations at different	
	separation voltages. Other parameters are the same as in Figure 4.17	80
4.20	The relationship between the peak currents and the separation voltage.	
	The amperometric response of 1.0 mM copper(II) cations at different	
	separation voltages. Other parameters are the same as in Figure 4.17	80
4.21	Electropherograms of 1.0 mM lead, cadmium and copper cations at	
	different separation voltages. The relationship between the peak currents	
	and the separation time: 1200 V (a), 1100 V (b), 1000 V (c). Other	81
	parameters are the same as in Figure 4.17	
4.22	The relationship between the peak currents and the concentration of	
	lead(II) ion. Experimental parameters: 25 mM MES and L-His pH 7.0	
	used as running buffer; separation voltage, 1200 V; detection potential,	83
	-0.8 V; sampling time 3 s; working electrode, screen-printed carbon	
	electrode	
4.23	The relationship between the peak currents and the concentration of	
	cadmium(II) ion. Experimental parameters: 25 mM MES and L-His pH	
	7.0 used as running buffer; separation voltage, 1200 V; detection	
	potential, -0.8 V; sampling time, 3 s; working electrode, screen-printed	83
	carbon electrode	
4.24	The relationship between the peak currents and the concentration of	
	copper(II) ion. Experimental parameters: 25 mM MES and L-His pH 7.0	
	used as running buffer; separation voltage, 1200 V; detection potential,	
	-0.8 V; sampling time, 3 s; working electrode, screen-printed carbon	84
	electrode	
4.25	The relationship between the peak currents and the concentration of	
	lead(II) ion in Unif's green vegetable juice. Experimental parameters:	87
	25 mM MES and L-His pH 7.0 used as running buffer; separation	
	voltage, 1200 V; detection potential, -0.8 V; sampling time, 3 s; working	
	electrode, screen-printed carbon electrode	

4.26 The relationship between the peak currents and the concentration of	
lead(II) ion in Unif's green vegetable juice. Experimental parameters:	
25 mM MES and L-His pH 7.0 used as running buffer; separation	88
voltage 1200 V; detection potential, -0.8 V; sampling time, 3 s	
4.27 The relationship between the peak currents and the concentration of	
lead(II) ion in Unif's green vegetable juice. Experimental parameters:	
25 mM MES and L-His pH 7.0 used as running buffer; separation	89
voltage, 1200 V; detection potential, -0.8 V; sampling time 3 s	
4.28 The relationship between the peak current and the concentration of	
lead(II) ion in Malee's tomato juice. Experimental parameters: 25 mM	
MES and L-His pH 7.0 used as running buffer; separation voltage, 1200	90
V; detection potential, -0.8 V; sampling time 3 s; working electrode,	
screen-printed carbon electrode	
4.29 The relationship between the peak currents and the concentration of	91
cadmium(II) ion in Malee's tomato juice. Experimental parameters: 25	
mM MES and L-His pH 7.0 used as running buffer; separation voltage,	
1200 V; detection potential, -0.8 V; sampling time, 3 s	
4.30 The relationship between the peak currents and the concentration of	
copper(II) ion in Malee's tomato juice. Experimental parameters: 25	
mM MES and L-His pH 7.0 used as running buffer; separation voltage,	
1200 V; detection potential, -0.8 V; sampling time, 3 s	92
4.31 The relationship between the peak currents and the concentration of	
lead(II) ion in Malee's pineapple juice. Experimental parameters: 25	
mM MES and L-His pH 7.0 used as running buffer; separation voltage,	
1200 V; detection potential, -0.8 V; sampling time, 3 s; working	
electrode, screen-printed carbon electrode	93

4.32	The relationship between the peak currents and the concentration of	
	cadmium(II) ion in Malee's pineapple juice. Experimental parameters:	95
	25 mM MES and L-His pH 7.0 used as running buffer; separation	
	voltage, 1200 V; detection potential, -0.8 V; sampling time, 3 s; working	
	electrode, screen-printed carbon electrode	
4.33	The relationship between the peak currents and the concentration of	
	copper(II) ion in Malee's pineapple juice. Experimental parameters: 25	
	mM MES and L-His pH 7.0 used as running buffer; separation voltage,	
	1200 V; detection potential, -0.8 V; sampling time, 3 s	96

ABBREVIATIONS AND SYMBOLS

i current (A) anodic peak current (A) i_{pa} cathodic peak current (A) ipc -Ep peak potential (V) - E_{pa} anodic peak potential (V) -E_{pc} cathodic peak potential (V) -Faraday constant (96,484.6 C equiv⁻¹) F _ area of electrode (cm^2) Α diffusion coefficient ($cm^2 s^{-1}$) D kinematic viscosity of the liquid $(cm^2 s^{-1})$ ν scan rate (V sec^{-1}) υ ~ angular velocity of the disk (radians per second) ω -С solution concentration (mol dm^{-3}) part per million ppm part per billion ppb mL milliter microliter μL g gram microgram μg μA microamp nA nanoamp μm micrometer micromolar μM nm nanometer i.d. internal diameter r^2 _ correlation coefficient MES -2-Morpholinoethanesulfonic acid L-his (s)-2-Amiono-3-(4-imidazyl)propionic acid -V volt