REFERENCES

- Bajgai, M.P., Kim, K., Parajuli, D.C., Yoo, Y.C., Kim, W.D., Khil, M., and Kim, H.Y. (2008) In vitro hydrolytic degradation of poly(ε-caprolactone) grafted dextran fibers and films. <u>Polymer degradation and stability</u>, 93, 2127-2179.
- Bilezikian, J. P., Raisz, L. G., and Rodan, G. A. (2002) <u>Principles of bone biology:</u> <u>Volume 2</u>. San diego: Academic Press.
- Cheng, Z., and Teoh, S.W. (2003) Surface modification of ultra thin poly(εcaprolactone) films using acrylic acid and collagen. <u>Biomaterials</u>, 25, 1991-2001.
- Choi, J. Y., Lee, B. H., Song, K. B., Park, R. W., Kim, I. S., Sohn, K. Y., Jo, J. S., and Ryoo, H. M. (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. <u>Journal of Cellular</u> <u>Biochemistry</u>, 61(4), 609-618.
- Chung, H.J., and Park, T.G. (2007) Surface engineered and drug releasing prefabricated scaffolds for tissue engineering. <u>Advances drug Delivery</u> <u>reviews</u>, 59, 249-262.
- Gartner, L. P., Hiatt, J. L., and Strum, J. M. (1993) <u>Board Review Series: Cell</u> <u>Biology and Histology</u>. Philadelphia: Harwal Publishing.
- Goddard, J.M., and Hotchkiss, J.H. (2007) Polymer surface modification for the attachment of bioactive compounds. <u>Progress in polymer science</u>, 32, 698-725.
- Harris, S. A. and Spelsberg, T. C. (1997) Immortalized human fetal osteoblastic cells. U.S. <u>Patent</u> 5 681 701.
- Hutmacher, D.W. (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529-2543.
- Janorkar A. V., Fritz EW., Burg KJL., Metters AT., Hirt DE. (2007) Grafting amine-terminated branched architectures from poly(l-lactide) film surfaces for improved cell attachment. Biomed Mater Res Part B Appl Biomater, 81B, 142–152.

- Junqueira, L. C. and Carneiro, J. (2003) <u>Basic Histology: Text & Atlas</u>. New York: Lange Medical Books McGraw-Hill.
- Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V. P., and Supaphol, P. (2009) Immobilization of biomolecules on surface of electrospun polycaprolactone fibrous scaffolds for tissue engineering.
- Pompe, T., Keller, K., Mothes, G., Nitschke, M., Teese, M., Zimmermann, R., and Werner, C. (2007) Surface modification of poly (hydroxybutyrate) films to control cell-matrix adhesion. Biomaterials, 28, 28-37.
- Santiago, L. Y., Nowak, R. W., Rubin, J. P., and Marra, K. G. (2006) Peptidesurface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. <u>Biomaterials</u>, 27, 2962–2969.
- Savarino, L., Baldini, N., Greco, M., Capitani, O., Pinna, S., Valentini, S., Lombardo, B., Esposito, M.T., Pastore, L., Ambrosio, L., Battista, S., Causa, F., Zeppetelli, S., Guasrino, V., and Netti, P.A. (2007) The performance of poly (ε-caprolactone) scaffolds in a rabbit femur model with and without autologous stromal cell and BMP4. <u>Biomaterials</u>, 28(20), 3101-3109.
- Sachlos, E., Czernuszka, C.T. (2003) Making tissue engineering scaffold work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffold. European cells and materials, 5, 29-40.
- Shin, H., Jo, S., Mikos, A.G. (2003) Biomimetic materials for tissue engineering. Biomaterials, 24, 4353-4364.
- Tiaw, K.S., Goh, S.W., Hong, M., Wang, Z., Lan, B., and Teoh, S.H. (2004) Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications. <u>Biomaterials</u>, 26, 763-769.
- Tsukamoto, Y., Fukutani, S., and Mori, M. (1992) Hydroxyapatite-induced alkaline phosphatase activity of human pulp fibroblasts. Journal of Materials Science <u>Materials in Medicine</u>, 3, 180-183.
- U-prasitwong, P., Pavasant, P., Hoen, V.P. and Supaphol, P. (2008) Surface modification of poly(lactic acid) fiber via aminolysis and collagen immobilization for bone tissue engineering. Under submission.

- Yang, X.B., Roach, H.I., Clarke, N.M.P., Howdle, S.M., Quirk, R., Shakesheff, K.M., and Oreffo, R.O.C. (2001) Human osteoprogenetor growth and differentiation on synthetic biodegradable structures after surface modification. <u>Biomimetic structures for human osteoprogenitor cells</u>, 29(6), 523-531.
- Yang, X., Zhao, K., Chen, G.Q. (2002) Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials, 23, 1391-1397.
- Zhu, Y., Gao, C., and Shen, J. (2002a) Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. <u>Biomaterials</u>, 23, 4889–4895.
- Zhu, Y., Gao, C., Liu, X., and Shen, J. (2002b) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. <u>Biomacromolecules</u>, 3, 1312-1319.
- Zhu, Y., Chian, K. S., Chan-Park, M. B., Mhaisalkar, P. S., and Ratner, B. D.
 (2006) Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering. <u>Biomaterials</u>, 27, 68–78.

APPENDICES

Appendix A Ninhydrin Analysis

Table A1 The absorbance of 1,6-hexanediamine in 1,4-dioxane-isopropanol (1:1, v/v) of known concentration solution

Std No.	Std. HMD concentration	Average Absorbance
1	0.00002	0.0086
2	0.00004	0.0223
3	0.00006	0.0354
4	0.00010	0.0616
5	0.00020	0.1232
6	0.00040	0.2707

Figure A1 The calibration curve obtained with 1,4-dioxane-isopropanol (1:1, v/v) solution containing 1,6-hexanediamine of known concentration.

Diamine	NH ₂ conc. (x10 ⁻⁸)		
concentration (mol/L)	mol/cm ²		
0.5	2.93 ± 0.05		
1.0	3.40 ± 0.02		
1.5	3.68 ± 0.02		
2.0	4.45 ± 0.01		

Table A2 NH_2 density as a function of 1,6-hexanediamine concentration

Table A3 NH2 density as a function of aminolyzing time

Aminolyzing time (h)	NH ₂ conc. (x10 ⁻⁷) mol/cm ²			
2	6.41 ± 0.01			
4	7.34 ± 0.02			
6	8.33 ± 0.01			
8	31.86 ± 0.02			
10	13.58 ± 0.02			

Appendix B X-ray Photoelectron Spectrometer (XPS)

Figure B1 The survey XPS spectra of (a) neat PCL, (b) PCL aminolyzed in 1.5 M HMD/IPA solution for 8 h at room temperature, (c) activatedPCL, (d) PCL immobilized with crude bone protein (3 mg/ml), and (e) PCL immobilized with bovine serum albumin (3 mg/ml).

Binding energy (eV)

Appendix C Experimental Data of biological characterizations

Table C1 Raw data of indirect cytotoxicity test of all types of PCL film mats,determined the viability of cells by MTT assay method at 570 nm

Time (day)	% viability of MC3T3-E1 cells (relative to TCPs at 1 day)					
	1		7			
Material	avg	SD	avg	SD		
TCPs (control)	100.00	0.55	100	0.75		
neat PCL	99.28	0.96	104.62	1.02		
aminolyzed PCL	98.00	1.07	102.04	0.20		
CBP – immobilized PCL	102.12	0.93	102.63	0.46		
BSA - immobilized PCL	102.47	0.40	106.89	3.18		

Table C2 Raw data of cell attachment of MC3T3-E1 onto all types of PCL filmmats at 6 and 24 h, determined the viability of cells by MTT assay method at 570 nm

Time (h)	% viability of MC3T3-E1 cells (relative to TCPs at 24 h)					
	6		24			
Material	avg	SD	avg	SD		
TCPs (control)	61.52	0.55	100.00	0.65		
neat PCL	25.09	0.79	62.45	1.39		
aminolyzed PCL	29.37	0.40	68.22	1.91		
CBP – immobilized PCL	35.13	1.35	80.67	0.49		
BSA - immobilized PCL	34.94	0.67	95.72	2.41		

Table C3 Raw data of cell proliferation of MC3T3-E1 onto all types of PCL film mats at 1, 2, and 3 d, determined the viability of cells by MTT assay method at 570 nm

time(day)	% viability of MC3T3-E1 cells (relative to TCPs at 1 day)						
	1		2		3		
Material	avg	SD	avg	SD	avg	SD	
TCPs (control)	100.00	0.65	151.67	1.27	387.92	3.22	
neat PCL	62.45	1.39	107.06	0.66	194.24	5.58	
aminolyzed PCL	109.23	1.91	112.45	3.90	227.13	1.34	
CBP – immobilized PCL	118.26	0.49	112.82	3.23	270.073	1.62	
BSA - immobilized PCL	118.66	2.41	147.21	3.53	464.31	1.72	

Figure C1 ALP Assay of MC3T3-E1 seeded onto all types of PCL film mats at 3, 5 and 7 days.

Table C4 Raw data of quantity of mineral deposition on all types of PCL film mats

 after cell culturing for 21 d using Alizarin Red-S method at 570 nm

Materials	1	2	avg	SD
TCPs (control)	0.275	0.262	0.269	0.009
neat PCL	0.516	0.432	0.474	0.059
aminolyzed PCL	0.836	0.927	0.8815	0.064
CBP – immobilized PCL	1.862	1.865	1.8635	0.002
BSA - immobilized PCL	3.100	3.044	3.072	0.039

CURRICULUM VITAE

Name: Ms. Sirichanok Satianyanond

Date of Birth: Jul 9, 1985

Nationality: Thai

University Education:

2003-2007 Bachelor Degree of Secondary Education (Major : General Science - Chemistry), Faculty of Education, Chulalongkorn University, Bangkok, Thailand

Proceedings:

1. Satianyanond, S.; Pavasant, P.; and Supaphol, P. (2011, April 26) Surface Modification of Polycaprolactone Membrane via Aminolysis and Protein-Immobilization for Promoting Bone Cell Growth. <u>Proceedings of the 17th PPC</u> <u>Symposium on Petroleum, Petrochems, and Polymers</u>, Bangkok, Thailand.

Presentations:

1. Satianyanond, S.; Pavasant, P.; and Supaphol, P. (2011, April 26) Surface Modification of Polycaprolactone Membrane via Aminolysis and Protein-Immobilization for Promoting Bone Cell Growth. Poster presented at <u>the 17th PPC</u> <u>Symposium on Petroleum, Petrochems, and Polymers</u>, Bangkok, Thailand.