BIO-ETHANOL DEHYDRATION TO LIQUID HYDROCARBONS

Sathit Pasomsub

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

Thesis Title:	Bio-ethanol Dehydration to Liquid Hydrocarbons
By:	Sathit Pasomsub
Program:	Petrochemical Technology
Thesis Advisor:	Assoc. Prof. Sirirat Jitkarnka

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

- Mun

(Assoc. Prof. Sirirat Jitkarnka)

apara (....

(Assoc. Prof. Apanee Luengnaruemitchai)

Wands Ant

(Asst. Prof. Wanida Koo-amornpattana)

ABSTRACT

5471019063: Petrochemical Technology Program
Sathit Pasomsub: Bio-ethanol Dehydration to Liquid Hydrocarbons. Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka 93 pp.
Keywords: Bio-ethanol/ Ethanol Dehydration/ Acidic Oxides/ Aromatization/ Disproportionation / Transalkylation/ Isomerization

Benzene (B), toluene (T), and xylenes (X)) are important raw materials for petrochemical industry. These aromatics are normally produced by the catalytic reforming, pyrolysis gasoline, and coal that require petroleum as the raw material. Nowadays, the catalytic transformation of renewable sources, such as bio-ethanol, is an interesting process for alternatively producing aromatic hydrocarbons. From previous work, 2.0 wt % Ga₂O₃/HZSM-5 relatively produced higher amount of toluene and m-xylene than that of other aromatics. The transformation of these two aromatics to more valuable petrochemicals is a challenge. Consequently, for this research work, the investigation on the catalytic transformation of bio-ethanol to liquid hydrocarbons was divided into two parts; (1) the two consecutive layers of catalysts, and (2) the HZSM-5 catalysts modified with an acidic oxides of group VA elements. For the first part, 2.0 wt % Ga₂O₃/HZSM-5 was packed as the first layer in the reactor, and a catalytic layer of one of these zeolites; H-X, H-Y, or H-Beta was consecutively packed as the second layer, aiming to further convert m-xylene and toluene, produced from the first layer, to more valuable aromatics. It was found that the highest acid density of H-X and the highest acid strength of H-Beta promoted the conversion of light hydrocarbons to C9 and especially C10+ aromatics. For the second part, a series of P₂O₅, Sb₂O₅, and Bi₂O₅ loaded on HZSM-5 expectedly being able to increase acid strength of the support were also studied on the enhancement of aromatics production. It was found that the moderate acid strength of P₂O₅/HZSM-5 favored the formation of p-xylene, and gave the highest ratio of p-xylene/xylenes, whereas the highest acid strength of Bi₂O₅/HZSM-5 gave the most selective to C10+ aromatics. In addition, the fraction of gasoline range was the main composition in the liquid products, followed by kerosene.

บทคัดย่อ

สาธิต ผสมทรัพย์ : ปฏิกิริยาการคายน้ำของเอทานอลชีวภาพเป็นไฮโดรคาร์บอนเหลว (Bio-ethanol Dehydration to Liquid Hydrocarbons) อ. ที่ปรึกษา : รศ. ดร. ศิริรัตน์ จิตการค้า 93 หน้า

เบนซีน โทลูอื่น และ ไซลีน เป็นวัตถุคิบที่สำคัญสำหรับอุตสาหกรรมปีโตรเคมี ซึ่งโคย ปกติแล้วสารเหล่านี้จะได้มาจากปฏิกิริยารีฟอร์มมิงโคยใช้ตัวเร่ง จากน้ำมันแกสโซลีนที่ได้จาก กระบวนการแคร็กกิ้ง และถ่านหิน ซึ่งทุกตัวก็ผลิตมาจากปีโตรเลียม ปัจจบันมีการใช้เอทานอล ชีวภาพมาเป็นวัตถุดิบทดแทนในการผลิตสารประกอบอะโรมาติกส์ไฮโดรการ์บอน ซึ่งเป็นวิธีที่ ้น่าสนใจ จากผลงานที่ผ่านมาพบว่า แกลเลี่ยมออกไซด์บนเอชซีเอสเอ็มไฟว์ ผลิตโทลูอืนและเม ตา-ไซลีน ในปริมาณที่สูงเมื่อเทียบกับอะโรมาติกส์ตัวอื่นๆ ตังนั้น การเปลี่ยนอะโรมาติกส์ทั้งสอง ้ตัวนี้เป็นสารปีโตรเคมีที่มีมูลค่ามากขึ้น จึงเป็นสิ่งที่ท้าทาย สำหรับงานวิจัยนี้ การศึกษาการเปลี่ยน รูปเอทานอลชีวภาพ โดยใช้ตัวเร่งปฏิกิริยานั้นถูกแบ่งออกเป็นสองส่วน ส่วนที่หนึ่ง การใช้ตัวเร่ง ปฏิกิริยาที่มีสองชั้นติดกัน และส่วนที่สอง การใช้เอชซีเอสเอ็มไฟว์ที่ปรับปรุงด้วยออกไซด์ของ ธาตุในหมู่ที่ห้าที่มีความเป็นกรด สำหรับส่วนที่หนึ่ง แกลเลี่ยมออกไซด์บนเอชซีเอสเอ็มไฟว์ถูกใช้ เป็นเป็นตัวเร่งปฏิกิริยาชั้นที่หนึ่งและตัวใดตัวหนึ่งของเอชเอ็กซ์ เอชวาย หรือ เอชเบด้า ถูกใช้เป็น ้ตัวเร่งปฏิกิริยาในชั้นที่สอง เพื่อที่จะเปลี่ยนรูปโทลูอีนและเมตา-ไซลีนที่ผลิตจากชั้นที่หนึ่งให้ ้กลายเป็นอะ โรมาติกส์ที่มีค่าตัวอื่น จากการทคลองพบว่า เอชเอ็กซ์ซึ่งมีความหนาแน่นของกรคที่ มาก และเอชเบต้าซึ่งมีความแข็งแรงของกรคที่มากที่สุด ช่วยสนับสนุนให้เกิดการเปลี่ยนรูปของ สารประกอบไฮโครคาร์บอนตัวเบาที่ผลิตจากชั้นที่ 1 ให้กลายเป็นสารประกอบอะโรมาติก ์ ใฮโครคาร์บอนที่มีการ์บอน 9 ตัว และ โดยเฉพาะการ์บอน 10 ตัวขึ้นไป สำหรับในส่วนที่สอง เป็น การศึกษาผลของฟอสฟอรัสออกไซด์ แอนติโมนี่ออกไซต์ และบิสมัทออกไซด์ ที่คาดว่าน่าจะ สามารถช่วยเพิ่มความแข็งแรงของกรคให้กับเอชซีเอสเอ็มไฟว์ ในการผลิตสารประกอบอะโร มาติกส์ไฮโครการ์บอน จากการทคลองพบว่า ฟอสฟอรัสออกไซด์บนเอชซีเอสเอ็มไฟว์ที่มีความ แข็งแรงของกรคที่ปานกลางเลือกที่จะผลิตพารา-ไซลินในปริมาณสูง และให้อัตราส่วนของพารา-้ไซลินในไซลินทั้งหมดที่สูงที่สุด ขณะที่บิสมัทออกไซด์บนเอชซีเอสเอ็มไฟว์ ซึ่งมีความแข็งแรง ของกรคสูงสุด สามารถผลิตสารประกอบอะโรมาติกไฮโครคาร์บอนที่มีคาร์บอนตั้งแต่ 10 ตัวขึ้น ้ไปอย่างเฉพาะเจาะจง นอกจากนี้ยังพบว่าผลิตภัณฑ์ของเหลวที่ได้นั้นมีน้ำมันเบนซินเป็น องค์ประกอบหลัก ตามมาด้วยน้ำมันก๊าด

ACKNOWLEDGEMENTS

This research work has not been possible to complete without the assistance and supports of following individuals and organizations.

Firstly, I would like to express my gratitude to my advisor, Assoc. Prof. Sirirat Jitkarnka who had always cared and paid attention to my research work since the beginning, giving the valuable suggestions, attentive encouragement, beneficial recommendations and all the helpful supports in my research work.

Secondly, I also would like to thank to the thesis committees, Assoc. Prof. Apanee Luengnaruemitchai and Asst. Prof. Wanida Koo-amornpattana for their important suggestions and recommendation in my research work.

Moreover, my appreciation also extends to Sapthip Company Limited for providing bio-ethanol used as the feed in this research work.

I am grateful for the scholarship and funding supported by the Petroleum and Petrochemical College, Chulalongkorn University, the Center of Excellence on Petrochemical, and Materials Technology.

Special appreciation is given to all The Petroleum and Petrochemical College's staffs, who kindly helped with the analytical instruments and gave the good suggestion in this research work.

I would like to thank all my friends for their friendly cheerful and their support and help.

Lastly, I would like to take this opportunity to give appreciation to my family for their invaluable support and encouragement at all time.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	xii

CHAPTER

Ι	INTRODUCTION	1
II	BACKGROUND AND LITERATURE REVIEW	3
	2.1 Transformation of bio-ethanol to hydrocarbons	3
	2.2 Catalysts for transformation of Bio-ethanol	7
	2.3 Catalysts for transformation of aromatics	13
III	EXPERIMENTAL	17
	3.1 Materials	17
	3.2 Equipment	17
	3.3 Chemicals and Solvents	17
	3.4 Experimental Procedures	18
	3.4.1 Catalyst Preparation	18
	3.4.1.1 Catalysts for The Two Consecutive Layers	
	Catalytic Systems	18
	3.4.1.2 HZSM-5 Modified with Oxides of Group VA	
	Elements	18
	3.4.2 Catalyst Characterization	19
	3.4.3 Catalytic Activity Testing	20

	3.4.3 Ca	talytic Activity Testing	20
	3.4.4 Pro	oduct Analysis	22
IV	RESULTS A	AND DISCUSSION	24
	4.1 Characte	rtization of Catalysts	24
	4.2 Influence	e of the Two Consecutive Layers of Catalysts	28
	4.2.1 Ca	talytic Performance of the first layer catalyst	
	(20	GaHZ5)	28
	4.2.2 Pe	rformance of the Two Consecutive Layers of	
	Ca	atalysts	32
	4.3 Performa	ance of HZSM-5 Modified with Oxides of Group	o VA
	Elements	5	38
	4.3.1 Ef	fect of P ₂ O ₅ Loaded on HZSM-5	39
	4.3.2 Ef	fect of Sb_2O_5 Loaded on HZSM-5	43
	4.3.3 Ef	fect of Bi_2O_5 Loaded on HZSM-5	48
	4.3.4 Ef	fect of Oxide Species	52
V	CONCLUSI	ONS AND RECOMMENDATIONS	58
	REFERENC	TES	60
	APPENDICI	ES	63
	Appendix A	Scanning Electron Microscopy Micrographs	63
	Appendix B	Raman Spectra	66
	Appendix C	Product Distribution and Product Yield Calcula	ation 70
	Appendix D	Compositions in Gas Products	74
	Appendix E	Compositions in Liquid Products	83
	Appendix F	True Boiling Point Curves	85

93

LIST OF TABLES

TABLE

2.1	Structural characteristics of zeolites	4
2.2	Catalytic activity of zeolite catalysts	8
2.3	Yield of hydrocarbons, wt %, on HZSM-5 (Si/Al ₂ = 25) ion-	
	exchanged with various metals	10
2.4	Catalytic activity of HZSM-5 (Si/Al ₂ = 29) zeolite catalyst	
	impregnated with various metals	11
4.1	Catalysts and experimental design for the bio-ethanol	
	dehydration to liquid hydrocarbons	25
4.2	Element loading content and physical properties of catalysts	27
4.3	Product distribution over HZ5 and 2GaHZ5 catalysts	31
4.4	Product distribution over 2GaHZ5, 2GaHZ5:X, 2GaHZ5:Y,	
	and 2GaHZ5:β catalysts	36
4.5	Boiling point range of petroleum fractions	37
4.6	Product distribution over all P2O5-modified catalysts	42
4.7	Product distribution over all Sb ₂ O ₅ catalysts	46
4.8	Product distribution over all Bi_2O_5 -modified catalysts	50
4.9	Product distribution over HZ5, 2PHZ5, 2SbHZ5, and	
	2BiHZ5 catalysts	55
Cl	Product distribution and product yields from the two	
	consecutive layers of catalysts	70
C2	Product distribution and product yields from HZ5, 1PHZ5,	
	2PHZ5, 3PHZ5, and 4PHZ5 catalysts	71
C3	Product distribution and product yields from HZ5, 1SbHZ5,	
	2SbHZ5, 3SbHZ5, and 4SbHZ5 catalysts	72

TABLE

C4	Product distribution and product yields from HZ5, 1BiHZ5,	
	2BiHZ5, 3BiHZ5, and 4BiHZ5 catalysts	73
Dl	Gas composition as a function of time on stream for	
	2GaHZ5 catalyst	74
D2	Gas composition as a function of time on stream for	
	2GaHZ5:X catalyst	74
D3	Gas composition as a function of time on stream for	
	2GaHZ5:Y catalyst	75
D4	Gas composition as a function of time on stream for	
	2GaHZ5:β catalyst	75
D5	Gas composition as a function of time on stream for HZ5	
	catalyst	76
D6	Gas composition as a function of time on stream for 1PHZ5	
	catalyst	76
D7	Gas composition as a function of time on stream for	
	2PHZ5catalyst	77
D8	Gas composition as a function of time on stream for 3PHZ5	
	catalyst	77
D9	Gas composition as a function of time on stream for	
	4PHZ5catalyst	78
D10	Gas composition as a function of time on stream for 1SbHZ5	
	catalyst	78
D11	Gas composition as a function of time on stream for 2SbHZ5	
	catalyst	79
D12	Gas composition as a function of time on stream for 3SbHZ5	
	catalyst	79
D13	Gas composition as a function of time on stream for 4SbHZ5	
	catalyst	80

D14	Gas composition as a function of time on stream for 1BiHZ5	0.0
	catalyst	80
D15	Gas composition as a function of time on stream for 2BiHZ5	
	catalyst	81
D16	Gas composition as a function of time on stream for 3BiHZ5	
	catalyst	81
D17	Gas composition as a function of time on stream for 4BiHZ5	
	catalyst	82
El	Oil composition from the two consecutive layers of catalysts	83
E2	Oil composition from HZ5, 1PHZ5, 2PHZ5, 3PHZ5, and	
	4PHZ5 catalysts	83
E3	Oil composition from HZ5, 1SbHZ5, 2SbHZ5, 3SbHZ5, and	
	4SbHZ5 catalysts	84
E4	Oil composition from HZ5, 1BiHZ5, 2BiHZ5, 3BiHZ5, and	
	4BiHZ5 catalysts	84
F1	True boiling point curves from the two consecutive layers	85
F2	Petroleum cuts obtained from the two consecutive layers	
	catalytic systems	86
F3	True boiling point curves from HZ5, 1PHZ5, 2PHZ5,	
	3PHZ5, and 4PHZ5 catalysts	87
F4	Petroleum cuts obtained from HZ5, 1PHZ5, 2PHZ5, 3PHZ5,	
	and 4PHZ5 catalysts	88
F5	True boiling point curves from HZ5, 1SbHZ5, 2SbHZ5,	
	3SbHZ5, and 4SbHZ5 catalysts	89
F6	Petroleum cuts obtained from HZ5, 1SbHZ5, 2SbHZ5,	
	3SbHZ5, and 4SbHZ5 catalysts	90

TABLE

F7	True boiling point curves from HZ5, 1BiHZ5, 2BiHZ5,	
	3BiHZ5, and 4BiHZ5 catalysts	91
F8	Petroleum cuts obtained from HZ5, 1BiHZ5, 2BiHZ5,	
	3BiHZ5, and 4BiHZ5 catalysts	92

LIST OF FIGURES

FIGURE		PAGE
2.1	Several reaction pathways of ethanol dehydration to	-
	hydrocarbons.	5
2.2	Disproportionation and transalkylation of toluene over	
	zeolite catalysts.	6
2.3	Transformation of bio-ethanol to hydrocarbons on HZSM-	
	5.	9
3.1	Schematic of experimental set-up.	22
4.1	Raman spectra of catalysts in the 200-1000 cm^{-1} .	26
4.2	Effect of Ga_2O_3 on the yield and the selectivity of liquid	
	products.	29
4.3	Effect of Ga_2O_3 on the yield and the selectivity of gas	
	products.	30
4.4	Disproportionation and transalkylation reactions of toluene.	33
4.5	Disproportionation and transalkylation reactions of	
	xylenes.	34
4.6	Effect of the two consecutive layers of catalysts on the	
	yield and the selectivity of liquid products.	35
4.7	Effect of the two consecutive layers of catalysts on the gas	
	yield and the selectivity of gas products.	35
4.8	Petroleum fractions in oils derived from the two	
	consecutive layers of catalysts.	38
4.9	Transformation of benzene to heavier aromatics.	40
4.10	m-Xylene isomerization reaction.	40
4.11	Effect of P_2O_5 on the oil yield and the selectivity of liquid	
	products.	41
4.12	Effect of P_2O_5 on the gas yield and the selectivity of gas	
	products.	41

-	
	X111

FIGURE

4.13	Petroleum fractions in oils derived from using P_2O_5 -	
	modified catalysts.	43
4.14	Effect of Sb_2O_5 on the oil yield and the selectivity of liquid	
	products.	45
4.15	Effect of Sb_2O_5 on the gas yield and the selectivity of gas	
	products.	45
4.16	Petroleum fractions in oils derived from using Sb_2O_5 -	
	modified catalysts.	47
4.17	Effect of Bi_2O_5 on the oil yield and the selectivity of liquid	
	products.	49
4.18	Effect of Bi_2O_5 on the gas yield and the selectivity of gas	
	products.	49
4.19	Petroleum fractions in oils derived from using Bi_2O_5 -	
	modified catalysts.	51
4.20	Effect of acidic oxide type on the oil yield and the	
	selectivity of liquid products.	53
4.21	Effect of acidic oxide type on the gas yield and the	
	selectivity of gas products.	54
4.22	Petroleum fractions in oils derived from HZ5, 2PHZ5,	
	2SbHZ5, and 2BiHZ5 catalysts.	54
4.23	Example of protonation of a small hydrocarbon molecule	
	to a larger molecule via cabenium ion mechanism.	56
4.24	Simple mechanism of ethanol conversion to ethylene over	
	an acid catalyst.	57
Al	SEM image of HZ5 (10.0 kV 8.7mm ×30.0k).	63
A2	SEM image of 2PHZ5 (10.0 kV 8.7mm ×30.0k).	64

FIGURE

A3 64 SEM image of 2SbHZ5 (10.0 kV 8.7mm ×30.0k). A4 65 SEM image of 2BiHZ5 (10.0 kV 8.7mm ×30.0k). B1 66 Raman spectrum of HZ5 catalyst in the 200-1000 cm⁻¹. B2 66 Raman spectrum of 2GaHZ5 catalyst in the 200-1000 cm⁻¹. B3 67 Raman spectrum of 1PHZ5 catalyst in the 200-1000 cm⁻¹. B4 67 Raman spectrum of 4PHZ5 catalyst in the 200-1000 cm⁻¹. B5 Raman spectrum of 1SbHZ5 catalyst in the 200-1000 cm⁻¹. 68 B6 Raman spectrum of 4SbHZ5 catalyst in the 200-1000 cm⁻¹. 68 **B7** 69 Raman spectrum of 1BiHZ5 catalyst in the 200-1000 cm⁻¹. **B8** 69 Raman spectrum of 4BiHZ5 catalyst in the 200-1000 cm⁻¹.