REFERENCES

- Andrea, K., Sulaiman, Al-K., Muhammad, A., Martina, B. (2010). Transalkylation of toluene with trimethylbenzenes over large-pore zeolites. <u>Applied</u> Catalysis A: General, 377, 99–106.
- Barthos, R., Sze chenyi A., and Solymosi, F. (2006). Decomposition and Aromatization of Ethanol on ZSM-Based Catalysts. Journal of Physical Chemistry & Biophysics, 110, 21816-21825.
- Belenkil, M.S., Pavlov, G.P., Ulitskaya, N.V. (1964). S.O. Patent 192 190.
- Dergachev, A., and Lapidus, A. (2008). Catalytic Aromatization of Light Alkanes. <u>Russian Journal of General Chemistry</u>, 1244–1251.
- Derouane, E.G., Nagy, J.B., Dejaifve, P., Van Hooff, J., Spekman, B.P., Védrine, J.C., Naccache, C. (1978). <u>Catalysis by Zeolites: Proceedings of an</u> <u>International Symposium</u>, 53, 40.
- Dũng, N.A., Mhodmonthin, A., Wongkasemjit, S., and Jitkarnka, S. (2009). Light olefins and light oil production from catalytic pyrolysis of waste tire. <u>Journal of Analytical and Applied Pyrolysis</u>, 86, 281-286.
- Ferreira, F., Gnep, N., Magnoux, P., Maury, S., Cadran, N. (2009). <u>Applied Catalyst</u> <u>A: General</u>, 367, 39–46.
- Franck, H.G., Stadelhofer, J.W. (1988). <u>Industrial Aromatic Chemistry</u>, Berlin-Heidelberg: Springer-Verlag.
- Gayubo, G., Ainhoa, A., Beatriz, V., Andres. T. Aguayo, Javier, B. (2010).
 Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. <u>Applied Catalysis B: Environmental 97, 299–306</u>.
- Guangwen, C., Shulian, L., Fengjun, J., Quan, Y. (2007). Catalytic dehydration of bioethanol to ethylene. <u>Catalysis Today</u>, 125, 111–119.
- Haag, W.O., Chen, N.Y., in: L.L. Hegedus (Ed.). (1987). <u>Catalyst Design. Progress</u> and Prospectives. New York: Wiley, 193.
- Ikai, W., Tseng-Chang, T., and Sheng-Tai, H. (1990). Disproportionation of Toluene and of Trimethylbenzene and the Transalkylation over Zeolite Beta. <u>Industrial Engineering Chemical Research</u>, 29, 2005-2012.

- Jagannath, D., Yajnavalkya, S., Bhat and Anand, B. Halgeri. (1993). Transalkylation and disproportionation of toluene over zeolite beta. <u>Catalysts Letters</u>, 23, 161-168.
- Jiangyin, L. and Yancong, L. (2010). Effect of P content in a P/HZSM-5 catalyst on the conversion of ethanol to hydrocarbons. <u>Journal of Natural Gas</u> Chemistry, 20, 162-166.
- Jiri, C., Josef, K., Andrea, K. (2004). Disproportion of alkyl benzene over large pore zeolites: catalytic and adsorption study. <u>Applied Catalysis A: General</u>, 277, 191-199.
- Kaeding, W.W., Chu, C., Young, L.B., Weinstein, B., Butter, S.A. (1981). Selective alkylation of toluene with methanol to produce para-xylene. <u>Journal of</u> <u>Catalysis</u>, 67, 159–174.
- Lien, A.P., Mc. Caulay D.A. (1953). Journal American Chemical Society, 75, 2107.
- Megumu, I., Kazuhisa, M., Masahiro, S. and Isao, T. (2005). Ethanol Conversion to Aromatic Hydrocarbons over Several Zeolite Catalysts. <u>Reaction Kinetic</u> <u>Catalysis Letters</u>, 135–142.
- Peng, W., Takayuki, K., Tatsuaki, Y. (1998). Selective formation of *p*-xylene with disproportionation of toluene over MCM-22 catalysts. <u>Microporous and Mesoporous Materials</u>, 22, 343–356.
- Perego, c., Pollesel, P. (2009). <u>Advances in Nanoporous Materials:Advances in</u> <u>Aromatics Processing Using Zeolite Catalysts</u>. Italy:Elsevier.
- Saewong, S., Wungtanagorn, C., and Jitkarnka, S. (2012). Dual-Bed (MgHPO₄/Al₂O₃:Ga₂O₃/HZSM-5) Catalytic System for Liquid Hydrocarbons Production from Bio-Ethanol. The 3rd Research Symposium on Petrochemical and Materials Technology and The 18th PPC Symposiumon Petroleum, Petrochemicals, and Polymers.
- Saha, S.K. and Sivasanker, S. (1992). Influence of Zn- and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5. <u>Catalysis Letters</u>, 15, 413-418.
- Tan, J. and Chan, S.K. (2011). Inorganic chemistry: properties and characterization, Weinheim: Wiley-VCH.

- Tret yakov, V.F., Makarfi, Yu.I., Tret yakov, K.V., Frantsuzova, N.A., and Talyshinskii, R.M. (2010). The catalytic conversion of bioethanol to hydrocarbon fuel: A review and study. <u>Biocatalysis</u>, 2(4) 402-420.
- Tseng, C., Shang, B., Ikai, W. (1998). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. <u>Applied Catalysis A: General, 181</u>, 355-398.
- Tseng, C., Wen, H., Shang, B. (2002). Metal zeolites for transalkylation of toluene and heavy aromatics. <u>Catalysis Today</u>, 73, 39–47.
- Wells, G.M. (1991). <u>Handbook of Petrochemicals and Processes</u>. Gower Press, Vermont.
- Yashima, T., Ahmad, H., Yamazaki, K., Katsuta, M., Hara, N. (1970). Alkylation on synthetic zeolites: I. Alkylation of toluene with methanol. <u>Journal of</u> <u>Catalysis</u>, 16, 273-280.

Zukaskas, V. (2005). CMAI-2005 World Petrochemical Conference, 298.

APPENDICES

Appendix A Scanning Electron Microscopy Micrographs

Figure A1 SEM image of HZ5 (10.0 kV 8.7mm ×30.0k).

Figure A2 SEM image of 2PHZ5 (10.0 kV 8.7mm ×30.0k).

Figure A3 SEM image of 2SbHZ5 (10.0 kV 8.7mm ×30.0k).

Figure A4 SEM image of 2BiHZ5 (10.0 kV 8.7mm ×30.0k).

Figure B1 Raman spectrum of HZ5 catalyst in the 200-1000 cm⁻¹.

Figure B2 Raman spectrum of 2GaHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B3 Raman spectrum of 1PHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B4 Raman spectrum of 4PHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B5 Raman spectrum of 1SbHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B6 Raman spectrum of 4SbHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B7 Raman spectrum of 1BiHZ5 catalyst in the 200-1000 cm⁻¹.

Figure B8 Raman spectrum of 4BiHZ5 catalyst in the 200-1000 cm⁻¹.

Appendix C Product Distribution and Product Yield Calculation

Yield (wt %) =
$$\frac{\text{Total weight of any products}}{\text{Total weight of converted bioethanol}} \times 100$$

Table C1 Product distribution and product yields from the two consecutive layers of

 catalysts

Catalyst	2GaHZ5	2GaHZ5:X	2GaHZ5:Y	2GaHZ5:β
Ethanol conversion (wt %)	96.5	96.0	96.1	96.1
Feed ethanol (ml/h)	2.00	4.00	4.00	4.00
Feed ethanol (ml)	16.0	32.0	32.0	32.0
Feed ethanol (g)*	12.6	25.2	25.2	25.2
Converted ethanol (g)	12.2	24.2	24.3	24.3
Product distribution (g)				
Oil	0.85	1.26	1.48	1.15
Gas	6.48	13.0	12.9	13.3
Water	4.86	9.94	9.85	9.83
Other**	0.45	1.02	0.98	0.98
Product yield (wt %)				
Oil	6.95	5.19	6.09	4.76
Gas	53.2	53.8	53.3	54.8
Water	39.9	41.0	40.6	40.5

*Ethanol concentration is 99.5 v/v %

Catalyst	HZ5	1PHZ5	2PHZ5	3PHZ5	4PHZ5
Ethanol conversion (wt %)	97.0	97.0	97.0	96.9	96.9
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00	2.00
Feed ethanol (ml)	16.0	16.0	16.0	16.0	16.0
Feed ethanol (g)*	12.6	12.6	12.6	12.6	12.6
Converted ethanol (g)	12.2	12.2	12.2	12.2	12.2
Product distribution (g)					
Oil	0.75	0.87	0.71	0.53	0.35
Gas	6.41	6.55	6.64	6.82	7.27
Water	5.08	4.82	4.88	4.88	4.61
Other**	0.38	0.38	0.38	0.39	0.39
Product yield (wt %)					
Oil	6.13	7.07	5.80	4.35	2.88
Gas	52.4	53.5	54.3	55.8	59.5
Water	41.5	39.4	39.9	39.9	37.7

Table C2Product distribution and product yields from HZ5, 1PHZ5, 2PHZ5,3PHZ5, and 4PHZ5 catalysts

*Ethanol concentration is 99.5 v/v %

Catalyst	HZ5	1SbHZ5	2SbHZ5	3SbHZ5	4SbHZ5
Ethanol conversion (wt %)	97.0	96.2	96.2	96.1	96.2
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00	2.00
Feed ethanol (ml)	16.0	16.0	16.0	16.0	16.0
Feed ethanol (g)*	12.6	12.6	12.6	12.6	12.6
Converted ethanol (g)	12.2	12.1	12.1	12.1	12.1
Product distribution (g)					
Oil	0.75	0.84	0.95	0.79	0.74
Gas	6.41	6.54	6.41	6.55	6.70
Water	5.08	4.76	4.78	4.80	4.70
Other**	0.38	0.47	0.48	0.49	0.48
Product yield (wt %)					
Oil	6.13	6.94	7.87	6.48	6.06
Gas	52.4	53.9	52.8	54.0	55.2
Water	41.5	39.2	39.3	39.6	38.7

Table C3Product distribution and product yields from HZ5, 1SbHZ5, 2SbHZ5,3SbHZ5, and 4SbHZ5 catalysts

*Ethanol concentration is 99.5 v/v %

Catalyst	HZ5	1BiHZ5	2BiHZ5	3BiHZ5	4BiHZ5
Ethanol conversion (wt %)	97.0	96.2	96.1	96.2	96.2
Feed ethanol (ml/h)	2.00	2.00	2.00	2.00	2.00
Feed ethanol (ml)	16.0	16.0	16.0	16.0	16.0
Feed ethanol (g)*	12.6	12.6	12.6	12.6	12.6
Converted ethanol (g)	12.2	12.1	12.1	12.1	12.1
Product distribution (g)					
Oil	0.75	0.79	0.81	0.76	0.76
Gas	6.41	6.55	6.54	6.60	6.63
Water	5.08	4.80	4.79	4.78	4.76
Other**	0.38	0.49	0.49	0.49	0.47
Product yield (wt %)					
Oil	6.13	6.50	6.66	6.29	6.23
Gas	52.4	54.0	53.9	54.3	54.6
Water	41.5	39.5	39.4	39.4	39.2

Table C4Product distribution and product yields from HZ5, 1BiHZ5, 2BiHZ5,3BiHZ5, and 4BiHZ5 catalysts

*Ethanol concentration is 99.5 v/v %

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	46.1	44.5	43.0	48.3	40.1	35.5	33.9	34.5		
CO2	12.4	12.7	13.5	16.5	14.2	12.0	12.0	21.2		
Ethylene	4.86	4.92	5.32	5.61	6.03	6.84	7.37	8.49		
Ethane	15.2	15.1	14.9	14.1	14.6	14.1	14.0	12.2		
Propylene	0.00	0.00	0.00	0.00	0.00	2.70	3.02	3.51		
Propane	21.5	22.7	23.3	15.5	25.1	28.9	29.7	20.1		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

Appendix D Compositions in Gas Products

 Table D1
 Gas composition as a function of time on stream for 2GaHZ5 catalyst

 Table D2
 Gas composition as a function of time on stream for 2GaHZ5:X catalyst

		Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min			
CH4	39.3	37.0	33.0	30.0	30.2	26.0	27.0	25.2			
CO2	10.3	9.55	8.37	7.75	7.82	7.69	7.55	7.65			
Ethylene	0.00	0.00	2.21	2.98	3.58	3.87	3.92	4.21			
Ethane	15.2	15.3	14.6	14.6	15.1	15.1	14.4	15.9			
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Propane	35.1	38.1	41.8	44.7	43.2	47.3	47.1	47.0			
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Σ	100	100	100	100	100	100	100	100			

	Composition (mol %)										
Component	@60 min	@120 min	@180 min	@240 min	@300- min	@360 min	@420 min	@480 min			
CH4	35.1	35.2	32.8	33.1	32.2	32.5	29.9	29.9			
CO2	10.1	9.97	10.2	9.84	9.65	10.3	9.24	9.87			
Ethylene	5.44	5.95	5.44	5.92	6.86	7.39	7.32	7.73			
Ethane	14.5	15.0	14.1	13.5	14.7	14.4	14.2	14.5			
Propylene	0.00	0.00	0.00	0.00	0.00	2.86	3.07	3.59			
Propane	34.8	33.8	37.4	37.7	36.6	32.6	36.3	34.5			
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Σ	100	100	100	100	100	100	100	100			

 Table D3
 Gas composition as a function of time on stream for 2GaHZ5: Y catalyst

Table D4 Gas composition as a function of time on stream for 2GaHZ5: β catalyst

		Composition (mol %)										
Component	<i>a</i> 60	<i>a</i> 120	<i>a</i> 180	<i>a</i> 240	<i>a</i> 300	<i>a</i> 360	<i>a</i> 420	<i>a</i> 480				
	min	min	min	min	min	min	min	min				
CH4	36.5	36.2	35.8	35.6	35.5	33.2	30.4	31.0				
CO2	7.96	8.01	8.24	8.17	8.10	8.00	8.85	9.08				
Ethylene	2.93	3.05	3.14	3.23	3.45	4.06	4.86	5.29				
Ethane	14.1	14.1	14.1	14.1	14.1	14.0	13.9	14.3				
Propylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Propane	38.5	38.6	38.7	38.9	38.9	40.8	41.9	40.4				
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Σ	100	100	100	100	100	100	100	100				

	Composition (mol %)										
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min			
CH4	4.72	3.47	3.17	3.23	3.63	2.89	2.65	2.48			
CO2	2.21	1.43	1.41	1.47	1.71	1.42	1.36	1.32			
Ethylene	12.3	13.6	14.6	15.6	16.3	17.3	18.1	20.5			
Ethane	4.09	3.38	3.30	3.45	3.82	3.32	3.24	3.16			
Propylene	65.9	66.2	65.0	64.2	62.2	62.7	62.3	60.1			
Propane	0.65	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Butylene	5.66	6.65	7.05	6.97	7.13	7.21	7.19	7.26			
Butane	4.42	5.23	5.52	5.08	5.19	5.14	5.22	5.22			
Σ	100	100	100	100	100	100	100	100			

 Table D5
 Gas composition as a function of time on stream for HZ5 catalyst

 Table D6
 Gas composition as a function of time on stream for 1PHZ5 catalyst

		Composition (mol %)										
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min				
CH4	18.3	18.9	14.7	13.9	13.4	13.6	13.5	13.7				
CO2	4.40	4.51	3.85	3.90	4.32	4.40	3.80	4.33				
Ethylene	17.5	17.2	17.0	16.7	16.8	17.7	17.9	19.4				
Ethane	2.06	1.69	1.96	1.99	2.08	2.25	2.08	1.27				
Propylene	55.6	56.7	60.3	61.0	60.8	59.9	60.9	59.4				
Propane	1.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Butylene	0.70	1.02	2.19	2.48	2.59	2.10	1.80	1.97				
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Σ	100	100	100	100	100	100	100	100				

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	25.7	30.6	25.8	21.9	19.0	19.0	16.0	15.1		
CO2	13.8	13.6	12.6	11.6	10.9	10.8	10.1	9.67		
Ethylene	20.9	22.4	22.6	23.2	23.6	24.7	23.6	23.4		
Ethane	4.65	4.62	4.64	4.70	4.78	5.05	4.89	4.90		
Propylene	27.9	24.6	28.7	32.5	35.0	34.2	37.1	38.0		
Propane	1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butylene	3.33	1.85	3.60	3.92	4.33	4.09	4.52	4.80		
Butane	2.01	2.24	2.00	2.16	2.41	2.19	3.78	4.20		
Σ	100	100	100	100	100	100	100	100		

 Table D7
 Gas composition as a function of time on stream for 2PHZ5catalyst

 Table D8
 Gas composition as a function of time on stream for 3PHZ5 catalyst

		Composition (mol %)										
Component	@60	@120	@180	@240	@300	<i>a</i> 360	<i>a</i> 420	@480				
	mm	min	min	min	min	min	min	min				
CH4	1.64	1.60	2.91	4.41	4.95	9.72	15.38	12.13				
CO2	1.57	1.39	1.67	2.36	2.60	2.17	3.10	2.71				
Ethylene	52.7	53.3	53.7	52.9	54.9	52.2	49.2	50.1				
Ethane	1.90	1.14	0.88	1.01	0.92	0.72	0.00	0.71				
Propylene	39.7	36.4	34.0	35.1	32.0	30.3	31.5	30.4				
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Butylene	2.45	3.50	3.58	3.12	3.47	3.48	0.85	2.84				
Butane	0.00	2.66	3.23	1.11	1.25	1.32	0.00	1.04				
Σ	100	100	100	100	100	100	100	100				

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	16.8	16.7	17.7	16.2	17.3	16.9	18.0	19.1		
CO2	4.81	5.47	5.72	4.96	8.64	7.76	7.77	7.00		
Ethylene	52.3	51.4	47.4	47.7	45.3	45.0	43.6	42.0		
Ethane	1.56	1.46	1.51	1.35	1.66	1.73	1.68	1.69		
Propylene	24.5	24.9	27.6	29.8	27.1	28.6	29.0	30.1		
Propane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

 Table D9 Gas composition as a function of time on stream for 4PHZ5catalyst

 Table D10
 Gas composition as a function of time on stream for 1SbHZ5 catalyst

	Composition (mol %)									
Component	<i>a</i> 60	<i>a</i> 120	<i>a</i> 180	<i>@</i> 240	@300	@360	<i>a</i> 420	<i>a</i> 480		
	min	min	min	min	min	min	min	min		
CH4	27.2	28.0	26.9	25.1	19.4	18.3	17.7	16.3		
CO2	7.16	6.44	6.42	7.93	6.70	7.00	7.22	6.94		
Ethylene	7.74	8.94	9.07	9.29	10.6	12.4	12.7	14.2		
Ethane	17.2	17.2	16.0	16.0	15.0	15.6	15.2	15.1		
Propylene	3.59	3.27	3.81	4.01	3.53	4.21	4.61	4.34		
Propane	37.2	36.1	37.8	37.7	44.8	42.5	42.6	43.2		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	30.0	24.1	24.2	23.8	21.4	22.6	23.2	26.4		
CO2	13.1	8.78	9.91	9.14	8.67	8.86	9.35	12.1		
Ethylene	9.18	9.53	8.87	10.3	11.0	11.4	11.3	11.5		
Ethane	21.2	17.6	17.6	17.3	16.4	16.5	19.2	18.2		
Propylene	3.65	3.63	4.23	4.27	4.36	4.56	4.94	5.08		
Propane	22.8	36.4	35.1	35.2	38.2	36.0	32.0	26.7		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

 Table D11
 Gas composition as a function of time on stream for 2SbHZ5 catalyst

 Table D12
 Gas composition as a function of time on stream for 3SbHZ5 catalyst

			С	ompositi	ion (mol	%)		
Component	<i>a</i> 60	<i>a</i> 120	<i>a</i> 180	a 240	<i>a</i> 300	<i>(a</i>)360	<i>a</i> 420	<i>a</i> 480
	min	min	min	min	min	min	min	min
CH4	28.6	29.4	30.2	32.4	31.6	29.7	29.2	25.8
CO2	10.8	10.5	10.0	9.1	12.5	11.8	11.1	13.0
Ethylene	8.02	7.88	7.76	8.04	7.89	8.46	8.68	9.24
Ethnae	20.6	20.0	19.7	18.6	20.8	20.1	18.9	19.6
Propylene	3.09	3.04	2.91	3.19	3.28	3.49	3.80	4.24
Propane	28.9	29.1	29.4	28.8	23.9	26.4	28.3	28.1
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Σ	100	100	100	100	100	100	100	100

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	29.4	29.6	30.2	28.7	28.2	30.5	31.0	31.0		
CO2	11.1	10.9	10.6	10.6	10.7	10.3	10.4	10.6		
Ethylene	5.73	5.70	5.86	5.96	5.97	6.24	6.33	6.16		
Ethane	21.2	21.1	19.2	18.3	18.2	17.8	18.1	17.7		
Propylene	2.98	3.11	3.40	3.20	3.22	3.41	3.37	3.41		
Propane	29.6	29.6	30.7	33.2	33.7	31.7	30.8	31.2		
Butylene	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

 Table D13
 Gas composition as a function of time on stream for 4SbHZ5 catalyst

 Table D14
 Gas composition as a function of time on stream for 1BiHZ5 catalyst

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	35.5	23.9	19.1	23.3	22.7	20.9	21.2	20.2		
CO2	29.3	11.1	8.2	12.3	12.4	11.2	10.8	10.4		
Ethylene	12.4	11.6	9.37	9.40	9.85	9.75	7.84	8.39		
Ethane	9.70	10.9	15.9	12.9	12.6	12.6	13.8	12.8		
Propylene	5.75	3.98	4.89	3.92	5.41	5.76	3.59	3.81		
Propane	0.00	24.0	38.9	34.5	32.5	35.9	38.6	43.5		
Butylene	7.32	14.6	3.60	3.59	4.64	3.97	4.28	0.95		
Buthane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	38.8	28.9	24.2	22.3	18.4	17.0	13.5	11.6		
CO2	10.7	10.2	8.50	9.38	8.28	7.37	6.57	5.92		
Ethylene	7.03	9.33	11.2	11.7	13.9	16.2	18.6	20.0		
Ethnae	17.6	16.6	15.7	16.7	16.1	15.8	15.1	14.2		
Propylene	3.81	3.54	4.29	4.44	5.39	6.32	7.38	8.96		
Propane	22.0	31.5	34.4	33.9	35.3	34.1	35.0	34.5		
Butylene	0.00	0.00	1.69	1.59	2.56	3.24	3.98	4.76		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

 Table D15
 Gas composition as a function of time on stream for 2BiHZ5 catalyst

 Table D16
 Gas composition as a function of time on stream for 3BiHZ5 catalyst

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	28.6	21.3	17.7	14.7	11.7	10.8	10.0	10.0		
CO2	9.97	7.91	7.30	6.43	5.63	5.38	4.86	6.19		
Ethylene	10.0	12.0	14.0	16.0	18.5	20.2	22.6	23.1		
Ethane	16.9	15.6	15.2	14.7	13.9	14.0	13.5	13.5		
Propylene	4.19	5.12	6.05	6.76	7.68	9.08	11.38	14.64		
Propane	30.2	35.9	36.7	37.6	37.8	35.5	32.5	27.6		
Butylene	0.00	2.12	2.96	3.82	4.81	5.03	5.18	5.01		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

	Composition (mol %)									
Component	@60 min	@120 min	@180 min	@240 min	@300 min	@360 min	@420 min	@480 min		
CH4	40.6	33.1	27.8	18.3	12.6	8.08	6.00	6.13		
CO2	16.7	14.2	14.4	11.5	9.52	7.24	6.04	5.99		
Ethylene	6.18	9.36	13.3	19.8	26.5	32.9	38.0	41.6		
Ethane	22.3	19.6	17.2	13.5	10.8	8.57	7.29	7.19		
Propylene	4.24	4.70	4.89	8.61	13.3	17.9	21.3	22.3		
Propane	10.0	19.0	22.4	25.9	24.1	21.7	17.9	13.9		
Butylene	0.00	0.00	0.00	2.38	3.18	3.62	3.43	2.92		
Butane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Σ	100	100	100	100	100	100	100	100		

 Table D17 Gas composition as a function of time on stream for 4BiHZ5 catalyst

		Composi	tion (wt%)	
Component	2GaHZ5	2GaHZ5:X	2GaHZ5:Y	2GaHZ5:β
Non-aromatic	0.94	1.97	2.08	2.01
Benzene	14.79	8.04	11.75	9.49
Toluene	19.78	15.68	17.65	14.62
o-Xylene	0.00	0.00	0.00	0.00
m-Xylene	28.49	14.93	24.22	20.11
p-Xylene	11.82	7.07	12.59	9.35
Ethylbenzene	1.92	4.73	3.44	1.70
С9	5.45	9.08	9.07	8.73
C10+	16.82	38.49	19.20	33.99
	100	<u>100</u>	<u>100</u>	100
BTEX/total aromatics	0.77	0.50	0.70	0.55
p-Xylene/total aromatics	0.12	0.07	0.13	0.09

Appendix E Compositions in Liquid Products

 Table E1 Oil composition from the two consecutive layers of catalysts

C		Con	nposition (wt %)	
Component	HZ5	1PHZ5	2PHZ5	3PHZ5	4PHZ5
Non-aromatic	1.92	1.37	1.15	0.96	1.22
Benzene	14.26	7.46	9.46	8.15	6.55
Toluene	28.19	9.87	12.82	16.88	13.04
o-Xylene	0.00	0.00	0.00	0.00	0.00
m-Xylene	25.01	13.46	16.53	21.56	15.33
p-Xylene	10.84	11.37	13.38	13.39	11.81
Ethylbenzene	2.11	5.27	4.68	3.84	3.77
С9	5.15	19.56	16.76	12.30	12.78
C10+	12.52	31.64	25.22	22.90	35.50
	100	100	<u>100</u>	<u>100</u>	100
BTEX/total aromatics	0.80	0.47	0.57	0.64	0.51
p-Xylene/total aromatics	0.11	0.11	0.13	0.13	0.12

C		Composition (wt%)							
Component	HZ5	1SbHZ5	2SbHZ5	3SbHZ5	4SbHZ5				
Non-aromatic	1.92	1.44	0.93	1.17	0.97				
Benzene	14.26	6.16	8.54	7.63	8.08				
Toluene	28.19	20.86	15.61	12.82	14.44				
o-Xylene	0.00	0.00	0.00	0.00	0.00				
m-Xylene	25.01	26.00	16.34	18.53	17.49				
p-Xylene	10.84	7.96	10.64	10.11	9.85				
Ethylbenzene	2.11	4.25	2.75	2.84	2.09				
С9	5.15	13.23	10.34	9.95	6.99				
C10+	12.52	20.10	34.85	36.95	40.07				
	100	100	100	<u>100</u>	100				
BTEX/total aromatics	0.80	0.65	0.54	0.52	0.52				
p-Xylene/total aromatics	0.11	0.08	0.11	0.10	0.10				

Table E3 Oil composition from HZ5, 1SbHZ5, 2SbHZ5, 3SbHZ5, and 4SbHZ5catalysts

Table E4	Oil composition	from HZ5,	1BiHZ5,	2BiHZ5,	3BiHZ5,	and	4BiHZ5
catalysts							

C		Composition (wt%)							
Component	HZ5	1BiHZ5	2BiHZ5	3BiHZ5	4BiHZ5				
Non-aromatic	1.92	0.98	1.12	0.86	0.94				
Benzene	14.26	8.38	8.46	11.55	7.36				
Toluene	28.19	19.93	13.07	16.93	14.33				
o-Xylene	0.00	0.00	0.00	0.00	0.00				
m-Xylene	25.01	22.43	16.86	17.18	21.88				
p-Xylene	10.84	9.20	7.56	6.57	7.75				
Ethylbenzene	2.11	4.00	1.49	1.04	1.29				
С9	5.15	8.92	5.90	6.00	6.08				
C10+	12.52	26.16	45.54	39.88	40.37				
	100	<u>100</u>	100	<u>100</u>	<u>100</u>				
BTEX/total aromatics	0.80	0.64	0.47	0.53	0.53				
p-Xylene/total aromatics	0.11	0.09	0.08	0.07	0.08				

		Boiling	point (°C)			
% OFF	2GaHZ5	2GaHZ5:X	2GaHZ5:Y	2GaHZ5:β		
0	62.8	61.3	61.2	61.0		
5	71.3	72.0	71.6	71.1		
10	71.8	72.6	72.1	71.6		
15	72.3	73.6	72.7	72.1		
20	76.2	98.5	74.8	72.7		
25	98.7	98.8	98.5	75.4		
30	99.0	99.0	98.7	98.1		
35	99.2	99.2	98.9	98.3		
40	99.4	99.4	99.1	98.7		
45	99.6	99.6	99.5	99.1		
50	99.8	99.8	100.1	99.3		
55	100.0	100.2	122.4	99.5		
60	122.3	124.0	125.1	123.5		
65	126.1	127.2	125.7	124.5		
70	126.4	145.4	128.5	128.3		
75	145.3	148.3	145.8	190.5		
80	148.9	169.3	163.8	191.6		
85	179.3	173.6	191.4	210.7		
90	220.8	210.0	213.0	233.1		
95	342.2	228.9	233.0	269.4		
100	411.0	390.5	372.3	377.3		

 Table F1
 True boiling point curves from the two consecutive layers of catalysts

Appendix F True Boiling Point Curves

Table F1 True boiling point curves from the two consecutive layers of catalysts(Continue)

 Table F2
 Petroleum cuts obtained from the two consecutive layers catalytic systems

Exaction	Boiling point	Boiling point wt %				
Fraction	(°C)	2GaHZ5	2GaHZ5:X	2GaHZ5:Y	2GaHZ5:β	
Gasoline	<149	80.0	75.2	75.9	71.7	
Kerosene	149-232	10.4	19.9	18.9	18.1	
Gas oil	232-343	4.60	3.43	4.20	8.66	
LVGO	343-371	2.03	0.87	1.01	1.30	
HVGO	>371	2.91	0.60	0.05	0.29	

		Boiling point (°C)					
% OFF	HZ5	1PHZ	2PHZ5	3PHZ5	4PHZ5		
0	59.1	77.5	58.1	55.0	52.8		
5	78.5	78.5	71.9	55.8	53.3		
10	83.1	79.2	76.8	56.7	53.8		
15	107.5	107.1	99.4	57.9	54.4		
20	107.8	107.7	99.7	59.7	54.9		
25	108.1	108.0	99.5	61.2	55.4		
30	108.3	108.1	100.1	63.1	55.9		
35	108.5	108.3	100.3	73.0	56.5		
40	108.6	108.5	100.5	75.0	57.0		
45	108.8	108.7	111.0	95.3	58.7		
50	132.9	108.9	116.7	96.4	60.5		
55	134.9	133.0	124.2	101.4	63.9		
60	135.2	135.0	127.4	101.5	69.1		
65	135.5	135.3	127.5	101.7	74.6		
70	135.7	135.5	130.5	102.0	92.7		
75	135.9	139.2	137.2	107.3	100.7		
80	140.4	140.7	138.8	130.4	102.3		
85	150.8	168.3	148.7	147.7	133.5		
90	168.3	204.2	212.4	231.4	176.6		
95	206.8	226.0	366.2	356.2	524.3		
100	527.9	505.5	533.1	543.1	564.4		

Table F3 True boiling point curves from HZ5, 1PHZ5, 2PHZ5, 3PHZ5, and 4PHZ5catalysts

Table F3 True boiling point curves from HZ5, 1PHZ5, 2PHZ5, 3PHZ5, and 4PHZ5catalysts (Continue)

Table F4 Petroleum cuts obtained from HZ5, 1PHZ5, 2PHZ5, 3PHZ5, and 4PHZ5catalysts

Fraction	Boiling point	wt %					
	(°C)	HZ5	1PHZ5	2PHZ5	3PHZ5	4PHZ5	
Gasoline	<149	84.1	81.5	85.0	85.1	86.8	
Kerosene	149-232	11.3	13.6	5.61	4.95	4.00	
Gas oil	232-343	1.73	1.99	3.61	4.45	1.60	
LVGO	343-371	0.44	0.50	0.90	0.92	0.40	
HVGO	>371	2.44	2.41	4.86	4.60	7.20	

0/ OFF		Bo	iling point	(°C)	
	HZ5	1SbHZ5	2SbHZ5	3SbHZ5	4SbHZ5
0	59.1	61.0	57.4	59.9	60.1
5	78.5	74.4	59.5	74.0	71.7
10	83.1	75.5	61.9	74.7	72.2
15	107.5	101.3	72.6	75.2	76.3
20	107.8	101.6	73.2	101.1	98.8
25	108.1	101.8	100.4	101.4	99.1
30	108.3	102.0	100.7	101.6	99.3
35	108.5	102.2	100.9	101.8	99.5
40	108.6	102.4	101.0	102.0	99.7
45	108.8	102.6	101.2	102.2	99.9
50	132.9	102.7	101.4	102.4	100.0
55	134.9	127.1	102.0	102.6	125.3
60	135.2	128.5	127.7	128.2	126.1
65	135.5	128.7	128.0	128.5	126.3
70	135.7	128.9	128.1	128.7	129.2
75	135.9	129.1	128.6	132.1	148.9
80	140.4	132.4	132.0	152.7	192.0
85	150.8	154.5	157.5	195.9	211.0
90	168.3	195.6	185.6	214.9	211.9
95	206.8	214.8	217.4	217.9	234.4
100	527.9	502.3	501.8	529.8	512.6

Table F5True boiling point curves from HZ5, 1SbHZ5, 2SbHZ5, 3SbHZ5, and4SbHZ5 catalysts

Table F5 True boiling point curves from HZ5, 1SbHZ5, 2SbHZ5, 3SbHZ5, and4SbHZ5 catalysts (Continue)

Table F6 Petroleum cuts obtained from HZ5, 1SbHZ5, 2SbHZ5, 3SbHZ5, and4SbHZ5 catalysts

	Boiling point	wt %					
Fraction	(°C)	HZ5	1SbHZ5	2SbHZ5	3SbHZ5	4SbHZ5	
Gasoline	<149	84.1	83.8	83.3	79.1	75.0	
Kerosene	149-232	11.3	11.5	11.9	16.1	19.5	
Gas oil	232-343	1.73	1.93	1.95	1.78	2.49	
LVGO	343-371	0.44	0.49	0.49	0.45	0.50	
HVGO	>371	2.44	2.28	2.30	2.55	2.54	

		Be	oiling point	t (°C)			
	HZ5	HZ5 1BiHZ5 2H		3BiHZ5	4BiHZ5		
0	59.1	56.8	71.8	71.6	70.9		
5	78.5	59.4	72.9	72.7	72.1		
10	83.1	60.2	74.3	73.2	99.1		
15	107.5	61.1	100.1	78.4	99.7		
20	107.8	61.9	100.4	80.0	99.9		
25	108.1	63.4	100.6	90.2	100.0		
30	108.3	66.3	100.8	100.4	100.2		
35	108.5	73.8	101.0	100.6	100.4		
40	108.6	100.5	101.2	100.8	100.6		
45	108.8	100.9	101.4	101.0	100.8		
50	132.9	101.4	127.1	108.4	125.0		
55	134.9	127.6	127.5	117.6	126.9		
60	135.2	128.1	127.7	128.1	127.2		
65	135.5	132.4	130.7	132.4	127.4		
70	135.7	153.3	149.6	149.3	130.6		
75	135.9	164.3	176.9	178.6	158.1		
80	140.4	178.3	194.7	184.9	188.8		
85	150.8	196.2	205.5	215.7	194.2		
90	168.3	219.9	213.9	218.4	213.1		
95	206.8	246.7	234.7	244.6	215.3		
100	527.9	423.9	440.2	444.3	448.4		

Table F7True boiling point curves from HZ5, 1BiHZ5, 2BiHZ5, 3BiHZ5, and4BiHZ5 catalysts

Table F7True boiling point curves from HZ5, 1BiHZ5, 2BiHZ5, 3BiHZ5, and4BiHZ5 catalysts (Continue)

Table F8 Petroleum cuts obtained from HZ5, 1BiHZ5, 2BiHZ5, 3BiHZ5, and4BiHZ5 catalysts

Fraction	Boiling point	wt %					
	(°C)	HZ5	1BiHZ5	2BiHZ5	3BiHZ5	4BiHZ5	
Gasoline	<149	84.1	69.0	69.8	69.9	73.3	
Kerosene	149-232	11.3	23.3	24.5	22.7	22.0	
Gas oil	232-343	1.73	5.46	3.28	4.87	2.38	
LVGO	343-371	0.44	0.79	0.68	0.70	0.60	
HVGO	>371	2.44	1.49	1.68	1.84	1.66	

CURRICULUM VITAE

Name: Mr. Sathit Pasomsub

Date of Birth: February 17, 1988

Nationality: Thai

University Education:

2007-2010 Bachelor Degree of Engineering (Petrochemicals and Polymeric Materials), Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand

Work Experience:

2009	Position:	Student Internship
	Company name:	Rubber Research Institute of Thailand

Proceedings:

 Pasomsub, S. and Jitkarnka, S. (2013, April 23) P-Promoted HZSM-5 Catalysts on Conversion of Bio-ethanol to Hydrocarbons: Influence of Si/Al Ratio. Proceedings of The 4th Research Symposium on Petrochemical and Materials Technology and The 19th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.